首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
绵羊体细胞核移植去核前程序的优化   总被引:1,自引:0,他引:1  
目前绵羊体细胞克隆效率仍然很低,本研究拟对去核前的操作环节进行优化。主要为卵巢保存时间(3 h和3–5 h)、卵母细胞体外成熟时间(18 h和24 h)、供核细胞贴壁率(10%和30%)和盲吸法去核时间(16 hpm和18 hpm)等4个方面优化。以成熟率、融合率和重构胚胎发育能力作为评价参数。结果表明:在卵巢保存方面,卵巢保存3 h组卵母细胞成熟率显著高于3–5 h组卵母细胞成熟率(60.18%vs 52.50%)(P0.05),重构胚胎发育力差异不显著(P0.05);在体外成熟时间方面,体外成熟18 h组和24 h组卵母细胞成熟率差异极显著(53.81%vs 89.06%)(P0.01),胚胎发育力差异不显著(P0.05);在融合率方面,贴壁率30%组极显著高于贴壁率10%组(80.85%vs 57.69%)(P0.01),在克隆胚胎发育率方面没有显著差异(P0.05),具有贴比率差异性的细胞在细胞生长平台期表现出差异性;在去核时间方面,16 hpm组和18 hpm组胚胎卵裂率差异显著,囊胚发育力差异不显著(P0.05),16 hpm组获得一只克隆羊,重复16 hpm获得4只妊娠克隆羊。组织微卫星序列经SDS-PAGE分析,DNA指纹与供体细胞相同。结论:去核前程序的优化保证了材料的质量,为提高克隆胚胎数量和质量奠定基础,可以获得体细胞克隆羊。  相似文献   

2.
Effect of telophase enucleation on bovine somatic nuclear transfer   总被引:5,自引:0,他引:5  
Liu JL  Wang MK  Sun QY  Xu Z  Chen DY 《Theriogenology》2000,54(6):989-998
Telophase enucleation has been proven to be an efficient method for preparing recipient cytoplasts in bovine embryonic nuclear transfer (2, 11). This research was designed to study in vitro development of bovine oocytes containing transferred somatic cell nuclei, reconstructed by using enucleated in vitro-matured oocytes 32 h of age at telophase II stage as recipient cytoplasts, compared with those 24 h of age at metaphase II stage. Two protocols for donor cell injection were adopted, i.e., subzonal injection (SUZI) and intracytoplasmic injection (ICI). Bovine oviduct epithelial cells (BOECs) and bovine cumulus cells (BCCs) from an adult cow were used as nuclear donors for these experiments. In SUZI groups, the fusion rate of donor cells, both BOECs and BCCs, with MII enucleated oocytes were higher than those with TII enucleated oocytes (54% vs. 41% and 53% vs. 39%, respectively; P<0.05), but the development rates to morula plus blastocyst stage in MII groups were lower than those in TII groups (22% vs. 39% and 21% vs. 41%, respectively; P<0.05). In ICI groups, about 26% of enucleated MII oocytes injected with BOECs or BCCs cleaved and only small parts of them developed to blastocyst stage (4% and 3%, respectively; P>0.05). When BOECs or BCCs were intracytoplasmically injected into oocytes enucleated at TII stage, no blastocyst was formed in either donor cell group and no cleavage occurred in BOEC group. Our data demonstrated that telophase enucleation is beneficial to early embryo development when bovine somatic nuclei are transferred by subzonal injection. However, it is harmful when donor cells are directly injected into the cytoplast of the enucleated oocytes.  相似文献   

3.
The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality.  相似文献   

4.
Somatic cell nuclear transfer (SCNT) has been performed extensively in fish since the 1960s with a generally low efficiency of approximately 1%. Little is known about somatic nuclear reprogramming in fish. Here, we utilized the zebrafish as a model to study reprogramming events of nuclei from tail, liver and kidney cells by SCNT. We produced a total of 4,796 reconstituted embryos and obtained a high survival rate of 58.9-67.4% initially at the 8-cell stage. The survival rate exhibited two steps of dramatic decrease, leading to 8.7-13.9% at the dome stage and to 1.5-2.96% by the shield stage. Concurrently, we observed that SCNT embryos displayed apparently delayed development also at the two stages, namely the dome stage (1:30 ± 0:40) and the shield stage (2:50 ± 0:50), indicating that the dome and shield stage are critical for the SCNT efficiency. Interestingly, we also revealed that an apparent alteration in klf4 and mycb expression occurred at the dome stage in SCNT embryos from all the three donor cell sources. Taken together, these results suggest that the dome stage is critical for the SCNT efficiency, and that alternated gene expression appears to be common to SCNT embryos independently of the donor cell types, suggesting that balanced mycb and klf4 expression at this stage is important for proper reprogramming of somatic nuclei in zebrafish SCNT embryos. Although the significant alteration in klf4 and mycb expression was not identified at the shield stage between ZD and SCNT embryos, the importance of reprogramming processes at the shield stage should not be underestimated in zebrafish SCNT embryos.  相似文献   

5.

Background  

The interaction between the karyoplast and cytoplast plays an important role in the efficiency of somatic cell nuclear transfer (SCNT), but the underlying mechanism remains unclear. It is generally accepted that in nuclear transfer embryos, the reprogramming of gene expression is induced by epigenetic mechanisms and does not involve modifications of DNA sequences. In cattle, oocytes with various mitochondrial DNA (mtDNA) haplotypes usually have different ATP content and can further affect the efficiency of in vitro production of embryos. As mtDNA comes from the recipient oocyte during SCNT and is regulated by genes in the donor nucleus, it is a perfect model to investigate the interaction between donor nuclei and host oocytes in SCNT.  相似文献   

6.
7.
为了评价父系遗传背景对小鼠体细胞核移植效率的影响,本试验用129/Sv小鼠、C3H小鼠和ICR的雄鼠分别与昆明雌鼠(KM)杂交的F1代为研究对象,以KM自交鼠F1代为对照,比较卵母细胞的可操作性以及重构胚的激活率、卵裂率和囊胚发育率。结果显示:129/Sv×KM、C3H×KM和KM×KM的去核效率显著高于ICR×KM(78.0%、82.9%、81.0%vs63.9%;P<0.05);129/Sv×KM的注核成功率显著高于C3H×KM、ICR×KM和KM×KM(83.0%vs59.6%、55.5%、71.4%;P<0.05);129/Sv×KM的重构胚激活率显著高于C3H×KM、ICR×KM和KM×KM(97.3%vs85.2%、81.7%、78.3%;P<0.05);C3H×KM的卵裂率和囊胚率显著高于ICR×KM和KM×KM(84.5%、28.2%vs63.2%、11.4%,64.5%、16.5%;P<0.05)。研究表明129/Sv、C3H和ICR3个品系父系遗传背景影响小鼠体细胞核移植效率,其中C3H父系遗传背景的卵母细胞可提高体细胞核移植效率。  相似文献   

8.
The development capability of reconstructed bovine embryos via ovum pick-up (OPU)-somatic cell nuclear transfer (SCNT) technique has been influenced by the maternal lineage of oocyte cytoplasm, but the underlying mechanism remains unclear. Since mitochondria are the richest maternal-inherited organelle, in this study, we intended to clarify the effect of mtDNA haplotypes on cloning efficiency. By PCR-RFLP method, we identified mtDNA haplotypes A and B, differing in six restriction sites. Reconstructed embryos with haplotype A cytoplast achieved better fusion and blastocyst formation rate (64.6% and 39.4%), as compared with haplotype B (53.6% and 26.3%; P < 0.05). To further evaluate the role of mitochondria, the quantity of mtDNA, ATP content, and mRNA level of mtDNA-encoded COXI, COXIII in both oocytes were measured. Our data indicated that mtDNA copy number in haplotype A oocyte was significantly higher than that in haplotype B oocyte, both at the GV (10(5.03 +/- 0.69) vs. 10(4.81 +/- 0.86) copies/oocyte) and MII stages (10(5.31 +/- 0.71) vs. 10(5.13 +/- 0.63) copies/oocyte; logarithmically transformed values; P < 0.05). ATP content in type A oocyte was also greater at the GV (1.67 +/- 0.09 vs. 1.27 +/- 0.1 pmol) and MII stages (5.18 +/- 0.07 vs. 2.68 +/- 0.03 pmol; P < 0.05). Similarly, the mRNA expression level of mtDNA-encoded COXI and COXIII in haplotype A oocyte was significantly higher comparing to haplotype B oocyte (3.3 +/- 2.0 x 10(3) vs. 0.68 +/- 0.45 x 10(3); 24.9 +/- 10.5 x 10(3) vs. 9.4 +/- 3.3 x 10(3), respectively; P < 0.05). The data suggest that mitochondrial structure, quantity, and function may significantly affect the developmental competence of reconstructed embryos.  相似文献   

9.
Treatment of pre-activated oocytes with demecolcine (DEM) has been shown to induce the extrusion of all oocyte chromosomes within the second polar body (PB2). However, induced enucleation (IE) rates are generally low and the competence of these cytoplasts to support embryonic development following somatic cell nuclear transfer (SCNT) is impaired. Here, we explored whether short treatments with DEM or another antimitotic, nocodazole (NOC), improve IE efficiency, and determined the most appropriate timing for nuclear transfer in the cytoplasts produced. We show, for the first time, that IE can be accomplished in mouse and goat oocytes using NOC and that short treatments with DEM or NOC result in similar IE rates, which proved to be strain- and species-specific. Because enucleation induced by both antimitotic drugs is reversible, the IE protocol was combined with the mechanical aspiration of PB2s to increase permanent enucleation rates in mouse oocytes. None of the cloned mouse embryos produced from the resultant cytoplasts developed to the blastocyst stage. However, when they were reconstructed prior to the activation and antimitotic treatment, their in vitro embryonic development was similar to that of cloned embryos produced from mechanically-enucleated oocytes.  相似文献   

10.
体细胞核移植技术具有极其广阔的应用前景,但极低的成功率限制了这项技术在实践生产中的应用。不同的学者在不同的物种上进行了一系列的尝试,试图提高体细胞核移植的成功率。本文就体细胞核移植技术在不同物种中的成功应用进行阐述,并就如何提高体细胞核移植成功率阐明一些观点。  相似文献   

11.
Conventional methods of somatic cell nuclear transfer either by electrofusion or direct nucleus injection have very low efficiency in animal cloning, especially interspecies cloning. To increase the efficiency of interspecies somatic cell nuclear transfer, in the present study we introduced a method of whole cell intracytoplasmic injection (WCICI) combined with chemical enucleation into panda-rabbit nuclear transfer and assessed the effects of this method on the enucleation rate of rabbit oocytes and the in vitro development and spindle structures of giant panda-rabbit reconstructed embryos. Our results demonstrated that chemical enucleation can be used in rabbit oocytes and the optimal enucleation result can be obtained. When we compared the rates of cleavage and blastocyst formation of subzonal injection (SUZI) and WCICI using chemically enucleated rabbit oocytes as cytoplasm recipients, the rates in the WCICI group were higher than those in the SUZI group, but there was no statistically siginificant difference (p > 0.05) between the two methods. The microtubule structures of rabbit oocytes enucleated by chemicals and giant panda-rabbit embryos reconstructed by WCICI combined with chemical enucleation were normal. Therefore the present study suggests that WCICI combined with chemical enucleation can provide an efficient and less labor-intensive protocol of interspecies somatic cell nuclear transfer for producing giant panda cloned embryos.  相似文献   

12.
13.
New advances in somatic cell nuclear transfer: application in transgenesis   总被引:18,自引:0,他引:18  
The ability to produce live offspring by nuclear transfer from cultured somatic cells provides a route for the precise genetic manipulation of large animal species. Such modifications include the addition, or "knock-in", and the removal or inactivation, "knock-out", of genes or their control sequences. This paper will review some of the factors which affect the development of embryos produced by nuclear transfer, the advantages of using cultured cells as donors of genetic material, and methods that have been developed to enrich gene targeting frequency. Commercial applications of this technology in biomedicine and agriculture will also be addressed.  相似文献   

14.

Objective

To examine the effect of PCI-24781 (abexinostat) on the blastocyst formation rate in pig somatic cell nuclear transferred (SCNT) embryos and acetylation levels of the histone H3 lysine 9 and histone H4 lysine 12.

Results

Treatment with 0.5 nM PCI-24781 for 6 h significantly improved the development of cloned embryos, in comparison to the control group (25.3 vs. 10.5 %, P < 0.05). Furthermore, PCI-24781 treatment led to elevated acetylation of H3K9 and H4K12. TUNEL assay and Hoechst 33342 staining revealed that the percentage of apoptotic cells in blastocysts was significantly lower in PCI-24781-treated SCNT embryos than in untreated embryos. Also, PCI-24781-treated embryos were transferred into three surrogate sows, one of whom became pregnant and two fetuses developed.

Conclusion

PCI-24781 improves nuclear reprogramming and the developmental potential of pig SCNT embryos.
  相似文献   

15.
In this study, C57BL/6 adult male mouse ear fibroblast cells and Kunming mouse M2 oocytes were used as donors and recipients, respectively, to investigate the effect of passage number on donor cells and electrofusion times on the in vitro development of nuclear transfer (NT) embryos. The results demonstrated firstly that when the ear fibroblast cells from either 2-4, 5-7 or 8-10 passages were used as donors, respectively, to produce NT embryos, the number of passages undergone by the donor cells had no significant effect on the in vitro development of NT embryos. The developmental rates for morula/blastocyst were 15.2, 13.3 and 14.0%, respectively, which were not significantly difference (p>0.05). Secondly, when the NT embryos were electrofused, there was no significant difference between the fusion ratio for the first electrofusion and the second electrofusion (p>0.05). The developmental rates of the 2-cell and 4-cell stages that had undergone only one electrofusion, however, were significantly higher than those that had had two electrofusions (65.7% compared with 18.4% and 36.4% compared with 6.1%; p<0.01), furthermore the NT embryos with two electrofusions could not develop beyond the 4-cell stage. This study suggests that this protocol might be an alternative method for mouse somatic cloning, even though electrofusion can exert negative effects on the development of NT embryos.  相似文献   

16.
Our and other previous studies have shown that telophase enucleation is an efficient method for preparing recipient cytoplasts in nuclear transfer. Conventional methods of somatic cell nuclear transfer either by electro-fusion or direct nucleus injection have very low efficiency in animal somatic cell cloning. To simplify the manipulation procedure and increase the efficiency of somatic cell nuclear transfer, this study was designed to study in vitro and in vivo development of Asian yellow goat cloned embryos reconstructed by direct whole cell intracytoplasmic injection (WCICI) into in vitro matured oocytes enucleated at telophase II stage. Our results demonstrated that the rates of cleavage and blastocyst development of embryos reconstructed by WCICI were slightly higher than in conventional subzonal injection (SUZI) group, but no statistic difference (P > 0.05) existed between these two methods. However, the percentage of successful embryonic reconstruction in WCICI group was significantly higher than that in SUZI group (P < 0.05). After embryo transfer at 4-cell stage, the foster in both groups gave birth to offspring. Therefore, the present study suggests that the telophase ooplasm could properly reprogram the genome of somatic cells, produce Asian yellow goat cloned embryos and viable kids, and whole cell intracytoplasmic injection is an efficient protocol for goat somatic cell nuclear transfer.  相似文献   

17.
Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications.  相似文献   

18.
纪慧丽  卢晟盛  潘登科 《遗传》2014,36(12):1211-1218
体细胞核移植(Somatic cell nuclear transfer, SCNT)是指将高度分化的体细胞移入到去核的卵母细胞中发育并最终产生后代的技术。然而, 体细胞克隆的总体效率仍然处于一个较低的水平, 主要原因之一是由于体细胞供体核不完全的表观遗传重编程, 包括DNA甲基化、组蛋白乙酰化、基因组印记、X染色体失活和端粒长度等修饰出现的异常。使用一些小分子化合物以及Xist基因的敲除或敲低等方法能修复表观遗传修饰错误, 辅助供体核的重编程, 从而提高体细胞克隆效率, 使其更好地应用于基础研究和生产实践。文章对体细胞核移植后胚胎发育过程中出现的异常表观遗传修饰进行了综述, 并着重论述了近年来有关修复表观遗传错误的研究进展。  相似文献   

19.
Procedures to improve somatic cell nuclear transplantation in fish were evaluated. We reported effects of nonirradiated recipient eggs, inactivated recipient eggs, different combinations between recipient eggs and donor cells, duration of serum starvation, generation number, and passage number of donor cells on developmental rates of nuclear transplant (NT) embryos. Exposure to 25,000 R of gamma-rays inactivated recipient eggs. Single nucleus of cultured, synchronized somatic cell from gynogenetic bighead carp (Aristichthys nobilis) was transplanted into nonirradiated or genetically inactivated unfertilized egg of gibel carp (Carassius auratus gibelio). There was no significant difference in developmental rate between nonirradiated and inactivated recipient eggs (27.27% vs. 25.71%, respectively). Chromosome count showed that 70.59% of NT embryos contained 48 chromosomes. It showed that most NT embryos came from donor nuclei of bighead carp, which was supported by microsatellite analysis of NT embryos. But 23.53% of NT embryos contained more than 48 chromosomes. It was presumed that those superfluous chromosomes came from nonirradiated recipient eggs. Besides, 5.88% of NT embryos were chimeras. Eggs of blunt-snout bream (Megalobrama amblycephala) and gibel carp were better recipient eggs than those of loach (Misgurnus anguillicaudatus) (25% and 18.03% vs. 8.43%). Among different duration of serum starvation, developmental rate of NT embryos from somatic nuclei of three-day serum starvation was the highest, reaching 25.71% compared to 14.14% (control), 20% (five-day), and 21.95% (seven-day). Cultured donor cells of less passage facilitated reprogramming of NT embryos than those of more passage. Recloning might improve the developmental rate of NT embryos from the differentiated donor nuclei. Developmental rate of fourth generation was the highest (54.83%) and the lowest for first generation (14.14%) compared to second generation (38.96%) and third generation (53.01%).  相似文献   

20.
Systematic studies of cloned animals generated from adult somatic cell nuclei are critical in assessing the utility of somatic cell cloning in various applications, including the safety of food products from cloned animals and their offspring. Previously, we compared somatic cell derived cloned pigs with naturally bred control pigs on a series of physiological and genetic parameters. We have extended our studies to the F1 progeny of these clones to see whether these phenotypic differences are transmitted to the next generation. There were no differences in the average litter size between litters from cloned gilts and naturally bred controls (7.78 +/- 2.6 and 7.40 +/- 3.0, respectively; mean +/- SD) or in the degree of litter size variation (coefficients of variation of 33.4% and 40.5% for litters of clones and controls, respectively). Similarly there were no statistical differences between sex ratios of cloned litters (51-49%, M:F) and control litters (59-41%, M:F). Blood profiles between cloned pigs, control pigs, and their progeny were compared at two time points (i.e., 15 and 27 weeks) to quantify the effect of cloning on various blood parameters and their transmission to the next generation. Although the range of values for all traits overlapped between different classes, the variability between all the traits in F1 progeny of clones and the control pigs was similar at 15 and 27 weeks, with one exception. Combined, our data and previous results in mice strongly support the hypothesis that offspring of clones are similar to offspring of naturally bred animals, and as such there should not be any increased risks associated with consumption of products from these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号