首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proplastids of both tapetal cells and microsporocytes were presentearly in anther development. Tapetal proplastids differentiated—probablyinto elaioplasts—at late microspore stage. The tapetalcytoplasm was completely resorbed by early tricellular pollenstage. Microspore proplastids differentiated into amyloplastsat early bicellular stage, and were present in both vegetativeand generative cells. In the generative cell, the amyloplastswere ephemeral and apparently degenerated within autophagicvacuoles. Plastids were absent from sperm cells. Vegetativecell amyloplasts increased in number apparently by fission suchthat one amyloplast produced one amyloplast and one proplastidper division. Mature pollen grains were estimated to containbetween 550 and 820 amyloplasts with only one starch granuleper plastid. Elaioplasts, amyloplasts, plastid division, plastid differentiation, starch granules, autophagy, Lolium perenne, Poaceae, rye-grass  相似文献   

2.
In the parenchyma cells of 1-d-old dark-grown rye coleoptiles (Secale cereale) proplastids occurred which sometimes contained starch grains. During coleoptile growth in darkness starch-filled amyloplasts are formed from the preexisting proplastids. No prolamellar bodies were observed in the stroma of the plastids of the etiolated coleoptile. After irradiation of 3-d-old etiolated coleoptiles with continuous white light three different types of plastids occurred. In the epidermal cells proplastids were observed. The parenchyma cells below the stomata of the outer epidermis (above the two vascular bundles) contained mature, spindle-shaped chloroplasts with a well-developed thylakoid system. In the parenchyma cells that surround the vascular bundles amyloplasts with some thylakoid membranes (chloroamyloplasts) occurred. The mesophyll cells of the primary leaves of dark-grown seedlings contained etioplasts with large prolamellar bodies. In the primary leaves of irradiated plants chloroplasts similar to those of the parenchyma cells of the coleoptile were observed. Our results show that the rye coleoptile, which grows underground as a heterotrophic organ, is capable of developing mature chloroplasts upon reaching the light above the soil surface. The significance of this expression of photosynthetic capacity for the carbon economy of the developing seedling is discussed.  相似文献   

3.
Stromules (stroma-filled tubules) are highly dynamic structures extending from the surface of all plastid types examined so far, including proplastids, chloroplasts, etioplasts, leucoplasts, amyloplasts, and chromoplasts. Stromules are usually 0.35-0.85 microm in diameter and of variable length, from short beak-like projections to linear or branched structures up to 220 mum long. They are enclosed by the inner and outer plastid envelope membranes and enable the transfer of molecules as large as Rubisco (approximately 560 kDa) between interconnected plastids. Stromules occur in all cell types, but stromule morphology and the proportion of plastids with stromules vary from tissue to tissue and at different stages of plant development. In general, stromules are more abundant in tissues containing non-green plastids, and in cells containing smaller plastids. The primary function of stromules is still unresolved, although the presence of stromules markedly increases the plastid surface area, potentially increasing transport to and from the cytosol. Other functions of stromules, such as transfer of macromolecules between plastids and starch granule formation in cereal endosperm, may be restricted to particular tissues and cell types.  相似文献   

4.
This study reports the ultrastructural changes in maize endosperm that result from exposure to high temperature during cell division. Kernels were grown in vitro at 25 ºC continuously (control) and at 5 d after pollination (DAP) subsamples were transferred to continuous 35 ºC for either 4 or 6 d. The 4 d treatment reduced kernel mass by 40% and increased kernel abortion three-fold. The 6-d high-temperature treatment resulted in a 77% reduction in kernel mass and a 12-fold increase in kernel abortion. Evaluation of the kernels at 11 DAP using scanning and transmission electron microscopy revealed that the reduced kernel mass and/or abortion was associated with the disruption of cell division and amyloplast biogenesis in the periphery of the endosperm. This was further confirmed by the presence of an irregular-shaped nucleus, altered size of the nucleolus, highly dense nucleoplasm, and a decrease in the number of proplastids and amyloplasts. Thus, the endosperm cavity was not filled, the total number of endosperm cells was reduced by 35 and 70%, and the number of starch granules was decreased by 45 and 80% after exposure to 4 and 6 d of high-temperature treatments, respectively. This also resulted in a 35–70% reduction in total starch accumulation. KI/I2 staining and light microscopy revealed that starch accumulation in the peripheral endosperm cells was reduced more severely than in the central zones. However, the scanning electron micrographs of cells from the central endosperm showed that the number and the size of apparently viable amyloplasts were reduced and isolated granules were smaller and/or showed enhanced pitting. These ultrastructural data support the hypothesis that high temperature during endosperm cell division reduces kernel sink potential and subsequently mature kernel mass, mainly by disrupting cell division and amyloplast biogenesis in the peripheral and central endosperm.  相似文献   

5.
Direction and degree of plastid development in the tissue differentiation of sporangiogenesis inThelypteris palustris were studied, and are discussed through aspects of the plastome continuity and cell differentiation. Particular attention was paid to proplastid reproduction and segregative allocation of the plastids at the first division of the sporangial initial cell. Nascent proplastids were separately located in the outer cell for further generative differentiation. Preexisting chloroplasts were allocated to the inner cell as further vegetation cells of sporangium. Proplastids in the generative cells were followed by retarded processing of development, then transformed to amyloplasts in sponrocyte differentiation. The amyloplasts were noted due to their significance for direct transmittance of plastome to following generationsvia spores, while well developed functional chloroplasts were characterized as ending up in the ephemeral terminal of sporangial vegetative tissues.  相似文献   

6.
The occurrence, location, and biosynthesis of glucan-phosphorylase (EC 2.4.1.1) isoenzymes were studied in cotyledons of developing or germinating seeds of Pisum sativum L. Type-I and type-II isoenzymes were detected, and were also localized by indirect immunofluorescence using polyclonal anti-type-I or anti-type-II phosphorylase antibodies. Type-I isoenzyme was found in the cytosol of parenchyma cells whereas the type-II enzyme form is a plastid protein which resides either in amyloplasts (in developing seeds) or in proplastids (in germinating seeds). During seed development, type-II phosphorylase was the predominant isoenzyme and the type-I isoenzyme represented a very minor compound. During germination, the latter increased whilst type-II phosphorylase remained at a constant level. In in-vitro translation experiments, type-I isoenzyme was observed as a final-size product with an apparent molecular weight of approx. 90 kDa. In contrast, type-II phosphorylase was translated as a high-molecular-weight precursor (116 kDa) which, when incubated with a stromal fraction of isolated intact pea chloroplasts, was processed to the size of the mature protein (105 kDa).Abbreviations IgG immunoglobulin G - kDa kilodalton - poly(A)+ RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis This work has been made possible by grants from the Deutsche Forschungsgemeinschaft. The authors are endebted to Mrs. Karin Niehüser for help in the immunocytochemical studies.  相似文献   

7.
BACKGROUND: Mitochondrial inheritance is essential for cell division. In budding yeast, mitochondrial movement from mother to daughter requires (1) actin cables, F-actin bundles that undergo retrograde movement during elongation from buds into mother cells; (2) the mitochore, a mitochondrial protein complex implicated in linking mitochondria to actin cables; and (3) Arp2/3 complex-mediated force generation on mitochondria. RESULTS: We observed three new classes of mitochondrial motility: anterograde movement at velocities of 0.2-0.33 microm/s, retrograde movement at velocities of 0.26-0.51 microm/s, and no net anterograde or retrograde movement. In all cases, motile mitochondria were associated with actin cables undergoing retrograde flow at velocities of 0.18-0.62 microm/s. Destabilization of actin cables or mutations of the mitochore blocked all mitochondrial movements. In contrast, mutations in the Arp2/3 complex affected anterograde but not retrograde mitochondrial movements. CONCLUSIONS: Actin cables are required for movement of mitochondria, secretory vesicles, mRNA, and spindle alignment elements in yeast. We provide the first direct evidence that one of the proposed cargos use actin cables as tracks. In the case of mitochondrial inheritance, anterograde movement drives transfer of the organelle from mothers to buds, while retrograde movement contributes to retention of the organelle in mother cells. Interaction of mitochondria with actin cables is required for anterograde and retrograde movement. In contrast, force generation on mitochondria is required only for anterograde movement. Finally, we propose a novel mechanism in which actin cables serve as "conveyor belts" that drive retrograde organelle movement.  相似文献   

8.
Summary The effect of 3-indolylacetic acid (IAA) on structure of plastids in cells of callus developing on the phloem explants of chicory roots was investigated. In the absence of IAA the proplastids in the initial expiant developed into typical chloroplasts. The presence of increasing IAA concentrations in the medium resulted in a gradual reduction of the thylakoid system accompanied by an increasing starch content of the plastids. Depending on the IAA concentration used, various types of plastids from typical chloroplasts to typical amyloplasts were found. A possible relationship between auxins and sugar metabolism is indicated.  相似文献   

9.
Intact amyloplasts from endosperm of developing wheat grains have been isolated by first preparing the protoplasts and then fractionating the lysate of the protoplasts on percoll and ficoll gradients, respectively. Amyloplasts isolated as above were functional and not contaminated by cytosol or by organelles likely to be involved in carbohydrate metabolism. The enzyme distribution studies indicated that ADP-glucose pyrophosphorylase and starch synthase were confined to amyloplasts, whereas invertase, sucrose synthase, UDP-glucose pyrophosphorylase, hexokinase, phosphofructokinase-2 and fructose-2,6-P2ase were absent fro the amyloplast and mainly confined to the cytosol. Triose-P isomerase, glyceraldehyde-3-P dehydrogenase, phosphohexose isomerase, phosphoglucomutase, phosphofructokinase, aldolase, PPi-fructose-6-P-1 phosphotransferase, and fructose-l,6-P2ase, though predominantly cytosolic, were also present in the amyloplast. Based on distribution of enzymes, a probable pathway for starch biosynthesis in amyloplasts of developing wheat grains has been proposed.  相似文献   

10.
Since the discovery of plastid DNA the continuity of plastids has well been established. It is known that in plant cultures a form of plastid can differentiate into others. However, only a little has been made in studing chloroplast dedifferentiation in vitro. In the work present here, we reported on ultrastructural changes of chloroplasts dedifferentiation and the proplastid origin in the mesophyll cells of cultured tobacco leaf explant. Fully expanded leaves of haploid tobacco (cv. Ge Xin No. 1) were cut into pieces of 5–6 mm width. These were inoculated on MS medium supplemented with 1 mg/L 2,4-D and 1 mg/l kinetin. The cultures were maintained at (30±2) ℃ and illuminatied by a bank of fluorescent lamps. For electronmicroseopic investigation, after 0, 1, 2, 3, 6 days of culture small leaf fragments were cut off along the cut edges of the explants. The samples were fixed and processed in the manner as described earlier. The sections were examined with a Hitachi HU-11A or a JEM-100CX electronmicroscope. Electronmicroscopic observation shows that the uncultured mesophyll cells are highly vacuolete, with a thin peripheral layer of cytoplasm in which a nucleus and some chloroplasts and other organelles are found in it. But these cells do not contain proplastids (Fig. l). In the explants cultured for 1 day there are no obviously changes in mesophyll cells, except a few cytoplasmic strands extend from periphery to central vacuole. At 2 days of culture quite obvious changes can be detected. A increase in the amount of cytoplasm becomes apparent and transvacuolar cytoplasmic strands grow up. Following cytoplasmic growth, the nucleus and chloroplasts move away from the peripheral cytoplasm and enter the central vacuolate zone (Fig. 2). At this stage some of mesophyll cells have completed the first cell division. After 3 days of culture numerous mesophyll cells have undergone several divisions and formed multicellular masses. In those subdivided cells a more important change of the chloroplasts is the occurrence of protrusions which we call proplastid buds. This phenomenon has also been named as chloroplast budding. According to observations on a large amount of sections chloroplast budding is a common phenomenon in the dedifferentiating mesophyll cells of tobacco leaf explants. Fig ure 3 exhibits a typical profile of a chloroplast with a proplastid bud. The proplastid buds observed are generally long-oval in shape and 1.0–2.5 μm long and about 0.5–0.7 μm thick. These dimensions agree with those of proplastids in meristematie cells. Inside of proplastids ribosomes and electron opaque areas containing DNA fibrils can be seen (Fig. 3). Near the proplastid buds proplastids can often be found (Fig.5). According to above observations we can conclude that the proplastids in dedifferentiating mesophyll cells originate from the proplastid buds by chloroplast budding. The newly formed proplastids usually surround the nucleus and sometimes undergo equal division to increase their number (Figs.5, 6). There are no inner membranes in the newly formed proplastids except vesicles connected with inner membrane of the envelope (Fig.7). While the proplastids are continuously produced, the chloroplasts themselves are filled with starch and gradually turned to large amyloplasts (Fig.5). On the other hand, a few of chloroplasts can divide into equal parts following the chloroplast budding (Fig.4). Israel and Steward (1967) suggested that when cultured carrot cells developed into plantlets the chloroplasts turned into leucoplastids, chromoplastids or proplastids. However, they did not describe how chloroplast became a proplastid. Several investigators reported that the chloroplasts in the dedifferentiating cells gradually lost their grana and intergranal lamellae and then became eueoplasts or proplastids. But according to our observation in tobacco explants, the initiation of proplastids is due to unequal division of chloroplasts, i.e. “budding fission” as described by Malzan and Miihlethaler in Splachnum ampullaceum. Since the proplastid is an organelle characteristic of meristematie cells, the ontogeny of proplastids and its control mechanism should be very important in studing cell dedifferentiation.  相似文献   

11.
Authors deal with the changs of cell ultrastructure ,nucleic acid and soluble protein contents as well as peroxidase activity during mesophyll cell dedifferentiation of leaf explant of stevia rebaudiaha Bertoni. Electron microscopic observations indicated that the mature mesophyll cells had returning to meristematic cells had to go through three main phases: (1)Initiation phase :The main characteristics of cells in this phase were cytoplasmic expansion, stretching out of cytoplasmic filaments to cell centre and appearance of the protein bodies in vacuoles. (2)Medial evolving phase :The main characteristics of cells in this phase were formation of cytoplasmic bridges ;the chloroplasts were dedifferentiated to proplastids and the nuclei started to move toward centre . (3)Finishing and dividing phase :During this phase cell dedifferentiation had finished and cell division was about to start. The main characteristics of cells in this phase were the appearance of meristematic state ; the nuclei, sometimes irregularly shaped, occupied a major proportion of the cell ; the nucleoli were vaculated and the nucleopores increased in number and size. Biochemic analyses showed that the contents of the total nucleic acids , RNA and the soluble proteins as well as the peroxidase activity gradully increased during formation of meristematic cell aggregates and then reduced. However, the change of DNA contents was not obvious.  相似文献   

12.
Chromoplast morphology and ultrastructure of red- and yellow-fleshed papaya (Carica papaya L.) were investigated by light and transmission electron microscopy. Carotenoid analyses by LC–MS revealed striking similarity of nutritionally relevant carotenoid profiles in both the red and yellow varieties. However, while yellow fruits contained only trace amounts of lycopene, the latter was found to be predominant in red papaya (51% of total carotenoids). Comparison of the pigment-loaded chromoplast ultrastructures disclosed tubular plastids to be abundant in yellow papaya, whereas larger crystalloid substructures characterized most frequent red papaya chromoplasts. Exclusively existent in red papaya, such crystalloid structures were associated with lycopene accumulation. Non-globular carotenoid deposition was derived from simple solubility calculations based on carotenoid and lipid contents of the differently colored fruit pulps. Since the physical state of carotenoid deposition may be decisive regarding their bioavailability, chromoplasts from lycopene-rich tomato fruit (Lycopersicon esculentum L.) were also assessed and compared to red papaya. Besides interesting analogies, various distinctions were ascertained resulting in the prediction of enhanced lycopene bioavailability from red papaya. In addition, the developmental pathway of red papaya chromoplasts was investigated during fruit ripening and carotenogenesis. In the early maturation stage of white-fleshed papaya, undifferentiated proplastids and globular plastids were predominant, corresponding to incipient carotenoid biosynthesis. Since intermediate plastids, e.g., amyloplasts or chloroplasts, were absent, chromoplasts are likely to emerge directly from proplastids.  相似文献   

13.
Starch granule size is an important parameter for starch applications in industry. Starch granules are formed in amyloplasts, which are, like chloroplasts, derived from proplastids. Division processes and associated machinery are likely to be similar for all plastids. Essential roles for FtsZ proteins in plastid division in land plants have been revealed. FtsZ forms the so-called Z ring which, together with inner and outer plastid division rings, brings about constriction of the plastid. It has been shown that modulation of the expression level of FtsZ may result in altered chloroplast size and number. To test whether FtsZ is also involved in amyloplast division and whether this, in turn, may affect the starch granule size in crop plants, FtsZ protein levels were either reduced or increased in potato. As shown previously in other plant species, decreased StFtsZ1 protein levels in leaves resulted in a decrease in the number of chloroplasts in guard cells. More interestingly, plants with increased StFtsZ1 protein levels in tubers resulted in less, but larger, starch granules. This suggests that the stoichiometry between StFtsZ1 and other components of the plastid division machinery is important for its function. Starch from these tubers also had altered pasting properties and phosphate content. The importance of our results for the starch industry is discussed.  相似文献   

14.
Developmental Regulation of the Plastid Protein Import Apparatus   总被引:12,自引:2,他引:10       下载免费PDF全文
Dahlin C  Cline K 《The Plant cell》1991,3(10):1131-1140
Plastid development involves the programmed accumulation of proteins. Most plastid proteins are synthesized in the cytosol and imported into the organelle by an envelope-based protein import apparatus. Previous studies have shown that developmental rates of protein accumulation correspond to mRNA levels. Here, we examined the relationship between plastid development and the activity of the protein import apparatus. Developing plastids, primarily from wheat leaves, were analyzed for their protein import capability in vitro. Import capability, initially high in proplastids, declined as much as 20-fold as plastid development approached either the mature etioplast or the mature chloroplast. The observed decline was not due to senescence, nonspecific inhibitors, or protein turnover. Furthermore, the import capability of mature etioplasts, initially very low, was transiently reactivated during light-mediated redifferentiation into chloroplasts. These results suggest that plant cells regulate the import apparatus in concert with the protein demands of the developing plastids.  相似文献   

15.
Summary The ultrastructure ofOryza sativa L. cells in suspension was determined as cells developed, matured and senesced at 3, 10, and 17 days, respectively, after transfer to fresh medium. Although cultures of 3-day-old cells contained some senescent cells, the symptoms of cell aging were very conspicuous at 10 days and were most pronounced at 17 days. The amount of cytoplasm decreased as the number of lytic areas, myelin figures and vesicle bodies increased. Other noticeable subcellular changes observed were ultrastructural modifications of mitochondria, proplastids, amyloplasts, and nuclei. Such changes were associated with a general deterioration of the lipoprotein complex of the cell during its growth. A fibrous structure without an external membrane was observed and its reported for the first time for cells grown in suspension culture.Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

16.
Underground adventitious buds of leafy spurge (Euphorbia esula) undergo three well-defined phases of dormancy, para-, endo-, and ecodormancy. In this study, relationships among genes involved in carbohydrate metabolism and bud dormancy were examined after paradormancy release (growth induction) by decapitation and in response to seasonal signals. Real-time PCR was used to determine the expression levels of carbohydrate metabolism genes at different phases of bud dormancy. Among differentially-regulated genes, expression of a specific Euphorbia esula β-amylase gene (Ee-BAM1) increased 100-fold after growth induction and 16,000-fold from July (paradormancy) to December (ecodormancy). Sequence data analysis indicated that two genes, Ee-BAM1 and Ee-BAM2, could encode this β-amylase. However, real-time PCR using gene-specific primer pairs only amplified Ee-BAM1, indicating that Ee-BAM2 is either specific to other organs or not abundant. The deduced amino acid sequences of these two genes are very similar at the N-terminal but differ at the C-terminal. Both contain a nearly identical, predicted 48-amino acid plastid transit peptide. Immunoblot analyses identified a 29 kD (mature Ee-BAM1 after cleavage of the transit peptide) and a 35 kD (unprocessed EeBAM1) protein. Both 35 and 29 kD proteins were constitutively expressed in growth-induced and seasonal samples. Immunolocalization indicated that Ee-BAM1 is in the cytosol of cells at the shoot tip of the bud. Ee-BAM1 also surrounds the amyloplasts in mature cells toward the base of the bud. These observations suggests that Ee-BAM1 may have dual functions; serving as reserve protein in the cytosol and as a degrading enzyme at the surface of amyloplasts.  相似文献   

17.
The production of gametogenesis is a charming and complicated event in higher plants, during that stage the protein population undergoes substantial alterations. But few attentions have been paid to the possible roles of the UPP in gymnosperm gametogenesis. In the present study, DNA-specific probe 4′,6-dimidino-phenylindole was employed to assess Pinus bungeana pollen developmental stage. It was revealed that the division of pollen mother cell occurred in late April. The uninucleate microspore then underwent three asymmetric divisions, forming a mature pollen grain including a tube cell and a generative cell together with two degenerated prothallial cells in early May. Immunofluorescence labeling of ubiquitinated proteins (UbPs) with an anti-ubiquitin antibody indicated that fluorescence signal was detected in both cytosol and nuclear of the microspore at the uninucleate stage. In the two-cell pollen grain, a brighter fluorescence was always detected in the first prothallial when compared with that in central cell. Similarly, unequal distribution of UbPs was observed again during the division of the central cell into the antheridial initial and the second prothallial cell. The high intensity of the fluorescence in the two degenerated prothallial cells remained in the mature pollen grain, but only a faint signal could be detected in the tube cell or the generative cell deriving from the division of the antheridial initial. The unequal distribution of UbPs was further unveiled by immunogold labeling among prothallial cells, generative cells and tube cells in mature pollen grains. Besides, Coomassie brilliant blue cytochemistry was also performed to illustrate the general subcellular distribution of total proteins in the two-cell and matured pollen grains. All these results indicated that the prothallial cells have high ratio of UbPs, and that the ubiquitin-mediated proteolysis might have an important role during pine pollen development.  相似文献   

18.
19.
. Changes in the distribution of organelles and organelle-DNA in Pelargonium zonale from the mature egg cell stage to the first zygotic division during the early stages of embryogenesis were investigated using electron microscopy and fluorescence microscopy. The mature egg is a large, polarized bulbous-shaped cell, tapering toward its micropylar end. The wide chalazal region has a large nucleus that is surrounded by cytoplasm containing many giant mitochondria and large amyloplasts. The mitochondria contain a large amount of mitochondrial DNA and appear as long stretched rods or complex rings, sometimes consisting of several concentric or half-concentric circles in sections. The time from pollination to cell fusion is approximately 6-9 h and it is 20-24 h until the first zygotic division. The changes in the zygote and its organelles preparatory to division occur in 3 stages. At stage 1 (6-9 h after pollination), cell fusion occurs and the zygote begins to elongate. Many vacuoles of varying size appear surrounding the nucleus. At stage 2 (9-15 h), the zygote nucleus migrates to a central position in the cell and the mitochondria form a single ring that becomes either irregularly crushed or appears as long thin strings. Amyloplasts exhibit a gradual decrease in the number of starch grains. At stage 3 (15-20 h), the vacuoles disappear, except for a few that remain in the micropylar region, and cell size decreases. Mitochondria become short, fine strings or small rings. Amyloplasts with starch grains are no longer observed, but are transformed into large proplastids. Following the first division of the zygote, approximately equal-sized apical and basal cells are formed. Short rod-shaped or small ring-shaped mitochondria are randomly distributed near the nucleus of the apical cell, whereas mitochondria in the basal cell are long and rod-shaped. In the electron microscope, two types of plastids can be distinguished: dark oval plastids originating from the sperm cell, which are observed in both the apical and basal cell, and others with a less dense, amorphous matrix, believed to originate from egg amyloplasts, which are unevenly distributed in the micropylar region of the basal cell. Fluorometry using a video-intensified microscope photon counting system reveals that, correlated with changes in mitochondrial morphology, DNA amount within the mitochondrion decreases linearly during these stages.  相似文献   

20.
The ultrastructure of nonarticulated laticifers in the seedlings ofEuphorbia maculata was studied at various developmental stages. The apical regions of the seedling laticifers growing intrusively contained large nuclei with mainly euchromatin and dense cytoplasm possessing various and many organelles such as rich ribosomes, several small vacuoles, giant mitochondria with dense matrices, rough endoplasmic reticulum, dictyosomes, and proplastids. This result suggested that the apical regions of laticifers were metabolically very active. Laticifers in seedlings at the first-leaf developmental stage did not contain latex particle. In seedlings at second-leaf growth stage, the laticifer cells contained numerous and elongated small vacuoles. These vacuoles appeared to arise by dilation of the endoplasmic reticulum and frequently possessed osmiophilic or electron-dense latex particles. The small vacuoles fused with the large vacuole occupying the central portion of the subapical region of laticifers, and then the latex particles were released into the large central vacuole. The latex particles varied in size and were lightly or darkly stained. Proplastids with a dense matrix and a few osmiophilic plastoglobuli were filled with an elongated starch grain and thus were transformed into amyloplasts. Latex particles were initially produced in the laticifers after seedlings had developed their second young leaves. In seedlings at forth-leaf stage, latex particles with an alveolated rim were found in the laticifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号