首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rhodopseudomonas palustris KUGB306 hemA gene codes for 5-aminolevulinic acid (ALA) synthase. This enzyme catalyzes the condensation of glycine and succinyl-CoA to yield ALA in the presence of the cofactor pyridoxal 5'- phosphate. The R. palustris KUGB306 hemA gene in the pGEX-KG vector system was transformed into Escherichia coli BL21. The effects of physiological factors on the extracellular production of ALA by the recombinant E. coli were studied. Terrific Broth (TB) medium resulted in significantly higher cell growth and ALA production than did Luria-Bertani (LB) medium. ALA production was significantly enhanced by the addition of succinate together with glycine in the medium. Maximal ALA production (2.5 g/l) was observed upon the addition of D-glucose as an ALA dehydratase inhibitor in the late-log culture phase. Based on the results obtained from the shake-flask cultures, fermentation was carried out using the recombinant E. coli in TB medium, with the initial addition of 90 mM glycine and 120 mM succinate, and the addition of 45 mM D-glucose in the late-log phase. The extracellular production of ALA was also influenced by the pH of the culture broth. We maintained a pH of 6.5 in the fermenter throughout the culture process, achieving the maximal levels of extracellular ALA production (5.15 g/l, 39.3 mM).  相似文献   

2.
We isolated a strain of Rhodopseudomonas palustris (RCB100) by selective enrichment in light on 3-chlorobenzoate to investigate the steps that it uses to accomplish anaerobic dechlorination. Analyses of metabolite pools as well as enzyme assays suggest that R. palustris grows on 3-chlorobenzoate by (i) converting it to 3-chlorobenzoyl coenzyme A (3-chlorobenzoyl-CoA), (ii) reductively dehalogenating 3-chlorobenzoyl-CoA to benzoyl-CoA, and (iii) degrading benzoyl-CoA to acetyl-CoA and carbon dioxide. R. palustris uses 3-chlorobenzoate only as a carbon source and thus incorporates the acetyl-CoA that is produced into cell material. The reductive dechlorination route used by R. palustris for 3-chlorobenzoate degradation differs from those previously described in that a CoA thioester, rather than an unmodified aromatic acid, is the substrate for complete dehalogenation.  相似文献   

3.
Cells of the purple non-sulphur bacterium Rhodopseudomonas palustris DSM 131 were immobilized in agar, agarose, -carrageenan or sodium alginate gel. With alginate beads, prepared by an emulsion technique, and an optimal cell load of 10 mg dry weight/ml gel, the hydrogen production from aromatic acids was doubled as compared to that resulting from liquid cultures. Hydrogen yields of 60%, 57%, 86% or 88% of the maximal theoretical value were obtained from mandelate, benzoylformate, cinnamate or benzoate respectively. Benzoate concentrations above 16.5 mM were inhibitory. During a period of 55 days the process of hydrogen evolution with immobilized cells was repeated in five cycles with slowly decreasing efficiency.  相似文献   

4.
A gene, badH, whose predicted product is a member of the short-chain dehydrogenase/reductase family of enzymes, was recently discovered during studies of anaerobic benzoate degradation by the photoheterotrophic bacterium Rhodopseudomonas palustris. Purified histidine-tagged BadH protein catalyzed the oxidation of 2-hydroxycyclohexanecarboxyl coenzyme A (2-hydroxychc-CoA) to 2-ketocyclohexanecarboxyl-CoA. These compounds are proposed intermediates of a series of three reactions that are shared by the pathways of cyclohexanecarboxylate and benzoate degradation used by R. palustris. The 2-hydroxychc-CoA dehydrogenase activity encoded by badH was dependent on the presence of NAD(+); no activity was detected with NADP(+) as a cofactor. The dehydrogenase activity was not sensitive to oxygen. The enzyme has apparent K(m) values of 10 and 200 microM for 2-hydroxychc-CoA and NAD(+), respectively. Western blot analysis with antisera raised against purified His-BadH identified a 27-kDa protein that was present in benzoate- and cyclohexanecarboxylate-grown but not in succinate-grown R. palustris cell extracts. The active form of the enzyme is a homotetramer. badH was determined to be the first gene in an operon, termed the cyclohexanecarboxylate degradation operon, containing genes required for both benzoate and cyclohexanecarboxylate degradation. A nonpolar R. palustris badH mutant was unable to grow on benzoate or cyclohexanecarboxylate but had wild-type growth rates on succinate. Cells blocked in expression of the entire cyclohexanecarboxylate degradation operon excreted cyclohex-1-ene-1-carboxylate into the growth medium when given benzoate. This confirms that cyclohex-1-ene-1-carboxyl-CoA is an intermediate of anaerobic benzoate degradation by R. palustris. This compound had previously been shown not to be formed by Thauera aromatica, a denitrifying bacterium that degrades benzoate by a pathway that is slightly different from the R. palustris pathway. 2-Hydroxychc-CoA dehydrogenase does not participate in anaerobic benzoate degradation by T. aromatica and thus may serve as a useful indicator of an R. palustris-type benzoate degradation pathway.  相似文献   

5.
We have studied, by means of sub-microsecond time-resolved absorption spectroscopy, the triplet-excited state dynamics of carotenoids (Cars) in the intermediate-light adapted LH2 complex (ML-LH2) from Rhodopseudomonas palustris containing Cars with different numbers of conjugated double bonds. Following pulsed photo-excitation at 590 nm at room temperature, rapid spectral equilibration was observed either as a red shift of the isosbestic wavelength on a time scale of 0.6-1.0 mus, or as a fast decay in the shorter-wavelength side of the T(n)<--T(1) absorption of Cars with a time constant of 0.5-0.8 mus. Two major spectral components assignable to Cars with 11 and 12 conjugated double bonds were identified. The equilibration was not observed in the ML-LH2 at 77 K, or in the LH2 complex from Rhodobacter sphaeroides G1C containing a single type of Car. The unique spectral equilibration was ascribed to temperature-dependent triplet excitation transfer among different Car compositions. The results suggest that Cars of 11 and 12 conjugated bonds, both in close proximity of BChls, may coexist in an alpha,beta-subunit of the ML-LH2 complex.  相似文献   

6.
The adenylate kinases (EC 2.7.4.3) from photosynthetically grown Rhodopseudomonas palustris, Rhodopseudomonas sphaeroides and Rhodospirillum rubrum were purified to homogeneity by the same procedure. The purified enzymes showed optimal rates of activity with MgCl2 at 25° C and pH 8.0. They were found to be heat labile and were characterized by pI-values of 4.5. Apparent molecular weights of 33 500 for R. palustris, 34 400 for R. sphaeroides and 32 100 for R. rubrum were determined by high performance liquid chromatography. No separation into subunits was observed by use of sodium dodecylsulfate polyacrylamide gel electrophoresis. The apparent Km-values for ADP corresponded to 0.26 mM for R. palustris, 0.27 mM for R. sphaeroides and 0.24 mM for R. rubrum. ADP in excess had a strong inhibitory effect. Competitive product inhibition was found for AMP, with Ki-values of 0.017 mM for R. palustris, 0.018 mM for R. sphaeroides and 0.014 mM for R. rubrum. A competitive inhibitor likewise was P1,P5-di(adenosine-5)pentaphosphate with Ki-values of 0.020 M for R. palustris and R. sphaeroides, and 0.017 M for R. rubrum. Sulfhydryl-reacting reagents like p-chloromercuribenzoate and iodoacetic acid were found to be non-inhibitory. All measurements of adenylate kinase activity were carried out with the stabilized and most sensitive luciferin-luciferase system.  相似文献   

7.
8.
The expression of foreign DNA in Escherichia coli is important in biotechnological applications. However, the translation of genes from GC-rich organisms is inefficient in E. coli.To overcome this problem, we applied directed evolution to E. coli ribosomal protein S1. Two selected mutants enabled 12- and 8-fold higher expression levels from GC-rich DNA targets. General improvements in translation efficiency over a range of genes from Rhodopseudomonas palustris and E. coli was achieved using an S1 mutant selected against multiple genes from R. palustris. This method opens new opportunities for the expression of GC-rich genes in E. coli.  相似文献   

9.
Biotin synthase (BioB) catalyzes the insertion of a sulfur atom between the C6 and C9 carbons of dethiobiotin. Reconstituted BioB from Escherichia coli contains a [4Fe-4S](2+/1+) cluster thought to be involved in the reduction and cleavage of S-adenosylmethionine (AdoMet), generating methionine and the reactive 5'-deoxyadenosyl radical responsible for dethiobiotin H-abstraction. Using EPR and M?ssbauer spectroscopy as well as methionine quantitation we demonstrate that the reduced S = 1/2 [4Fe-4S](1+) cluster is indeed capable of injecting one electron into AdoMet, generating one equivalent of both methionine and S = 0 [4Fe-4S](2+) cluster. Dethiobiotin is not required for the reaction. Using site-directed mutagenesis we show also that, among the eight cysteines of BioB, only three (Cys-53, Cys-57, Cys-60) are essential for AdoMet reductive cleavage, suggesting that these cysteines are involved in chelation of the [4Fe-4S](2+/1+) cluster.  相似文献   

10.
Isoprenoids are the most numerous and structurally diverse family of natural products. Terpenoids, a class of isoprenoids often isolated from plants, are used as commercial flavor and fragrance compounds and antimalarial or anticancer drugs. Because plant tissue extractions typically yield low terpenoid concentrations, we sought an alternative method to produce high-value terpenoid compounds, such as the antimalarial drug artemisinin, in a microbial host. We engineered the expression of a synthetic amorpha-4,11-diene synthase gene and the mevalonate isoprenoid pathway from Saccharomyces cerevisiae in Escherichia coli. Concentrations of amorphadiene, the sesquiterpene olefin precursor to artemisinin, reached 24 microg caryophyllene equivalent/ml. Because isopentenyl and dimethylallyl pyrophosphates are the universal precursors to all isoprenoids, the strains developed in this study can serve as platform hosts for the production of any terpenoid compound for which a terpene synthase gene is available.  相似文献   

11.
The coupling-factor ATPases from photosynthetically grown Rhodopseudomonas palustris and Rhodopseudomonas sphaeroides were purified by the same procedure to homogeneity. Gel chromatography on Sephacryl S-300 Superfine shortened the process of purification and improved its yield. Solubilization of the ATPase from both bacteria was found to be dependent on a specific sonication treatment of the cell suspensions, indicating a very weakly bound F1-ATPase in R. palustris. Depleted chromatophores could be restored in photophosphorylation and membrane-bound ATPase activities by adding the solubilized ATPase protein. The purified enzymes did not show a markedly trypsin-stimulated or dithiothreitol-stimulated activity. Isoelectric focusing and chromatofocusing revealed isoelectric points of 5.0 for both F1-ATPases. The molecular weights were determined by gel chromatography plus high-performance liquid chromatography. Hence, we calculated a molecular weight of 350000 for both F1-ATPases. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed five subunits for both enzymes. Kinetic parameters, regarding substrate specificity, the effect of divalent cations, Km and Ki values for the membrane-bound and solubilized ATPases were determined.  相似文献   

12.
The Escherichia coli biotin operon repressor protein (BirA) has been overexpressed at the level of 0.5-1% of the total cellular protein from the plasmid pMBR10. Four lines of evidence demonstrated that authentic BirA protein was produced. First, birA plasmids complemented birA mutants for both the repressor and biotin holoenzyme synthetase activities of BirA. Second, biotin holoenzyme synthase activity was increased in strains containing the overproducing plasmids. Third, deletion of sequences flanking the birA gene did not alter production of the 35-kDa BirA protein, but insertion of oligonucleotide linkers within the birA coding region abolished it. Fourth, the 35-kDa protein copurified with the biotin binding activity normally associated with BirA. The birA protein has been purified to homogeneity in a three-step process involving chromatography on phosphocellulose and hydroxyapatite columns.  相似文献   

13.
Applied Microbiology and Biotechnology - Glycolic acid (GA) is an ⍺-hydroxy acid used in cosmetics, packaging, and medical industries due to its excellent properties, especially in its...  相似文献   

14.
15.
We show here that the paaABCDE genes of the paa cluster responsible for phenylacetate degradation in Escherichia coli W encode a five-component oxygenase that hydroxylates phenylacetyl-coenzyme A (CoA), the first intermediate of the pathway. The primary structure of the subunits of bacterial phenylacetyl-CoA oxygenases revealed that these enzymes constitute the prototype of a new and distinct group of the large bacterial diiron multicomponent oxygenase family.  相似文献   

16.
17.
Glycine aminotransferase (EC 2.6.1.4; GlyAT) was presumed to be an enzyme concerning the supply of glycine for the extracellular porphyrin production by Rhodopseudomonas palustris No. 7. GlyAT was purified from strain No. 7 as an electrophoretically homogenous protein. The enzyme was a monomer protein with the molecular weight of about 42,000. From the absorption spectrum of the enzyme (350 nm, 410 nm), it was indicated that the enzyme had pyridoxal phosphate as a prosthetic group. The enzyme showed high substrate specificity for glutamate as an amino group donor. Apparent Kms for glutamate and glyoxylate were 6.20 mM and 3.75 mM, respectively. The Vmax and Kcat for glutamate were 66.8 mumol/min/mg protein and 46.8 s-1, respectively. The Vmax and Kcat for glyoxylate were 68.8 mumol/min/mg protein and 48.2 s-1. The optimum temperature and pH were 40-45 degrees C and 7.0-7.5, respectively. The enzyme activity lowered to about 50% in the presence of 15 mM ammonium chloride.  相似文献   

18.
A native homoethanol pathway (pyruvate-to-acetyl-CoA-to-acetaldehyde-to-ethanol) was engineered in Escherichia coli B. The competing fermentation pathways were eliminated by chromosomal deletions of the genes encoding for fumarate reductase (frdABCD), lactate dehydrogenase (ldhA), acetate kinase (ackA), and pyruvate formate lyase (pflB). For redox balance and anaerobic cell growth, the pyruvate dehydrogenase complex (aceEF-lpd, a typical aerobically-expressed operon) was highly expressed anaerobically using a native anaerobic inducible promoter. The resulting strain SZ420 (ΔfrdBC ΔldhA ΔackA ΔfocA-pflB ΔpdhR::pflBp6-pflBrbs-aceEF-lpd) contains no foreign genes and/or promoters and efficiently ferments glucose and xylose into ethanol with a yield of 90% under anaerobic conditions.  相似文献   

19.
20.
An acetate kinase from the photolithoautotrophically grown purple bacterium Rhodopseudomonas palustris was purified to apparent homogeneity by use of high resolving liquid chromatography steps. The monomeric enzyme was characterized by a relative molecular mass of 46,500 and an isoelectric point of 4.9. There was an absolute requirement for divalent metal ions in the enzymatic reaction. Mg2+ and Mn2+ were the most activating cations. The acetate kinase used pyrimidine and purine nucleotides almost equally well as phosphoryl donors. The enzyme phosphorylated acetate, propionate, butyrate and isobutyrate. ATP and acetate revealed the lowest apparent Km values and seemed to act as the favoured substrates. The apparent Km values for ATP formation were considerable lower than those for the formation of acetyl phosphate. The activation energy Ea = 21 kJ/mol of the acetyl phosphate formation was determined by application of Arrhenius plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号