首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suicide gene therapy of glioma based on herpes simplex virus type I thymidine kinase (HSV-TK) and prodrug ganciclovir (GCV) suffers from the lack of efficacy in clinical trials, which is mostly due to low transduction efficacy and absence of bystander effect in tumor cells. Recently, stem cells as cellular delivery vehicles of prodrug converting gene has emerged as a new treatment strategy for malignant glioma. In this study, we evaluated the anti-glioma effect of suicide gene therapy using human bone marrow mesenchymal stem cells expressing HSV-TK (MSCs-TK) combined with valproic acid (VPA), which can upregulate the gap junction proteins and may enhance the bystander effect of suicide gene therapy. Expression of HSV-TK in MSCs was confirmed by RT-PCR analysis and the sensitivity of MSCs-TK to GCV was assessed. A bystander effect was observed in co-cultures of MSCs-TK and U87 glioma cells by GCV in a dose-dependent manner. VPA induced the expression of the gap junction proteins connexin (Cx) 43 and 26 in glioma cell and thereby enhanced the bystander effect in co-culture experiment. The enhanced bystander effect was inhibited by the gap junction inhibitor 18-β-glycyrrhetinic acid (18-GA). Moreover, the combined treatment with VPA and MSCs-TK synergistically enhanced apoptosis in glioma cells by caspase activation. In vivo efficacy experiments showed that combination treatment of MSCs-TK and VPA significantly inhibited tumor growth and prolonged the survival of glioma-bearing mice compared with single-treatment groups. In addition, TUNEL staining also demonstrated a significant increase in the number of apoptotic cells in the combination treated group compared with single-treatment groups. Taken together, these results provide the rational for designing novel experimental protocols to increase bystander killing effect against intracranial gliomas using MSCs-TK and VPA.  相似文献   

2.
Although many works support gap junctional intercellular communication (GJIC) having a close relation to bystander cell killing in herpes simplex virus thymidine kinase (HSV-TK) gene and ganciclovir (GCV) treatment, our previous work suggested that other factors involved in bystander effect besides GJIC exist. To confirm our primary work, we evaluated the mode of the bystander cell (C6) co-cultured with TK-positive cells (TF10.2) in our designed "insert plates" in which two cell lines could be separated but share the same medium. Another method that we used was adding the supernatant from the medium of GCV-treated TF10.2 cells to the wild type C6. Growth inhibition of the bystander cells was observed despite the absence of GJIC. In addition, apoptotic cell death of TK+ cells and bystander cells was obvious. These studies suggested that other pathways besides cell-cell contacts may play a role in bystander cell killing; the factors released from TK-positive cells could induce apoptosis of bystander cells.  相似文献   

3.
Neoplastic transformation is frequently associated with a loss of gap junctional intercellular communication and reduced expression of connexins. The introduction of connexin genes into tumor cells reverses the proliferative characteristics of such cells. However, there is very little comparative information on the effects of different connexins on cancer cell growth. We hypothesized that Cx26, Cx32, or Cx43 would display differential growth suppression of C6 glioma cells and uniquely modulate the bystander effect following transduction of C6 cells with HSVtk followed by suicide gene therapy. The bystander phenomenon is the death of a greater number of tumor cells than are expressing the HSVtk gene, presumably due to the passage of toxic molecules through gap junction channels. To test this hypothesis, we used retroviral vectors to infect C6 glioma cells producing connexin-expressing and HSVtk-expressing cell lines. All three connexin-expressing cell lines grew significantly slower than GFP-infected or native C6 cells. Cx32 and Cx26 were significantly more effective at mediating the bystander effect in cocultures of C6-connexin cells with C6-HSVtk cells. These studies indicate that connexins have unique properties that contribute to their tumor suppressive function.  相似文献   

4.
The ability of herpes simplex virus type 1 thymidine kinase (HSV-tk)-expressing cells incubated with ganciclovir (GCV) to induce cytotoxicity in neighboring HSV-tk-negative (bystander) cells has been well documented. Although it has been suggested that this bystander cell killing occurs via the transfer of phosphorylated GCV, the mechanism(s) of this bystander effect and the importance of gap junctions for the effect of prodrug/suicide gene therapy in primary human glioblastoma cells remains elusive. Surgical biopsies of malignant gliomas were used to establish explant primary cultures. Proliferating tumor cells were characterized immunohistochemically and found to express glial tumor markers including nestin, vimentin, glial fibrillary acidic protein (GFAP), S-100, and gap junction protein connexin 43 (Cx43). Western blot analysis revealed the presence of phosphorylated isoforms of Cx43 and Calcein/DiI fluorescent dye transfer showed evidence of efficient gap junction communication (GJC). In order to study the effect(s) of prodrug/suicide gene therapy in these cultures, human glioblastoma cell cultures were transfected with the HSVtk gene for transient or stable expression. Ganciclovir treatment of these cultures led to >90% of cells dead within 1 week. Eradication of cells could be inhibited by the addition of alpha-glycyrrhetinic acid (AGA), a GJC inhibitor. In parallel experiments, AGA decreased the immunodetection of phosphorylated Cx43 as analyzed by Western blot and inhibited fluorescent dye transfer. In conclusion, these observations are consistent with GJC as the mediator of the bystander effect in primary cultures of human glioblastoma cells by the transfer of phosphorylated GCV from HSVtk gene transfected cells to untransfected ones.  相似文献   

5.
Neoplastic transformation is frequently associated with a loss of gap junctional intercellular communication and reduced expression of connexins. The introduction of connexin genes into tumor cells reverses the proliferative characteristics of such cells. However, there is very little comparative information on the effects of different connexins on cancer cell growth. We hypothesized that Cx26, Cx32, or Cx43 would display differential growth suppression of C6 glioma cells and uniquely modulate the bystander effect following transduction of C6 cells with HSVtk followed by suicide gene therapy. The bystander phenomenon is the death of a greater number of tumor cells than are expressing the HSVtk gene, presumably due to the passage of toxic molecules through gap junction channels. To test this hypothesis, we used retroviral vectors to infect C6 glioma cells producing connexin-expressing and HSVtk-expressing cell lines. All three connexin-expressing cell lines grew significantly slower than GFP-infected or native C6 cells. Cx32 and Cx26 were significantly more effective at mediating the bystander effect in cocultures of C6-connexin cells with C6-HSVtk cells. These studies indicate that connexins have unique properties that contribute to their tumor suppressive function.  相似文献   

6.
The ability of herpes simplex virus type 1 thymidine kinase (HSV-tk)-expressing cells incubated with ganciclovir (GCV) to induce cytotoxicity in neighboring HSV-tk-negative (bystander) cells has been well documented. Although it has been suggested that this bystander cell killing occurs via the transfer of phosphorylated GCV, the mechanism(s) of this bystander effect and the importance of gap junctions for the effect of prodrug/suicide gene therapy in primary human glioblastoma cells remains elusive. Surgical biopsies of malignant gliomas were used to establish explant primary cultures. Proliferating tumor cells were characterized immunohistochemically and found to express glial tumor markers including nestin, vimentin, glial fibrillary acidic protein (GFAP), S-100, and gap junction protein connexin 43 (Cx43). Western blot analysis revealed the presence of phosphorylated isoforms of Cx43 and Calcein/DiI fluorescent dye transfer showed evidence of efficient gap junction communication (GJC). In order to study the effect(s) of prodrug/suicide gene therapy in these cultures, human glioblastoma cell cultures were transfected with the HSVtk gene for transient or stable expression. Ganciclovir treatment of these cultures led to >90% of cells dead within 1 week. Eradication of cells could be inhibited by the addition of α-glycyrrhetinic acid (AGA), a GJC inhibitor. In parallel experiments, AGA decreased the immunodetection of phosphorylated Cx43 as analyzed by Western blot and inhibited fluorescent dye transfer. In conclusion, these observations are consistent with GJC as the mediator of the bystander effect in primary cultures of human glioblastoma cells by the transfer of phosphorylated GCV from HSVtk gene transfected cells to untransfected ones.  相似文献   

7.
The multidrug resistance protein MRP4, a member of the ATP-binding cassette superfamily, confers resistance to purine-based antiretroviral agents. However, the antiviral agent ganciclovir (GCV) has not been shown to be a substrate of MRP4. GCV is important not only in antiviral therapy, but also in the selective killing of tumor cells modified to express herpes simplex virus thymidine kinase (HSV-TK). We therefore tested the effect of MRP4 on the cytotoxicity of GCV, on the ability of GCV to kill cells genetically modified to express HSV-TK, and on the bystander effect in which unmodified target cells are killed by GCV. Cells overexpressing MRP4 had markedly increased resistance to the cytotoxicity of GCV. Although, expression of recombinant HSV-TK increased the intracellular concentration of GCV nucleotide, cells were rescued by the cytoprotective effect of MRP4. In cells that overexpressed MRP4, intracellular accumulation of GCV metabolites was reduced, efflux of these metabolites was increased, and resistance to bystander killing was increased. Therefore, MRP4 can strongly reduce the susceptibility of HSV-TK-expressing cells to GCV, and its overexpression in adjacent cells protects them from bystander cell death. These findings indicate that a nucleotide transporter, such as MRP4, modulates the cellular response to GCV and thus may influence not only the efficacy of antiviral therapy, but also prodrug-based gene therapy, which is critically dependent upon bystander cell killing.  相似文献   

8.
During embryonic development, cells not only increase in number, they also undergo specialization and differentiate into diverse cell types that are organized into different tissues and organs. Nervous system development, for example, involves a complex series of events such as neuronal and astroglial differentiation that are coordinated among adjacent cells. The organization of growth and differentiation may be mediated, at least partly, by exchange of small ions and molecules via intercellular gap junction channels. These structures are mode of connexons (hemichannels), which are hexameric assemblies of the gap junction proteins, connexins. We investigated the role of intercellular communication in neuronal and astroglial differentiation by using a gap junction blocking agent, carbenoxolone (CBX), in comparison to its inactive (control) analog, glycyrrhizic acid (GZA). We used the mouse P19 embryonal carcinoma cell line, which differentiates into neurons and astrocytes upon retinoic acid (RA) induction. Our results show that both GZA- and CBX-treated cells express alpha 1 connexin (connexin43). The level of alpha 1 connexin decreases upon RA induction. CBX treated cells show significant reduction in both neuronal (5-fold) and astrocytic (13-fold) differentiation compared with those of control. These results clearly indicate that the blockage of gap junction-mediated intercellular communication interferes with differentiation of P19 cells into neurons and astrocytes.  相似文献   

9.
Photodynamic treatment (PDT) of confluent MDCK II cells resulted in a noticeable clustering of dead cells, consistent with a significant bystander effect. Likewise, PDT of cells in microcolonies resulted in an overabundance of microcolonies that had responded to the treatment as a single unit, that is, in which either all or no cells were dead. Confluent MDCK II cells appeared to communicate via gap junction channels, while cells in microcolonies did not. Monte Carlo simulation models were fitted to the distributions of dead cells in confluent monolayers and in microcolonies. The simulations showed that the degree of the bystander effect was higher in microcolonies than in confluent cells, suggesting that gap junction communication may be involved in the bystander effect. However, when the gap junction hypothesis was tested by treatment of microcolonies with 30 microM dieldrin, an inhibitor of gap junctional intercellular communication, there was no reduction of the bystander effect, indicating that this effect was not mediated by gap junctional intercellular communication. PDT influenced phosphorylation of tyrosine residues in several proteins in the cells. Protein phosphorylation is important in cellular signaling pathways and may be involved in the bystander effect, for example by influencing the mode of cell death.  相似文献   

10.
It is controversially discussed that irradiation induces bystander effects via gap junction channels and/or diffusible cellular factors such as nitric oxide or cytokines excreted from the cells into the environment. But up to now the molecular mechanism leading to a bystander response is not well understood. To discriminate between both mechanisms of bystander response, (i) mediated by gap junctional communication and/or (ii) mediated by diffusible molecules, we used non-communicating Jeg3 malignant trophoblast cells transfected with inducible gap junction proteins, connexin43 and connexin26, respectively, based on the Tet-On system. We co-cultivated X-ray irradiated and non-irradiated bystander Jeg3 cells for 4 h, separated both cell populations by flow cytometry and evaluated the expression of activated p53 by Western blot analysis. The experimental design was proven with communicating versus non-communicating Jeg3 cells. Interestingly, our results revealed a bystander effect which was independent from gap junctional communication properties and the connexin isoform expressed. Therefore, it seems more likely that the bystander effect is not mediated via gap junction channels but rather by paracrine mechanisms via excreted molecules in Jeg3 cells.  相似文献   

11.
Innumerable toxic substances present in the environment inhibit gap junctions, intercellular membrane channels that play fundamental roles in coordinated function of cells and tissues. Included are persistent organochlorine compounds, which pose health risks to humans and animals owing to their widespread use, bioaccumulation, and ability to inhibit gap junction channel-mediated intercellular communication in liver, lung, skin, heart, and brain cells. In this study, the organochlorine xenobiotics dieldrin and endosulfan, at micromolar concentrations, were found to inhibit gap junction-mediated intercellular communication and induce hypophosphorylation of connexin 43 in cultured rat astrocytes, the predominant cell type in the brain coupled through gap junctions. This inhibition of gap junctional communication was substantially reduced by preincubation with chaetoglobosin K (ChK), a bioactive natural produce previously shown to have ras tumor suppressor activity. Chaetoglobosin K also prevented dieldrin and endosulfan-induced hypophosphorylation of connexin 43 and prevented dieldrin-induced connexin 43 plaque dissolution in both astrocytes and cultured liver epithelial cells. The results suggest that stabilization of the native, phosphorylated form of connexin 43 by ChK may contribute to its ability to prevent organochlorine-induced inhibition of gap junction-mediated communication and dissolution of gap junction plaques within the plasma membrane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The bystander effect is an intriguing phenomenon by which adjacent cells become sensitized to drug treatment during gene therapy with herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV). This effect is reported to be mediated by gap junctional intercellular communication (GJIC), and therefore, we postulated that upregulation of genes that facilitate GJIC may enhance the HSV-tk/GCV bystander effect. Previous findings have shown Tanshinone IIA (Tan IIA), a chemical substance derived from a Chinese medicine herb, promotes the upregulation of the connexins Cx26 and Cx43 in B16 cells. Because gap junctions are formed by connexins, we hypothesized that Tan IIA might increase GJIC. Our results show that Tan IIA increased GJIC in B16 melanoma cells, leading to more efficient GCV-induced bystander killing in cells stably expressing HSV-tk. Additionally, in vivo experiments demonstrated that tumors in mice with 10% HSV-tk positive B16 cells and 90% wild-type B16 cells became smaller following treatment with the combination of GCV and Tan IIA as compared to GCV or Tan IIA alone. These data demonstrate that Tan IIA can augment the bystander effect of HSV-tk/GCV system through increased gap junction coupling, which adds strength to the promising strategy that develops connexins inducer to potentiate the effects of suicide gene therapy.  相似文献   

13.
Cells expressing herpes simplex virus (HSV) thymidine kinase (tk) are killed by ganciclovir (GCV). Adjacent cells without HSV-tk also die, a phenomenon known as the 'bystander effect'. However, there is no evidence that replication-competent HSV induces a bystander effect in the presence of GCV. Therefore, we investigated the bystander effect in HEp-2 cells infected with replication-competent, oncolytic HSV-1 mutants, hrR3 and HF10. In cells infected at a multiplicity of infection (MOI) of 3, GCV did not induce apoptosis. At low MOIs of 0.3 and 0.03, however, a number of adjacent, uninfected cells apoptosed following GCV treatment. Irrespective of GCV treatment, HEp-2 cells expressed minimal levels of connexin 43 (Cx43). However, Cx43 expression was enhanced by GCV in response to infection with HF10 at an MOI of 0.3, but not at an MOI of 3. Expression of other proteins involved in gap junctions, including Cx26 and Cx40, was not augmented under these conditions. The PKA and PI3K signal transduction pathways are likely involved in enhanced Cx43 expression as inhibitors of these pathways prevented Cx43 upregulation. These results suggest that infection with replication-competent HSV-1 induces the bystander effect in cells treated with GCV because of efficient intercellular transport of active GCV through abundant gap junctions.  相似文献   

14.
According to the fact that CEA gene expressed only in lung adenocarcinoma but not in normal lung cells, a retroviral expression vector (pCEATK) of the herpes simplex virus thymidine kinase (HSV-TK) gene regulated by CEA promoter was constructed and introduced into CEA-producing human lung adenocarcinoma cells GL and non-CEA-producing HeLa cells. The expression of pCEATK and Ganciclovir (GCV) sensitivity of the transfected cells were tested in vitro and in vivo . pCEATK expressed only in CEA-producing GL cells but not in non-CEA-producing HeLa cells. The sensitivity to GCV of pCEATK-transfected GL was 992 times higher compared with that of the parental cell line and there was obvious "bystander effect" in vitro. HeLa cells transfected wtih pCEATK were still resistant to GCV. Injection of GCV resulted in significant regression of pCEATK-transfected GL tumors in nude mice. In addition, all mice with any fraction of GL cells expressing HSV-TK exhibited a significant reduction in tumor growth, including mice  相似文献   

15.
《FEBS letters》2014,588(8):1297-1303
The avascular lens of the eye is covered anteriorly by an epithelium containing nucleated, metabolically active cells. This epithelium contains the first lens cells to encounter noxious external stimuli and cells that can develop compensatory or protective responses. Lens epithelial cells express the gap junction proteins, connexin43 (Cx43) and connexin50 (Cx50). Cx43 and Cx50 form gap junction channels and hemichannels with different properties. Although they may form heteromeric hemichannels, Cx43 and Cx50 probably do not form heterotypic channels in the lens. Cx50 channels make their greatest contribution to intercellular communication during the early postnatal period; subsequently, Cx43 becomes the predominant connexin supporting intercellular communication. Although epithelial Cx43 appears dispensable for lens development, Cx50 is critical for epithelial cell proliferation and differentiation. Cx43 and Cx50 hemichannels and gap junction channels are regulated by multiple different agents. Lens epithelial cell connexins contribute to both normal lens physiology and pathology.  相似文献   

16.
The Src tyrosine kinase phosphorylates Cas (Crk-associated substrate) to confer anchorage independence and invasive growth potential to transformed cells. Gap junctional communication is often lower between aggressive tumor cells compared with normal or benign precursors. The gap junction protein connexin43 (Cx43) is a tumor suppressor that can inhibit tumor cell growth. Src can phosphorylate Cx43 to block gap junctional communication between transformed cells. However, mechanisms by which this event actually closes intercellular channels have not been clearly defined. Here, we report that Src and Cas associate with each other at intercellular junctions. In addition, Cas is required for Src to reduce dye transfer and electrical coupling between cells expressing Cx43. Thus, Src utilizes Cas to inhibit gap junctional communication mediated by Cx43. This finding introduces a novel role of the Cas focal adhesion linker protein in the gap junction complex. This observation may help explain how gap junctional communication can be suppressed between malignant and metastatic tumor cells.  相似文献   

17.
Abstract

Gap junctions are a specialized group of cell-to-cell junctions that mediate direct intercellular communication between cells. They arise from the interaction of two hemichannels of adjacent cells, which in turn are composed of six connexin proteins. In liver, gap junctions are predominantly found in hepatocytes and play critical roles in virtually all phases of the hepatic life cycle, including cell growth, differentiation, liver-specific functionality and cell death. Liver gap junctions are directed through a broad variety of mechanisms ranging from epigenetic control of connexin expression to post-translational regulation of gap junction activity. This paper reviews established and novel aspects regarding the architecture, control and functional relevance of liver gap junctions.  相似文献   

18.
Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.  相似文献   

19.
Migration of lymphocytes across the endothelium of central or peripheral tissues, a process occurring following activation or differentiation, involves cell to cell interactions featuring adhesion and heterotypic signalling 'cross-talk'. Since lymphocytes and endothelial cells express connexins, the subunit proteins of gap junction intercellular channels, we investigated whether these channels feature in heterotypic signalling during transendothelial migration of lymphocytes. We show, using FACS analysis, that calcein, a gap junction permeant fluorescent dye, was transferred from endothelial cell layers to lymphocytes. The gap junction involvement in intercellular dye transfer was reinforced by studies showing that the process was inhibited by connexin mimetic peptides, a new class of reagents shown to block gap junction communication. Further evidence for the involvement of lymphocyte gap junctions in intercellular communication during transendothelial migration was obtained by two-photon laser scanning microscopy. Although gap junctional communication was inhibited by connexin mimetic peptides, they had little influence on the transmigration process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号