首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of thyroid hormone deficiency and growth hormone (GH) treatment on hypothalamic GH-releasing hormone (GHRH)/somatostatin (SS) concentrations, GHRH/SS mRNA levels, and plasma GH and somatomedin-C (IGF-I) concentrations were studied in 28- and 35-day-old rats made hypothyroid by giving dams propylthiouracil in the drinking water since the day of parturition. Hypothyroid rats, at both 28 and 35 days of life, had decreased hypothalamic GHRH content and increased GHRH mRNA levels, unaltered SS content and SS mRNA levels, and reduced plasma GH and IGF-I concentrations. Treatment of hypothyroid rats with GH for 14 days completely restored hypothalamic GHRH content and reversed the increase in GHRH mRNA, but did not alter plasma IGF-I concentrations. These data indicate that, in hypothyroid rats, the changes in hypothalamic GHRH content and gene expression are due to the GH deficiency ensuing from the hypothyroid state. Failure of the GH treatment to increase plasma IGF-I indicates that the feedback regulation on GHRH neurons is operated by circulating GH and/or perhaps tissue but not plasma IGF-I concentrations. Presence of low plasma IGF-I concentrations would be directly related to thyroid hormone deficiency.  相似文献   

3.
Growth hormone-releasing hormone (GHRH) is a main inducer of growth hormone (GH) pulses in most species studied to date. There is no information regarding the pattern of GHRH secretion as a regulator of GH gene expression. We investigated the roles of the parameters of exogenous GHRH administration (frequency, amplitude, and total amount) upon induction of pituitary GH mRNA, GH content, and somatic growth in the female rat. Continuous GHRH infusions were ineffective in altering GH mRNA levels, GH stores, or weight gain. Changing GHRH pulse amplitude between 4, 8, and 16 microg/kg at a constant frequency (Q3.0 h) was only moderately effective in augmenting GH mRNA levels, whereas the 8 microg/kg and 16 microg/kg dosages stimulated weight gain by as much as 60%. When given at a 1.5-h frequency, GHRH doubled the amount of GH mRNA, elevated pituitary GH stores, and stimulated body weight gain. In the rat model, pulsatile but not continuous GHRH administration is effective in inducing pituitary GH mRNA and GH content as well as somatic growth. These studies suggest that the greater growth rate, pituitary mRNA levels, and GH stores seen in male compared with female rats are likely mediated, in part, by the endogenous episodic GHRH secretory pattern present in males.  相似文献   

4.
生长激素释放激素(GHRH)与垂体腺苷酸环化酶(PACAP)在序列及功能方面均相似,且同为PACAP/胰高血糖素超家族成员.研究了这二者对生长激素释放的刺激作用,以及对动物生长的影响.构建了3个表达载体,pIRES1- GHRH-PACAP(P-G-P),pIRES1-GHRH(P-G) 及 pIRES1-PACAP(P-P),并转染到CHO细胞中,进行RT-PCR,Dot-ELISA以及Westen-blot检测.此外,给大鼠注射细胞上清表达产物,检测其生物学活性.注射8 h后,注射表达P-G-P上清的大鼠血清中IGF-Ⅰ浓度显著高于其他组(P < 0.05).用PLGA微球包裹各种质粒,并注射到家兔后肢胫前肌.观察家兔生长情况,并于注射后0,15,30,45天时分别采集家兔血液,检测血液中IGF-Ⅰ浓度.结果显示,三质粒注射组动物体重变化及血液中IGF-Ⅰ浓度均高于对照组.注射后30天时,P-G-P组增重较对照组提高81% (P < 0.01),P-G组比对照组提高15%(P > 0.05),P-P组比对照组高7%(P > 0.05).另一方面,P-G-P组动物血液中IGF-Ⅰ含量比分别比P-G、P-P及对照组提高16.68% (P > 0.05),17.14%(P > 0.05),50.46%(P < 0.05).以上结果揭示:给动物注射PLGA微球包裹的共表达GHRH与PACAP质粒,可以增强动物体内生长激素(GH)的分泌,并促进动物生长.通过上述研究发现,肌肉注射PACAP表达质粒可以促进家兔的生长,PACAP和GHRH 共表达可以起到协同作用.这可能为动物的促生长研究提供新的方法.  相似文献   

5.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

6.
人与动物体内生长激素受生长激素释放激素(Growth Hormone Releasing Hormone,GHRH)与生长激素抑制激素(Somatostatin,SST)两种因子共同调节,在体内表达外源GHRH,可以提高体内GH基础水平,进而达到促进体内GH释放,加速动物生长的效果.对慢病毒载体系统加以改造,使之成为C...  相似文献   

7.
The role of androgen in the sexual dimorphism in hypothalamic growth hormone (GH)-releasing hormone (GHRH) and somatostatin (SS) gene expression was examined in rats. In the first study, the SS and GHRH mRNA levels were measured in both male and female rats at 4, 6, 8, and 10 weeks of age. A significant sex-related difference in the SS and GHRH mRNA levels was observed after 8 weeks of age, when sexual maturation is fully attained. Male rats had higher SS and GHRH mRNA levels than the female rats. In the second study, adult ovariectomized rats received daily injection of dihydrotestosterone (DHT), nonaromatizable testosterone, at a dose of 2 mg/rat for 21 days. The DHT treatment masculinized the GH secretory pattern, which was indistinguishable from that of intact male rats, and simultaneously augmented the SS and GHRH mRNA levels. The DHT treatment of ovariectomized rats after hypophysectomy significantly raised the level of SS mRNA, but not that of GHRH mRNA compared to the control animals. These findings suggest that the activation of the SS gene expression through androgen receptor plays an important role in the maintenance of sexual dimorphism in GH secretion in rats.  相似文献   

8.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

9.
In order to find a chronic GHRH administration capable of stimulating growth rate without depleting pituitary GH content, prepubertal female rats were subcutaneously (sc) treated with GHRH (1-29)-NH2 and somatostatin (SS). In experiment 1, the rats received sc injections of GHRH and cyclic natural SS for 19 days. In the second study, female rats were continuously treated during 21 days with GHRH, using a slow release pellet, alone or combined with one daily injection of long acting SS (octreotide). In experiment 1, body weight was significantly increased when GHRH was administered at the highest daily dosage (1200 microg/day), accompanied by an slight increment in pituitary GH content. Hypothalamic SS concentrations decreased when GHRH or SS were administered alone whereas the combined treatment with both peptides did not modify this parameter, which suggests the existence of a balance between the chronic actions of both peptides on hypothalamus. In experiment 2, the continuous infusion of GHRH increased plasma GH levels and tended to enhance pituitary GH content. Nevertheless, GHRH effect was not effective enough to increase body weight. By adding one daily injection of SS both GHRH effects on the pituitary gland were abolished. Our study indicates that female rats retain responsiveness to chronic GHRH and SS treatments at both pituitary and hypothalamic levels.  相似文献   

10.
The pattern of long-term GHRH administration capable of stimulating GH release without depleting pituitary GH content has been investigated using two experimental approaches. In experiment 1, recently weaned male lambs were treated for 3 weeks as follows: Group A) control; B) subcutaneous (sc) continuous infusion of GHRH (1200 mg/day) using a slow release pellet; C) the same as B plus 1 daily sc injection of long acting somatostatin (SS) (octreotide, 20 mg) ; D) 3 daily sc GHRH (250 mg) injections ; E) 2 daily sc injections of GHRH (250 mg) and 2 of natural SS (250 mg). In experiment 2, recently weaned male lambs were continuously GHRH-treated using sc osmotic minipumps (900 mg/day) alone or combined with a daily sc injection of octreotide (20 mg) for 4 weeks. Basal plasma GH levels were increased after chronic pulsatile GHRH treatment but not after any kind of continuous GHRH administration. This increment was maintained during the 3 weeks of experimentation and appeared accompanied by a pituitary GH content similar to controls. A marked GH response to the iv GHRH challenge was observed in controls and in lambs receiving both types of continuous sc GHRH infusions, whereas pulsatile sc GHRH-treated animals did not respond to the iv GHRH challenge in the first and second weeks of the study but did so in the third week of treatment. These data demonstrate that long-term pulsatile GHRH administration is capable of stimulating GH release in growing male lambs, without producing pituitary desensitization.  相似文献   

11.
12.
We administered two different growth hormone-releasing hormones (GHRH) to 20 short, prepubertal children who had spontaneous secretion of growth hormone (GH), assessed from 24-hour GH secretion profiles (72 sampling periods of 20 min). We compared one i.v. injection of 1 microgram/kg of GHRH 1-40 with that of GHRH 1-29 regarding serum concentrations of GH, prolactin, luteinizing hormone, follicle-stimulating hormone and IGF-I. The children were allocated to two groups without statistical randomization. Both groups were given both peptides, with at least 1 week in between. The first group started with GHRH 1-40, the other with GHRH 1-29. The peptides both induced an increased serum concentration of GH of the same magnitude: mean maximal peak of 89 +/- 12 mU/l after GHRH 1-40 and 94 +/- 10 mU/l after GHRH 1-29 (n.s.). The mean difference in maximum serum GH concentration in each child after injection was 52 +/- 9 mU/l, range 1-153 mU/l. GHRH 1-29 also induced a short-term, small increase in the concentrations of prolactin (p less than 0.05), luteinizing hormone (p less than 0.01) and follicle-stimulating hormone (p less than 0.05). We conclude that the shorter sequence GHRH 1-29, when given in a dose of 1 microgram/kg, gives a rise in serum concentration of GH similar to that after the native form GHRH 1-40.  相似文献   

13.
The effects of the perturbation of the pituitary-thyroid axis induced during development on the functional activity of the growth hormone (GH) regulatory neuronal systems, GH-releasing hormone (GHRH), and somatostatin (SS) were studied in 14- and 21-day-old rats made hypothyroid by giving dams propylthiouracil in the drinking water since the day of parturition. Infant hypothyroid rats, both at 14 and 21 days of life, had elevated plasma thyroid-stimulating hormone levels and decreased pituitary and plasma GH levels. Simultaneous determination of hypothalamic GHRH/SS-like immunoreactivity (LI) and GHRH/SS mRNA levels did not reveal any difference in 14-day-old hypothyroid rats when compared with age-matched controls. In contrast, 21-day-old hypothyroid rats had decreased GHRH-LI content and a striking rise in GHRH mRNA levels, whereas SS-LI content and SS gene expression remained unaltered. These data indicate that in infant hypothyroid rats, changes in the functional activity of the GHRH neuronal system occur later than changes in GH secretion and are probably dependent on the GH deficiency. The functional activity of SS neurons was apparently unaltered in these hypothyroid rats, pointing to a lesser sensitivity of this system to the perturbation of the pituitary-thyroid axis.  相似文献   

14.
Alterations within the somatotropic axis occurring during the course of critical illness follow a biphasic pattern. The initial stress response consists of activated growth hormone (GH) release whereas circulating levels of GH-dependent insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3 fall and IGFBP-1 concentrations rise. In contrast, in the chronic intensive care-dependent phase of severe illness, pulsatile GH secretion substantially decreases whereas the non-pulsatile fraction remains relatively elevated, resulting in an abnormally flat GH secretory pattern and low-normal mean nocturnal GH serum concentrations. Specifically the reduced amount of GH released in pulses is found to be related to low circulating levels of IGF-I, IGFBP-3 and acid-labile subunit (ALS), which suggests that a relative hyposomatotropism may participate in the pathogenesis of the wasting syndrome distinctively in the chronic phase of critical illness. The relative hyposomatotropism seems at least in part of hypothalamic origin since the whole somatotropic axis has been found to be very responsive to continuous infusion of GH releasing peptide (GHRP), administered alone or in combination with GH releasing hormone (GHRH), as evidenced by reactivated pulsatile GH secretion followed by substantial increases in circulating levels of IGF-I, IGFBP-3 and ALS. GHRH alone, however, is unable to exert the same effect, which may point to an underlying reduced availability of the endogenous ligand for the GHRP receptor. The presence of considerable responsiveness to restored endogenous pulsatile GH secretion using GHRPs not only further delineates the distinct pathophysiological paradigm of the chronic phase of critical illness, as opposed to the acute phase, which is thought to be primarily a condition of GH resistance, but may also have important therapeutic consequences. Recent data revealed that this novel strategy evokes metabolic improvement related to the balanced endocrine responses. Whether GH secretagogues also enhance clinical recovery of protracted critically ill patients remains to be elucidated.  相似文献   

15.
In women who are growth hormone (GH) deficient, exogenous estrogens increase the dosage of GH that is needed to normalize circulating levels of insulin-like growth factor (IGF-1). Serum IGF-1 derives mostly from the liver, and it is unknown whether the peripheral effects of GH are also impaired by estrogens. Because the ultimate effect of GH is longitudinal growth, we have investigated the influence of estrogen administration on the growth response to recombinant mouse GH therapy in prepubertal GH-deficient (GHD) GHRH knockout (GHRHKO) female mice. Twenty-four GHRHKO female mice (4 animals/group) were treated for 4 weeks (from the second to sixth week of age) with the following schedules: Group I, GH only (25 microg/day); Group II, subcutaneous (sc) ethynil estradiol (EE) (0.035 ES01247g/day); Group III, GH + scEE; Group IV, oral (po) EE (0.035 microg/day); Group V, GH + poEE; Group VI, placebo. At the end of the treatment period, we measured uterine weight, total body weight (TBW), body length (nose-anus, N-A), and femur length. In addition, serum IGF-1 levels were measured. Uteri of mice treated with oral or scEE showed similar increases in weight. There was no difference in the increase in longitudinal growth parameters between mice treated with GH alone or with GH in association with oral or scEE. Serum IGF-1 decreased in animals treated with GH + scEE, compared with GH group, but no group was significantly different from placebo. These results show that subcutaneous or oral EE does not reduce the growth response to GH in female GHD mice.  相似文献   

16.
Leptin-deficient obese mice (ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (approximately 1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.  相似文献   

17.
In 16 patients with metastatic testicular cancer and 10 age matched male control subjects growth hormone (GH) responses to growth hormone releasing hormone (GHRH; 1 microgram/kg body weight iv.) and thyrotropin releasing hormone (TRH; 200 micrograms iv.) were measured. Basal GH levels and GH levels following stimulation with GHRH or TRH were significantly increased in cancer patients compared to control subjects. 9 patients with testicular cancer were studied both in the stage of metastatic disease and after they had reached a complete remission. In complete remission GH responses to GHRH tended to decrease but the differences did not reach statistical significance. Our data suggest an alteration of hypothalamic and/or pituitary regulation of GH secretion in patients with metastatic testicular cancer.  相似文献   

18.
J L Barron  D H Coy  R P Millar 《Peptides》1985,6(3):575-577
Synthetic analogs of growth hormone-releasing hormone, GHRH(1-29)-NH2 and D-Ala2 GHRH(1-29)-NH2 were administered as a bolus intravenous injection to five normal men in a dose range of 0.015 to 0.5 micrograms/kg body weight. Vehicle only was administered in a control study. Peak responses to GHRH analogs occurred at 15 or 30 min. An increase in the integrated plasma growth hormone (GH) response was observed at each dose. The dose-response curve of GHRH(1-29)-NH2 indicated that it has a similar molar potency to GHRH(1-40) and GHRH(1-44). The potency of D-Ala2 GHRH(1-29)-NH2 was approximately twice that of GHRH(1-29)-NH2. Neither analog affected blood levels of PRL, TSH, LH, FSH, ACTH, insulin, glucagon, glucose, cortisol, free thyroxine, and free triiodothyronine. No side effects were noted other than transient flushing with the highest dose administered. The findings demonstrate GHRH(1-29)-NH2 and its D-Ala2 analog are potent stimulators of GH release and have potential application in clinical medicine.  相似文献   

19.
In a previous paper we have demonstrated that growth hormone (GH) responses to growth hormone releasing hormone (GHRH) are higher in premenopausal normal women than in age matched healthy men. As in type I diabetes mellitus various disturbances of GH secretion have been reported, the aim of our study was to assess the effect of sex on basal and GHRH stimulated GH secretion in type I diabetes mellitus. In 21 female and 23 male type I diabetic patients and 28 female and 30 male control subjects GH levels were measured before and after stimulation with GHRH (1 microgram/kg body weight i.v.) by radioimmunoassay. GH responses to GHRH were significantly higher in female than in male control subjects (p less than 0.02), whereas the GH levels following GHRH stimulation were similar in female and male type I diabetic patients. GH responses to GHRH were significantly higher in the male type I diabetic patients than in the male control subjects (p less than 0.001); in the female type I diabetic patients and the female control subjects, however, GH responses to GHRH were not statistically different. The absence of an effect of sex on GHRH stimulated GH responses in type I diabetes mellitus provides further evidence of an abnormal GH secretion in this disorder.  相似文献   

20.
The bioactivity of growth hormone releasing hormone 1-29 [GHRH(1-29)NH2] has been compared with that of an agonist analogue [Ac-D-Tyr1,D-Ala2]-GHRH(1-29)NH2, in normal male volunteers. Using a submaximal dose of 3 micrograms/kg administered subcutaneously, peak growth hormone (GH) response and area under the GH curve were similar for the native and agonist analogue. In addition, no significant differences were found in peak GHRH(1-29) immunoreactivity, area under the GHRH(1-29) curves or plasma disappearance rates of the two peptides. The results suggest that, in keeping with the relative activities of other "superactive" analogues tested so far, the greatly enhanced activity of [Ac-D-Tyr1,D-Ala2]-GHRH(1-29)NH2 observed in the rat is not found in humans. It is possible that this species difference is due to differences in the interaction of GHRH peptides with the rat and the human somatotroph GHRH receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号