首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our recent gene expression profiling analyses demonstrated that Wnt2 is highly expressed in Flk1(+) cells, which serve as common progenitors of endothelial cells, blood cells, and mural cells. In this report, we characterize the role of Wnt2 in mesoderm development during embryonic stem (ES) cell differentiation by creating ES cell lines in which Wnt2 was deleted. Wnt2(-/-) embryoid bodies (EBs) generated increased numbers of Flk1(+) cells and blast colony-forming cells compared with wild-type EBs, and had higher Flk1 expression at comparable stages of differentiation. Although Flk1(+) cells were increased, we found that endothelial cell and terminal cardiomyocyte differentiation was impaired, but hematopoietic cell differentiation was enhanced and smooth muscle cell differentiation was unchanged in Wnt2(-/-) EBs. Later stage Wnt2(-/-) EBs had either lower or undetectable expression of endothelial and cardiac genes compared with wild-type EBs. Consistently, vascular plexi were poorly formed and neither beating cardiomyocytes nor alpha-actinin-staining cells were detectable in later stage Wnt2(-/-) EBs. In contrast, hematopoietic cell gene expression was upregulated, and the number of hematopoietic progenitor colonies was significantly enhanced in Wnt2(-/-) EBs. Our data indicate that Wnt2 functions at multiple stages of development during ES cell differentiation and during the commitment and diversification of mesoderm: as a negative regulator for hemangioblast differentiation and hematopoiesis but alternatively as a positive regulator for endothelial and terminal cardiomyocyte differentiation.  相似文献   

2.
3.
4.
Definitive mesoderm arises from a bipotent mesendodermal population, and to study processes controlling its development at this stage, embryonic stem (ES) cells can be employed. SHB (Src homology 2 protein in beta-cells) is an adapter protein previously found to be involved in ES cell differentiation to mesoderm. To further study the role of SHB in this context, we have established ES cell lines deficient for one (SHB+/-) or both SHB alleles (SHB-/-). Differentiating embryoid bodies (EBs) derived from these ES cell lines were used for gene expression analysis. Alternatively, EBs were stained for the blood vessel marker CD31. For hematopoietic differentiation, EBs were differentiated in methylcellulose. SHB-/- EBs exhibited delayed down-regulation of the early mesodermal marker Brachyury. Later mesodermal markers relatively specific for the hematopoietic, vascular, and cardiac lineages were expressed at lower levels on day 6 or 8 of differentiation in EBs lacking SHB. The expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 was also reduced in SHB-/- EBs. SHB-/- EBs demonstrated impaired blood vessel formation after vascular endothelial growth factor stimulation. In addition, the SHB-/- ES cells formed fewer blood cell colonies than SHB+/+ ES cells. It is concluded that SHB is required for appropriate hematopoietic and vascular differentiation and that delayed down-regulation of Brachyury expression may play a role in this context.  相似文献   

5.
The mechanisms by which p210-BCR-ABL determines hematopoietic stem cells fate remain poorly understood. To better understand the behavior of BCR-ABL in pluripotent stem cells, we previously developed a murine embryonic stem (ES) cell model transformed by p210-BCR-ABL and reported that BCR-ABL activates STAT3, a major protein involved in ES cells self-renewal, which leads specifically to inhibition of ES cells differentiation. We show here that BCR-ABL either inhibits differentiation or, unexpectedly, induces a rapid commitment to differentiation of murine ES cells, according to the intracellular levels of activated STAT3. We show that inhibition of endogenous STAT3 activation with an inducible STAT3 protein with dominant-negative activity (STAT3F) results in an early, rapid and complete differentiation of BCR-ABL-expressing ES cells, whereas control ES cells retain a more undifferentiated phenotype. This phenomenon could be totally abrogated by PD98059, a specific MEK1 inhibitor, suggesting the involvement of mitogen-activated protein kinase (MAP-Kinase)/ERK1/2 pathway, which was found constitutively phosphorylated in BCR-ABL-expressing cells. In addition, BCR-ABL-expressing ES cells harboring low levels of activated STAT3 committed more rapidly through hematopoietic differentiation, since embryoid bodies (EBs) derived from these cells were able to generate numerous hematopoietic progenitors 2 days early. Moreover, BCR-ABL-expressing ES cells cultured first with low levels of activated STAT3 before EBs derivation displayed a more rapid loss of pluripotency than controls and failed to generate hematopoietic progenitors. This phenomenon was partially abrogated when ES cells were first exposed to PD98059 or to the tyrosine kinase inhibitor imatinib mesylate. From this predictive model, we suggest that variations of the activation levels in BCR-ABL substrates such as STAT3 may represent "instructive" secondary cooperating events involved in the transformation of the leukemic cell phenotype during the course of CML.  相似文献   

6.
7.
8.
The platelet glycoprotein IIb (alpha(IIb); CD41) constitutes the alpha subunit of a highly expressed platelet surface integrin protein. We demonstrate that CD41 serves as the earliest marker of primitive erythroid progenitor cells in the embryonic day 7 (E7.0) yolk sac and high-level expression identifies essentially all E8.25 yolk sac definitive hematopoietic progenitors. Some definitive hematopoietic progenitor cells in the fetal liver and bone marrow also express CD41. Hematopoietic stem cell competitive repopulating ability is present in CD41(dim) and CD41(lo/-) cells isolated from bone marrow and fetal liver cells, however, activity is enriched in the CD41(lo/-) cells. CD41(bright) yolk sac definitive progenitor cells co-express CD61 and bind fibrinogen, demonstrating receptor function. Thus, CD41 expression marks the onset of primitive and definitive hematopoiesis in the murine embryo and persists as a marker of some stem and progenitor cell populations in the fetal liver and adult marrow, suggesting novel roles for this integrin.  相似文献   

9.
In this report we describe the efficient hematopoietic differentiation of embryonic stem (ES) cells in vitro. When cultured in semisolid medium two of five ES cell lines efficiently generated embryoid bodies (EBs) containing blood islands in which hematopoietic cells from all six myeloid lineages could be detected. Among a variety of growth factors tested, only erythropoietin significantly increased blood island formation. We directly demonstrate the presence of hematopoietic progenitors in the EBs by employing an in vitro precursor assay. Colony-forming cells (CFC) of all myeloid lineages as well as bi- and multipotent (CFC-MIX) progenitors were readily identified, and a detailed time-course analysis of their appearance was performed. Despite a high frequency of CFC-MIX in vitro, we did not observe any spleen colony-forming cells (CFU-S) in vivo. We conclude that hematopoietic differentiation of ES cells under these conditions reflects formation of the complete range of blood cells found in the yolk sac of the early fetus. Therefore this system provides a unique model in which to study the earliest events of hematopoietic development in vitro.  相似文献   

10.
小鼠的造血系统起源于胚胎发育7d的卵黄囊胚外中胚层,研究表明胚胎干细胞(Embryonic stem cells, ES cells)体外分化模型能够模拟卵黄囊造血的发生过程;此外,诱导ES细胞体外定向造血细胞分化对于建立治疗性克隆以治愈多种血液病具有重要的研究和应用价值。高增殖潜能集落形成细胞(High proliferative potential colonyforming cells, HPPCFC)是体外培养的最原始的多潜能造血前体细胞之一。本研究发现:小鼠ES细胞在体外分化5~14d形成的拟胚体中含有HPP-CFC。其再生潜能与胚胎期9d的卵黄囊来源的HPP-CFC相似,与骨髓来源则不同。RT-PCR分析表明:ES细胞来源的HPP-CFC表达与造血干细胞增殖相关的特异性转录因子和多种造血生长因子受体。但分化12d的拟胚体细胞和HPP-CFC集落细胞移植受致死剂量照射的小鼠不能产生典型的脾结节。因此,ES细胞来源的HPP-CFC在体外和体内造血活性的差异值得更深入地研究。  相似文献   

11.
12.
胚胎干细胞向造血细胞分化研究   总被引:2,自引:0,他引:2  
刘革修  张洹 《生命科学》2003,15(1):21-25
胚胎干(embryonic stem,ES)细胞是来源于囊胚的内细胞团(inner cell mass,ICM),具有发育的全能性或多能性,能嵌合到早期胚胎,在体内可以参与各种组织发育甚至包括生殖细胞;在体外分化培养条件下,可以顺序分化出各种组织细胞,与体内完整胚胎发育过程相符合,而且可以通过调节ES细胞某些基因的表达而调节其分化。因此,ES细胞是研究哺乳动物早期胚胎发育、细胞分化及其关键基因鉴定的理想模型。另外,胚胎生殖脊(embryonic germ,EG)细胞系也具有同样的生物学特性,它是由早期胚胎的原始生殖脊(primordial germ,PG)细胞建株而来。最近研究显示:ES细胞在体外不但可以分化为所有造血细胞系,而且还可以分化为具有长期增殖能力的造血干细胞。作者就胚胎干细胞向造血细胞和造血干细胞分化及其诱导因子和调控基因的表达作一综述。  相似文献   

13.
Embryonic stem (ES) cells have indefinite self-renewal ability and pluripotency, and can provide a novel cell source for tissue engineering applications. In this study, a murine CCE ES cell line was used to derive hematopoietic cells in a 3-D fibrous matrix. The 3-D matrix was found to maintain the phenotypes of undifferentiated ES cells as indicated by alkaline phosphatase (ALP) activity and stage specific embryonic antigen-1 (SSEA-1) expression. In hematopoietic differentiation, cells from 3-D culture exhibited similar cell cycle distribution and SSEA-1 expression to those in the initial cell population. The Oct-4 expression was significantly down-regulated, which indicated the occurrence of differentiation, although the level was slightly higher than that in Petri dish culture. The expression of c-kit, cell surface marker for hematopoietic progenitor, was higher in the 3-D culture, suggesting a better-directed hematopoietic differentiation. Cells in the 3-D matrix tended to form large aggregates associated with fibers. For large-scale processes, a perfusion bioreactor can be used for both maintenance and differentiation cultures. As compared to the static culture, a higher growth rate and final cell density were resulted from the perfusion bioreactor due to better control of the reactor environment. At the same time, the differentiation capacity of ES cells was preserved in the perfusion culture. The ES cell culture in the fibrous matrix thus can be used as a 3-D model system to study effects of extracellular environment and associated physico-chemical parameters on ES cell maintenance and differentiation.  相似文献   

14.

Background  

Understanding the mechanisms controlling stem cell differentiation is the key to future advances in tissue and organ regeneration. Embryonic stem (ES) cell differentiation can be triggered by embryoid body (EB) formation, which involves ES cell aggregation in suspension. EB growth in the absence of leukaemia inhibitory factor (LIF) leads EBs to mimic early embryonic development, giving rise to markers representative of endoderm, mesoderm and ectoderm. Here, we have used microarrays to investigate differences in gene expression between 3 undifferentiated ES cell lines, and also between undifferentiated ES cells and Day 1–4 EBs  相似文献   

15.
16.
Cytokine signaling pathways are important in promoting hematopoietic stem cell (HSC) self-renewal, proliferation and differentiation. Mpl receptor and its ligand, TPO, have been shown to play an essential role in the early steps of adult hematopoiesis. We previously demonstrated that the cytoplasmic domain of Mpl promotes hematopoietic commitment of embryonic stem cells in vitro, and postulated that Mpl could be important in the establishment of definitive hematopoiesis. To answer this question, we investigated the temporal expression of Mpl during mouse development by in situ hybridization. We found Mpl expression in the HSCs clusters emerging in the AGM region, and in the fetal liver (FL) as early as E10.5. Using Mpl(-/-) mice, the functional relevance of Mpl expression was tested by comparing the hematopoietic progenitor (HP) content, long-term hematopoietic reconstitution (LTR) abilities and HSC content of control and Mpl(-/-) embryos at different times of development. In the AGM, we observed delayed production of HSCs endowed with normal LTR but presenting a self-renewal defect. During FL development, we detected a decrease in HP and HSC potential associated with a defect in amplification and self-renewal/survival of the lin(-) AA4.1(+) Sca1(+) population of HSCs. These results underline the dual role of Mpl in the generation and expansion of HSCs during establishment of definitive hematopoiesis.  相似文献   

17.
Ectopic expression of HoxB4 in embryonic stem (ES) cells leads to an efficient production of hematopoietic cells, including hematopoietic stem/progenitor cells. Previous studies have utilized a constitutive HoxB4 expression system or tetracycline-regulated HoxB4 expression system to induce hematopoietic cells from ES cells. However, these methods cannot be applied therapeutically due to the risk of transgenes being integrated into the host genome. Here, we report the promotion of hematopoietic differentiation from mouse ES cells and induced pluripotent stem (iPS) cells by transient HoxB4 expression using an adenovirus (Ad) vector. Ad vector could mediate efficient HoxB4 expression in ES cell-derived embryoid bodies (ES-EBs) and iPS-EBs, and its expression was decreased during cultivation, showing that Ad vector transduction was transient. A colony-forming assay revealed that the number of hematopoietic progenitor cells with colony-forming potential in HoxB4-transduced cells was significantly increased in comparison with that in non-transduced cells or LacZ-transduced cells. HoxB4-transduced cells also showed more efficient generation of CD41-, CD45-, or Sca-1-positive cells than control cells. These results indicate that transient, but not constitutive, HoxB4 expression is sufficient to augment the hematopoietic differentiation of ES and iPS cells, and that our method would be useful for clinical applications, such as cell transplantation therapy.  相似文献   

18.
19.
When embryonic stem cells are cultured directly in semisolid media (methyl cellulose), they proliferate and differentiate to generate colonies known as embryoid bodies (EBs). These EBs consist of differentiated cells from a number of lineages including those of the hematopoietic system. Following 10 days of culture in the presence of 10% fetal calf serum, more than 40% of all EBs from three different ES cell lines, CCEG2, D3 and SQ1.2S8 contained visible erythropoietic cells (i.e. red with hemoglobin). Beta H1 (z globin) mRNA is detectable in EBs within 5 days of differentiation, whilst beta(maj)-globin RNA appears by day 6. In the presence of erythropoietin (Epo), the frequency of EBs with erythropoietic activity increases to greater than 60%; Epo also prolongs this erythropoietic activity. Interleukin-3 (IL-3) does not significantly increase the frequency of EBs that contain erythroid cells, but increases slightly the number of erythropoietic cells associated with them. In the presence of IL-3, in addition to cells of the erythroid lineage, macrophages, mast cells and in some instances neutrophils are found within differentiating EBs. The development of macrophages is significantly enhanced by the addition of IL-3 alone or in combination with IL-1 and M-CSF or GM-CSF. When well-differentiated EBs are allowed to attach onto tissue-culture plates and grown in the presence of IL-3, a long-term output of cells from the mast cell lineage is observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Differentially expressed cDNA clones from fetal rat liver were isolated using suppression subtractive hybridization, combined with an efficient screening strategy. Approximately 30,000 clones were screened, yielding 643 genes whose expression was induced, of which 201 clones were distinct and 68 represented ESTs or newly discovered genes of unknown function. Based on their expression patterns in different organs, fetal liver, liver regeneration models, and gut epithelial progenitor cell lines, the subtracted clones presented in this work were placed into four categories: (1) hepatoblast-specific genes; (2) hematopoietic cell-specific genes; (3) genes expressed in hepatoblasts, in hematopoietic cells, and at varying levels in other tissues; and (4) genes overexpressed in fetal liver, in models of activation of liver progenitor cells, and in epithelial progenitor cell lines. Hepatoblast-specific clones and those representing genes induced during liver regeneration are under further study to define their specific function(s) in liver cell growth control and/or differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号