首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Impact of transition metals which catalyze the generation of reactive oxygen species (ROS), on activation of cell death signaling in plant cells have been documented to date. Similarly in green paramecia (Paramecium bursaria), an aquatic protozoan species harboring symbiotic green algae in the cytoplasm, toxicities of various metallic ions have been documented. We have recently examined the effects of double-stranded GC-rich DNA fragments with copper-binding nature and ROS removal catalytic activity as novel plant cell-protecting agents, using the suspension-cultured tobacco cells. Here, we show that above DNA oligomers protect the cells of green paramecia from copper-induced cell death, suggesting that the phenomenon firstly observed in tobacco cells is not limited only within higher plants but it could be universally observable in wider range of organisms.  相似文献   

2.
BACKGROUND: The developmental toxicity of flusilazole was studied in CD-1 mice after oral administration. METHODS: Pregnant mice were given flusilazole at doses of 0 (corn oil), 10, 20, and 40 mg/kg/day, by gavage, on gestational days (GD) 6-15. RESULTS: Maternal toxicity, as evidenced by reduction in body weight gain and signs of toxicity, was observed at the middle- and high-dose groups. No significant incidence of resorptions or death was observed in any of dose groups. There was a pronounced reduction in fetal weight, which was significantly lower than control from 20 and 40 mg/kg/day. There was no significant increase in the incidence of fetuses with external or visceral malformations in any of dose groups, but there was a significant increase in the incidence of skeletal malformations was observed at 20 and 40 mg/kg/day. CONCLUSIONS: The results of this study reported marked maternal toxicity, growth retardation, and skeletal abnormalities in the mid- and high-dose groups. It seems likely that marked maternal toxicity contributed to the observed alterations in fetal growth retardation and skeletal development. The no-observed-effect level in the present study for maternal and developmental toxicity was 10 mg/kg/day.  相似文献   

3.
4.
BACKGROUND: Previous investigations reported no teratogenicity for methylphenidate (MPH). These studies investigated potential teratogenicity of d‐MPH and d,l‐MPH as commitments to the FDA. METHODS: Rabbits received 15, 50, 150 mg/kg/day (mkd) d‐MPH or 20, 60, 200, 300 mkd d,l‐MPH on gestation days 7–20. Rats received 2.5, 10, 40 mkd d‐MPH, or 7, 25, 75, 80 mkd d,l‐MPH on gestation days 6–17. RESULTS: d‐MPH—In rabbits, mortality occurred at 150 mkd. Dilated pupils, increased activity, biting/chewing, respiration, and salivation occurred at ≥15 mkd in rabbits and ≥10 mkd in rats. Decreased food consumption occurred at 40 mkd in rats. Decreased body weight parameters occurred at 150 mkd in rabbits and ≥10 mkd in rats. There were no fetal findings in rabbits. In rats, skeletal variations occurred at 40 mkd. d,l‐MPH—In rabbits, mortality occurred at ≥200 mkd. Dilated pupils, increased activity, biting/chewing, respiration, and salivation occurred at ≥20 mkd in rabbits and ≥25 mkd in rats. Decreased food consumption occurred at ≥200 mkd in rabbits and ≥25 mkd in rats. Decreased body weight parameters occurred at ≥200 mkd in rabbits and ≥25 mkd in rats. In rabbits, two fetuses (separate litters) had spina bifida and malrotated hindlimbs at 200 mkd. In rats, skeletal variations occurred at ≥75 mkd. CONCLUSIONS: There was no teratogenicity with d‐MPH. There was a low teratogenic risk with d,l‐MPH in only the rabbit. Higher Cmax may explain differences in results from previous studies. Birth Defects Res (Part B) 83:489‐501, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Normal adult inbred SWR/J mice were used to investigate the teratogenic and other possible toxic effects of various dose levels of sildenafil citrate (Viagra) on fetuses. Multiple dose levels of 6.5, 13.0, 19.5, 26.0, 32.5 or 40.0 mg of sildenafil citrate/kg body weight (which correspond to the multiples of 1, 2, 3, 4, 5 or 6 of human 50 mg Viagra, respectively) were orally administered into pregnant mice on days 7–9, 10–12 or 13–15 of gestation. On day 17 of pregnancy, all fetuses were removed and examined for toxic phenomena (embryo-fetal toxicity) and for external, internal and skeletal malformations. A total of 285 pregnant mice were used in the present study.None of the dams treated with sildenafil citrate at any of the oral dose levels used in the present study died during the experimental period and all dams treated with the drug failed to reveal overt signs of maternal toxicity. Moreover, the results of the present study clearly demonstrate that none of the multiple oral dose levels of the drug at any time interval used has induced any external, internal or skeletal malformations in the fetuses obtained from treated females.However, the dose level of 40 mg/kg body weight of sildenafil citrate has a growth suppressing effect on alive fetuses when it was administered at all the time intervals used in the present study. Furthermore, the dose levels 26.0, 32.5 and 40 mg/kg of the drug have embryo-fetal toxicity when the drug is applied on days 13–15 of gestation. The possible mechanisms involved in the embryo-fetal toxicity and fetal growth suppressing effects of sildenafil citrate were discussed.The results of this study have important implications for the widespread use of this drug.  相似文献   

6.
BACKGROUND: Inorganic arsenic, when given by injection to pregnant laboratory animals (mice, rats, hamsters), has been shown to induce malformations. Arsenic methylation may be a detoxification step, and diets deficient in protein are a poor source of methyl donors and may possibly result in impaired arsenic methylation. Human health effects from chronic arsenic exposure have been reported mainly in populations with low socioeconomic status. Individuals in such populations are likely to suffer from malnutrition, which can compromise embryonic/fetal development and diminish arsenic methylating capacity. We sought to determine if dietary protein deficiency affects the developmental toxicity of inorganic arsenic. METHODS: Mated females were randomly assigned to one of 12 treatment groups. Experimental groups received either AsIII or AsV i.p. on Gestation Day 8 (GD 8, plug=GD 0) and were maintained on a 5%, 10%, or 20% protein custom mixed diet from GD 1 until sacrifice. Controls received the custom diets alone, were given AsIII or AsV i.p. on GD 8 with Teklad LM-485 rodent diet, or were fed the LM-485 diet alone. Test females were sacrificed on GD 17, and their litters were examined for mortality and developmental defects. RESULTS: Arsenic plus dietary protein deficiency decreased maternal weight gain and increased the incidences of exencephaly, ablepharia, and skeletal defects, such as malformed vertebral centra, fused ribs, and abnormal sternebrae (bipartite, rudimentary, or unossified). CONCLUSIONS: These results demonstrate that dietary protein deficiency enhances the developmental toxicity of inorganic arsenic, possibly by impairment of arsenic methylation.  相似文献   

7.
BACKGROUND: Dimethoate (O,O-dimethyl-S-(N-methylcarbamoyl-methyl) phosphorodithioate), an organophosphate insecticide, was examined for its potential to produce developmental toxicity in rats after oral administration. METHODS: Pregnant Fischer 344 rats were given sublethal doses of 0 (corn oil), 7, 15, and 28 mg/kg/day dimethoate by gavage on gestation days (GD) 6-15. Maternal effects in 15 and 28 mg/kg/day dose groups included cholinergic signs such as tremors, diarrhea, weakness, and salivation, and depression in the maternal and fetal brain acetylcholinesterase (AChE) activities. Other maternal toxicity that included reduction in body weight and feed consumption was observed only in the treated group of 28 mg/kg/day. No maternal toxicity was apparent in the 7 mg/kg/day dose group. RESULTS: Maternal exposure to dimethoate during organogenesis significantly affected the number of live fetuses, early resorption, and mean fetal weight in the 28 mg/kg/day dose group. No external, visceral, and skeletal abnormalities were observed in any of the treated groups compared to the control. CONCLUSIONS: On the basis of the present results dimethoate can produce clinical signs of toxicity and significant inhibition of the maternal and fetal AChE activities in dose groups of 15 and 28 mg/kg/day and showed fetotoxicity without teratogenic effects at 28 mg/kg/day.  相似文献   

8.
BACKGROUND: Inorganic arsenic, given by injection to pregnant laboratory animals, can induce malformations. Arsenic methylation can be inhibited by periodate‐oxidized adenosine (PAD). Severe human health effects from high chronic arsenic exposure have mainly been reported in populations with significant levels of malnutrition, which may enhance toxicity by diminishing arsenic methylating capacity. This study sought to determine the effect of inhibition of arsenic methylation on the developmental toxicity of arsenic in a mammalian model. METHODS: PAD (100 µM/kg, i.p.), was given to pregnant CD‐1 strain mice 30min before 7.5mg/kg sodium arsenite [As(III)], i.p., or 17.9mg/kg sodium arsenate [As(V)], i.p., on gestation day 8 (GD 8; copulation plug=GD 0). Control dams received As(III), As(V), or PAD alone or were untreated. Test dams were killed on GD 17, and their litters were examined for mortality and gross and skeletal defects. RESULTS: Pretreatment with PAD before either arsenical resulted in increased maternal toxicity and lower fetal weights. Pretreatment also caused higher prenatal mortality, with 8 of 21 and 5 of 17 litters totally resorbed in the PAD plus As(III) and PAD plus As(V) treatment groups, respectively. Significant increases in the incidences of exencephaly, ablepharia, and anomalies of the vertebral centra, sternebrae, and ribs were also associated with PAD pretreatment. Short tail (3 fetuses in 3 litters) was seen only following PAD plus As(III) treatment. CONCLUSIONS: These results demonstrate that the developmental toxicity of inorganic arsenic can be enhanced by PAD, due possibly to inhibited methylation of arsenic. Birth Defects Res B 68:335–343, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

9.
BACKGROUND: Chromium(III) is generally thought to be an essential trace element that allows for proper glucose metabolism. However, chromium(III) picolinate, Cr(pic)3, a popular dietary supplement form of chromium, has been shown to be capable of generating hydroxyl radicals and oxidative DNA damage in rats. The cation [Cr3O(O2CCH2CH3)6(H2O)3]+, Cr3, has been studied as an alternative supplemental source of chromium. It has been shown to increase insulin sensitivity and lower glycated hemoglobin levels in rats, making it attractive as a potential therapeutic treatment for gestational diabetes. To date, no studies have been published regarding the safety of Cr3 supplementation to a developing fetus. METHODS: From gestation days (GD) 6–17, mated CD‐1 female mice were fed diets delivering either 25 mg Cr/kg/day as Cr(pic)3, 3.3 or 26 mg Cr/kg/day as Cr3, or the diet only to determine if Cr3 could cause developmental toxicity. Dams were sacrificed on GD 17, and their litters were examined for adverse effects. RESULTS: No signs of maternal toxicity were observed. No decrease in fetal weight or significantly increased incidence of skeletal defects was observed in the Cr3 or Cr(pic)3 exposed fetuses compared to the controls. CONCLUSION: Maternal exposure to either Cr(pic)3 or Cr3 at the dosages employed did not appear to cause deleterious effects to the developing offspring in mice. Birth Defects Res (Part B), 80:1–5, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

10.
BACKGROUND: Ginseng has been widely used around the world for many years. Knowledge is limited, however, on its effects on embryonic development. METHODS: Whole embryo culture was used to explore the developmental toxicity of ginsenoside Rb1 (GRb1) on mouse embryos. All embryos were exposed to different concentrations of GRb1, and scored for their growth and differentiation at the end of the 48-hr culture period. RESULTS: Total morphological score decreased significantly at the concentration of GRb1 of 30 microg/ml and was further reduced at 50 microg/ml. Yolk sac was affected at the lower concentration of 15 microg/ml. Developments of midbrain, forebrain, and optic system were relatively sensitive to GRb1 and were affected at the concentration of 30 microg/ml. Allantois, flexion, branchial arch, and limb buds were affected at 50 microg/ml. At this concentration, the embryonic crown-rump length, head length, and somite number were also reduced significantly compared to the control group. CONCLUSIONS: These results suggest that GRb1 has teratogenic effect during the mouse organogenetic period. We suggest that before more data in humans is available, ginseng should be used with caution by pregnant women in the first trimester.  相似文献   

11.
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) is a genotoxic chlorination by-product in drinking water. There is some evidence that it has developmental toxic effects in vitro but its potential to cause developmental effects in vivo is not known. The developmental effects were evaluated in Wistar rats. Rats (22-26 dams per dose group) were administered MX by gavage at the dose levels of 3, 30, or 60 mg/kg in water on gestation days 6-19. Control animals received plain water. Clinical signs, body weight, and food and water consumption were recorded for the dams. On gestation day 20, a cesarean section was performed and the ovaries anduterine contents of the dams were examined and the liver, kidneys, spleen, and thyroid glands weighed. The fetuses of all dose groups were weighed, sexed, and observed for external and skeletal malformations and the fetuses of the two highest dose groups were evaluated for visceral malformations. The highest dose, 60 mg/kg of MX, was slightly toxic to the dams. It decreased the corrected body weight gain of dams by 32% and the water consumption by 16-17%. Kidney and liver weights were slightly increased. MX did not affect the number of implantations nor did it cause any resorptions. The body weights of fetuses were not significantly affected. MX did not cause external malformations or skeletal anomalies. Two fetuses at 60 mg/kg and one fetus at 30 mg/kg had major visceral malformations (persistent truncus arteriosus, diaphragmatic hernia, dilated aorta with a stenosis of pulmonary arteries) and two minor artery abnormalities were observed in those animals. The frequency of unilateral displaced testis was slightly higher (9.2%) in the 60-mg/kg dose group than in controls (1.6%). Since the abnormalities did not form a consistent pattern and occurred most at maternally toxic dose, we conclude that MX can be regarded as non-teratogenic.  相似文献   

12.
BACKGROUND: Chlorothalonil (2,4,5,6-tetrachloroisophthalonitril), the nephrotoxic fungicide, was examined for its potential to produce developmental toxicity in mice after oral administration. METHODS: Pregnant ICR (CD-1) mice were given sublethal doses of 0 (corn oil), 100, 400, and 600 mg/kg/day chlorothalonil by gavage on gestation days (GD) 6-15. RESULTS: Maternal effects in 400 and 600 mg/kg/day dose groups included signs of toxicity such as weakness and depression in the maternal activity, and reduction in body weight and weight gain. No maternal toxicity was apparent in the 100 mg/kg/day dose group. Maternal exposure to chlorothalonil during organogenesis significantly affected the number of live fetuses, early resorption, and mean fetal weight in the 400 and 600 mg/kg/day dose groups. No external, visceral, and skeletal abnormalities were observed among any of the treated groups compared to the control. CONCLUSIONS: On the basis of the present results chlorothalonil can produce clinical signs of toxicity and fetotoxicity without teratogenic effects at 400 and 600 mg/kg/day dose groups.  相似文献   

13.
Developmental toxicity evaluation of berberine in rats and mice   总被引:1,自引:0,他引:1  
BACKGROUND: Berberine, a plant alkaloid, is found in some herbal teas and health-related products. It is a component of goldenseal, an herbal supplement. Berberine chloride dihydrate (BCD) was evaluated for developmental toxicity in rats and mice. METHODS: Berberine chloride dihydrate was administered in the feed to timed-mated Sprague-Dawley (CD) rats (0, 3,625, 7,250, or 14,500 ppm; on gestational days [GD] 6-20), and Swiss Albino (CD-1) mice (0, 3,500, 5,250, or 7,000 ppm; on GD 6-17). Ingested doses were 0, 282, 531, and 1,313 mg/kg/day (rats) and 0, 569, 841, and 1,155 mg/kg/day (mice). RESULTS: There were no maternal deaths. The rat maternal lowest observed adverse effect level (LOAEL), based on reduced maternal weight gain, was 7,250 ppm. The rat developmental toxicity LOAEL, based on reduced fetal body weight per litter, was 14,500 ppm. In the mouse study, equivocal maternal and developmental toxicity LOAELs were 5,250 ppm. Due to scattering of feed in the high dose groups, a gavage study at 1,000 mg/kg/day was conducted in both species. CONCLUSIONS: In rats, maternal, but not fetal adverse effects were noted. The maternal toxicity LOAEL remained at 7,250 ppm (531 mg/kg/day) based on the feed study and the developmental toxicity NOAEL was raised to 1,000 mg/kg/day BCD based on the gavage study. In the mouse, 33% of the treated females died. Surviving animals had increased relative water intake, and average fetal body weight per litter decreased 5-6% with no change in live litter size. The maternal toxicity LOAEL remained at 5,250 ppm (841 mg/kg/day) BCD, based on increased water consumption. The developmental toxicity LOAEL was raised to 1,000 mg/kg/day BCD based on decreased fetal body weight.  相似文献   

14.
Domoic acid is a shellfish toxin which produces gastrointestinal distress, followed by neurological symptoms such as headache, confusion, disorientation and severe deficits in short-term memory. Domoic acid is an amino acid which contains three carboxylic groups, and one imino group, and its solubility, rate of absorption, and elimination would vary depending on the protonation of these groups at different pH's. We propose that domoic acid toxicity varies with pH of administered domoic acid solution. Domoic acid toxicity was measured in mice as the onset times for scratching behaviour, seizure activity, and death, after the intraperitoneal administration of domoic acid at different pH's. Results of the present study show that the scratching behaviour, seizure activity, and death, occurred at 12, 40, and 55 min, after intraperitoneal administration of domoic acid at pH 3.7. Apparently, the onset times for three types of behaviours were relatively long, and well separated from each ot her. Domoic acid toxicity was lowest at pH 3.7, and highest at pH 7.4, with intermediate toxicity at other pH's. The onset time of scratching behaviour was not influenced by pH of domoic acid solution at three different doses. In contrast, the onset times for seizure activity, and death were significantly affected by pH of domoic acid, toxicity being higher at pH 7.4 than at pH 3.7. The pH effect on domoic acid toxicity diminished as the dose of domoic acid was increased. In fact, at 14.5 mg/kg domoic acid toxicity was similar at both pH's of 3.7 and 7.4. It is concluded that in vivo toxicity of domoic acid varies depending on pH of the administered solution. The differential toxicity of domoic acid at different pH may be related to its solubility, rate of absorption, and elimination, depending on the degree of protonation of domoic acid molecule. Domoic acid toxicity would also vary depending on the age of animal, receptor sensitivity and density in different regions of brain. (Mol Ce ll Biochem 167: 179-185, 1997)  相似文献   

15.
BACKGROUND: Emodin, a widely available herbal remedy, was evaluated for potential effects on pregnancy outcome. METHODS: Emodin was administered in feed to timed-mated Sprague-Dawley (CD) rats (0, 425, 850, and 1700 ppm; gestational day [GD] 6-20), and Swiss Albino (CD-1) mice (0, 600, 2500 or 6000 ppm; GD 6-17). Ingested dose was 0, 31, 57, and approximately 80-144 mg emodin/kg/day (rats) and 0, 94, 391, and 1005 mg emodin/kg/day (mice). Timed-mated animals (23-25/group) were monitored for body weight, feed/water consumption, and clinical signs. At termination (rats: GD 20; mice: GD 17), confirmed pregnant dams (21-25/group) were evaluated for clinical signs: body, liver, kidney, and gravid uterine weights, uterine contents, and number of corpora lutea. Fetuses were weighed, sexed, and examined for external, visceral, and skeletal malformations/variations. RESULTS: There were no maternal deaths. In rats, maternal body weight, weight gain during treatment, and corrected weight gain exhibited a decreasing trend. Maternal body weight gain during treatment was significantly reduced at the high dose. In mice, maternal body weight and weight gain was decreased at the high dose. CONCLUSIONS: Prenatal mortality, live litter size, fetal sex ratio, and morphological development were unaffected in both rats and mice. At the high dose, rat average fetal body weight per litter was unaffected, but was significantly reduced in mice. The rat maternal lowest observed adverse effect level (LOAEL) was 1700 ppm; the no observed adverse effect level (NOAEL) was 850 ppm. The rat developmental toxicity NOAEL was > or =1700 ppm. A LOAEL was not established. In mice, the maternal toxicity LOAEL was 6000 ppm and the NOAEL was 2500 ppm. The developmental toxicity LOAEL was 6000 ppm (reduced fetal body weight) and the NOAEL was 2500 ppm.  相似文献   

16.
BACKGROUND: Ionic liquids (ILs; salts with melting points below 100°C) exhibit wide liquid ranges, non‐flammability, and thermal stability among other properties. These unique salts are best known as “green” alternatives to traditional volatile organic solvents, which are utilized in both academia and industry. Our current study compares the developmental toxicity potential of three representative ionic liquids, with various chain lengths: 1‐ethyl‐3‐methylimidazolium chloride ([C2mim]Cl), 1‐butyl‐3‐methylimidazolium chloride ([C4mim]Cl), and 1‐decyl‐3methylimidazolium chloride ([C10mim]Cl). METHODS: From gestation days (GD) 6‐16, mated CD‐1 mice were orally dosed with one of the following: 1,000, 2,000, or 3,000 mg/kg/day [C2mim]Cl; 113, 169, or 225 mg/kg/day [C4mim]Cl; 50, 75, or 100 mg/kg/day [C10mim]Cl; or the vehicle only. Dams were sacrificed on GD 17, and their litters were examined for adverse effects. RESULTS: Fetal weight was significantly decreased in the two highest dosage groups exposed to [C4mim]Cl and [C10mim]Cl in comparison with their controls, but the [C2mim]Cl treated groups were not affected. An apparent teratogenic effect was associated with both [C4mim]Cl and [C10mim]Cl, as the offspring exhibited certain uncommon morphological defects. However, the incidences of malformations were low and no correlation between incidence and dosage could be made. No morphological defects were observed in any of the [C2mim]Cl‐treated groups, despite maternal morbidity at the highest dosage level. CONCLUSIONS: This study indicates that [C4mim]Cl and [C10mim]Cl may have adverse effects on development at high maternal exposures and strongly supports the supposition that the toxicity of imidazolium‐based ILs is influenced by alkyl chain length. Birth Defects Res (Part B) 89:233–238, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Poly (ADP-ribose) polymerase-1 (Parp1) plays a central role in the maintenance of genomic integrity and has been unequivocally associated to DNA base excision repair (BER) but its involvement in double-strand break (DSB) repair pathways remains unclear. In this work, using transgenic Parp1-deficient mice harbouring the lacZ reporter gene, we provide in vivo evidence that Parp1 contributes to the prevention of deletions/insertions in testis following an alkylation insult. In response to N-Methyl-N-Nitrosurea (MNU) treatment no significant difference in the mutant frequency (MF) in the liver and testis could be attributed to Parp1 status, given that both Parp1+/+ and Parp1−/− mice showed a similar significant increase in the overall MF. However, restriction analysis of MNU-induced mutants evidenced a shift in the distribution of mutations between deletions/insertions and point mutations in testis, but not in the liver, dependent on the Parp1 status. A significant higher frequency of deletions/insertions was observed in testis from Parp1−/− in comparison to Parp1+/+ mice, whereas point mutations were not significantly affected. Overall, our findings show that Parp1 participates in the prevention of deletions/insertions induced by methylating agents and that organ-specific factors may influence its capacity to protect against genotoxic damage.  相似文献   

18.
Female Swiss Webster mice were fed diets containing 7 (control) or 1000 μg Al/g diet from conception to weaning. Pregnancy weight gain, brith weight, litter size, postnatal mortality, and weaning weight were measured. In different groups, diets low in Fe, Zn, P, or Ca and Mg (CaMg) were used as basal diets, to which Al was added. Relative to controls, who received NRC recommended levels of these nutrients, all diets with marginal essential trace elements impacted development, as demonstrated by effects on birth weight (CaMg, Fe) or weaning weight (Fe, Zn, P). Compared to diets low in Al, the 1000-mg Al/g diet led to reduced weaning weight regardless of the essential element content of the diet. Other end points were influenced by Al only within the basaldiet group; pregnancy weight gain with the low-P diet, litter size with the low-Fe diet, pregnancy completion with the low-Zn diet, and postnatal mortality with the low-CaMg or low-Zn diet. Thus, diets marginal in selected minerals can differentially alter the toxicological profile of developmental Al exposures. A basal diet was also used in which the NRC diet was supplemented with ascorbic acid, which promotes Al absorption. No modification of Al toxicity was seen with ascorbic acid supplementation.  相似文献   

19.
The potential for trichloroethylene (TCE) and perchloroethylene (PERC) to induce developmental toxicity was investigated in Crl:CD (SD) rats whole-body exposed to target concentrations of 0, 50, 150 or 600 ppm TCE or 0, 75, 250 or 600 ppm PERC for six hours/day, seven days/week on gestation day (GD) 6-20 and 6-19, respectively. Actual chamber concentrations were essentially identical to target with the exception of the low PERC exposure level, which was 65 ppm. The highest exposure levels exceeded the limit concentration (2 mg/L) specified in the applicable test guidelines. Maternal necropsies were performed the day following the last exposure. Dams exposed to 600 ppm TCE exhibited maternal toxicity, as evidenced by decreased body weight gain (22% less than control) during GD 6-9. There were no maternal effects at 50 or 150 ppm TCE and no indications of developmental toxicity (including heart defects or other terata) at any exposure level tested. Therefore, the TCE NOEC for maternal toxicity was 150 ppm, whereas the embryo/fetal NOEC was 600 ppm. Maternal responses to PERC were limited to slight, but statistically significant reductions in body weight gain and feed consumption during the first 3 days of exposure to 600 ppm, resulting in a maternal NOEC of 250 ppm. Developmental effects at 600 ppm consisted of reduced gravid uterus, placental and fetal body weights, and decreased ossification of thoracic vertebral centra. Developmental effects at 250 ppm were of minimal toxicological significance, being limited to minor decreases in fetal and placental weight. There were no developmental effects at 65 ppm.  相似文献   

20.
Wu G  Deng X  Wu P  Shen Z  Xu H 《Peptides》2012,36(1):109-113
Antibiotics are commonly used for infectious diseases and saved a lot of lives since its discovery, but the emergence of drug-resistant microorganism has brought a tremendous challenge to clinical therapy at present. Antimicrobial peptides, which are of broad antimicrobial spectrum and rare resistance development in pathogens, are expected to replace conventional antibiotics. S-thanatin, a novel antimicrobial peptide with 21 amino acid residues, was proved of significant benefit on therapy of pathogens infection. To evaluate the security of S-thanatin, its subacute toxicity was examined in ICR mice by continually intravenous injection with 125, 50, 20 mg/kg (1/4, 1/10, 1/25 LD(50)) or saline with equal volume for two weeks. Results demonstrated that neither significant difference of serum chemistry and hematology, nor pathological changes were changed in major organs caused by S-thanatin between groups. In conclusion, S-thanatin appears to be a safe antimicrobial peptide for further preclinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号