首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Sudden mobilization of transposable elements in Drosophila is a well-reported phenomenon but one that usually affects no more than a few elements (one to four). We report here the existence of a D. simulans natural population (Canberra) from Australia, which had high copy numbers for various transposable elements (transposons, LTR retrotransposons and non-LTR retrotransposons). The impact of transposable elements on the host genome and populations is discussed.  相似文献   

2.
Horizontal (interspecific) transfer is regarded as a possible strategy for the propagation of transposable elements through evolutionary time. To date, however, conclusive evidence that transposable elements are capable of horizontal transfer from one species to another has been limited to class II or DNA-type elements. We tested the possibility of such transfer for several Drosophila melanogaster LTR retrotransposons of the gypsy group in an experiment in which D. melanogaster and D. virilis somatic cell lines were used as donor and recipient cells, respectively. This approach was chosen in light of the high levels of LTR retrotransposon amplification and expression observed in cultured D. melanogaster cells. In the course of the experiment, parallel analysis for mdg1, mdg3, 17.6, 297, 412 and B104/roo retrotransposons was performed to detect their presence in the genome of recipient cells. Only the mdg3 retrotransposon, which lacks an env gene, was found to be transmitted into recipient cells. This model, based on the use of cultured cells, is a promising system for further investigating the mechanisms of LTR retrotransposon transfer.  相似文献   

3.
Horizontal gene transfer, defined as the transmission of genetic material between reproductively isolated species, has been considered for a long time to be a rare phenomenon. Most well-documented cases of horizontal gene transfer have been described in prokaryotes or in animals and they often involve transposable elements. The most abundant class of transposable elements in plant genomes are the long terminal repeat (LTR) retrotransposons. Because of their propensity to increase their copy number while active, LTR retrotransposons can have a significant impact on genomics changes during evolution. In a previous study, we showed that in the wild rice species Oryza australiensis , 60% of the genome is composed of only three families of LTR retrotransposons named RIRE1 , Wallabi and Kangourou . In the present study, using both in silico and experimental approaches, we show that one of these three families, RIRE1 , has been transferred horizontally between O. australiensis and seven other reproductively isolated Oryza species. This constitutes a new case of horizontal transfer in plants.  相似文献   

4.
转座子是真核生物基因组的重要组成成分。为了研究家蚕Bombyx mori长末端重复序列 (long terminal repeat, LTR)逆转录转座子的分类及进化, 本研究采用de novo预测和同源性搜索相结合的方法, 在家蚕基因组中共鉴定出了38个LTR逆转录转座子家族, 序列长度占整个基因组的0.64%, 远小于先前预测的11.8%, 其中有6个家族为本研究的新发现。38个家族中, 26个家族有表达序列标签 (expression sequence tag, EST)证据, 表明这些家族具有潜在的活性。对有EST证据的6个家族和没有EST证据的5个家族用RT-PCR进行了组织表达谱实验, 结果表明这11个家族在一些组织中有表达, 这进一步证实了这些家族具有转录活性, 基于此我们推测家蚕中大部分的LTR逆转录转座子家族很可能具有潜在活性。对转座子的插入时间进行估计, 结果表明绝大部分元件都是最近1百万年内插入到家蚕基因组中的。我们还比较了黑腹果蝇Drosophila melanogaster、 冈比亚按蚊Anopheles gambiae和家蚕B. mori中Ty3/Gypsy超家族分支的差异, 结果表明不同枝在不同昆虫中有着不同的扩张。家蚕中LTR逆转录转座子的鉴定和系统分析有助于我们理解逆转录转座子在昆虫进化中的作用。  相似文献   

5.
Long terminal retrotransposons are major components of eukaryotic transposable elements. We have surveyed the long terminal repeats (LTR) retrotransposons of domesticated silkworm (Bombyx mori) by mining the data produced by Bombyx mori Genome Sequencing Project. At least 29 separate families of LTR retrotransposons are identified in this survey, comprising of 11.8% of the complete sequence. Families of domesticated silkworm LTR retrotransposons can be mainly classified into three groups: gypsy-like, copia-like, Pao-Bel. Fourteen families identified consist of gypsy-like elements, four families consist of copia-like elements and seven families consist of Pao-Bel elements. In addition to the three groups of LTR retrotransposons, two families of unusual non-coding elements are identified in the genome of this species. Further phylogenetic analysis of RT domain indicates that the elements of B.mori show high diversity and can form different clades in each group. An analysis of sequence variation from different families reveals distinct patterns of variation for the elements belonging to three groups. The analysis of the domesticated silkworm LTR retrotransposons should assist in our understanding of the roles of retroelement in lepidopteron insect genome evolution.  相似文献   

6.
How transposable elements evolve is a key facet in understanding of spontaneous mutation and genomic rearrangements in various organisms. One of the best ways to approach this question is to study a newly evolved transposable element whose presence is restricted to a specific population or strain. The retrotransposons ninja and aurora may provide insights into the process of their evolution, because of their contrasting characteristics, even though they show high sequence identity. The ninja retrotransposon was found in a Drosophila simulans strain in high copy number and is potent in transposition. On the other hand, aurora elements are distributed widely among the species belonging to the Drosophila melanogaster species complex, but are immobile at least in D. melanogaster. In order to distinguish the two closely resembled retrotransposons by molecular means, we determined and compared DNA sequence of the elements, and identified characteristic internal deletions and nucleotide substitutions in 5'-long terminal repeats (LTR). Analyses of the structure of ninja homologs and LTR sequences amplified from both genomic and cloned DNA revealed that the actively transposable ninja elements were present only in D. simulans strains, but inactive aurora elements exist in both D. melanogaster and D. simulans.  相似文献   

7.
Several authors have postulated that genetic divergence between populations could result in genomic incompatibilities that would cause an increase in transposition in their hybrids, producing secondary effects such as sterility and therefore starting a speciation process. It has been demonstrated that transposition largely depends on intraspecific hybridization for P, hobo, and I elements in Drosophila melanogaster and for several elements, including long terminal repeat (LTR) and non-LTR retrotransposons, in D. virilis. However, in order to demonstrate the putative effect of transposable elements on speciation, high levels of transposition should also be induced in hybrids between species that could have been originated by this process and that are still able to interbreed. To test this hypothesis, we studied the transposition of the LTR retrotransposon Osvaldo in Drosophila buzzatii-Drosophila koepferae hybrids. We used a simple and robust experimental design, analyzing large samples of single-pair mate offspring, which allowed us to detect new insertions by in situ hybridization to polytene chromosomes. In order to compare transposition rates, we also used a stock recently obtained from the field and a highly inbred D. buzzatii strain. Our results show that the transposition rate of Osvaldo is 10(-3) transpositions per element per generation in all nonhybrid samples, very high when compared with those of other transposable elements. In hybrids, the transposition rate was always 10(-2), significantly higher than in nonhybrids. We show that inbreeding has no effect on transposition in the strains used, concluding that hybridization significantly increases the Osvaldo transposition rate.  相似文献   

8.
There has been debate over the mechanisms that control the copy number of transposable elements in the genome of Drosophila melanogaster. Target sites in D. melanogaster populations are occupied at low frequencies, suggesting that there is some form of selection acting against transposable elements. Three main theories have been proposed to explain how selection acts against transposable elements: insertions of a copy of a transposable element are selected against; chromosomal rearrangements caused by ectopic exchange between element copies are selected against; or the process of transposition itself is selected against. The three theories give different predictions for the pattern of transposable element insertions in the chromosomes of D. melanogaster. We analysed the abundance of six LTR (long terminal repeat) retrotransposons on the X and fourth chromosomes of multiple strains of D. melanogaster, which we compare with the predictions of each theory. The data suggest that no one theory can account for the insertion patterns of all six retrotransposons. Comparing our results with earlier work using these transposable element families, we find a significant correlation between studies in the particular model of copy number regulation supported by the proportion of elements on the X for the different transposable element families. This suggests that different retrotransposon families are regulated by different mechanisms.  相似文献   

9.
Long terminal repeat (LTR) retrotransposons and endogenous retroviruses (ERVs) are transposable elements in eukaryotic genomes well suited for computational identification. De novo identification tools determine the position of potential LTR retrotransposon or ERV insertions in genomic sequences. For further analysis, it is desirable to obtain an annotation of the internal structure of such candidates. This article presents LTRdigest, a novel software tool for automated annotation of internal features of putative LTR retrotransposons. It uses local alignment and hidden Markov model-based algorithms to detect retrotransposon-associated protein domains as well as primer binding sites and polypurine tracts. As an example, we used LTRdigest results to identify 88 (near) full-length ERVs in the chromosome 4 sequence of Mus musculus, separating them from truncated insertions and other repeats. Furthermore, we propose a work flow for the use of LTRdigest in de novo LTR retrotransposon classification and perform an exemplary de novo analysis on the Drosophila melanogaster genome as a proof of concept. Using a new method solely based on the annotations generated by LTRdigest, 518 potential LTR retrotransposons were automatically assigned to 62 candidate groups. Representative sequences from 41 of these 62 groups were matched to reference sequences with >80% global sequence similarity.  相似文献   

10.
11.
Long terminal repeat (LTR) retrotransposons and DNA transposons are transposable elements (TEs) that perform cleavage and transfer at precise DNA positions. Here, we present statistical analyses of sequences found at the termini of precise TEs in the human genome. The results show that the terminal di- and trinucleotides of these TEs are highly conserved. 5′TG…CA3′ occurs most frequently at the termini of LTR retrotransposons, while 5′CAG…CTG3′ occurs most frequently in DNA transposons. Interestingly, these sequences are the most flexible base pair steps in DNA. Both the sequence preference and the degree of conservation of each position within the human LTR dinucleotide termini are remarkably similar to those experimentally demonstrated in transposable phage Mu. We discuss the significance of these observations and their implication for the function of terminal residues in the transposition of precise TEs.  相似文献   

12.
LTR retrotransposons are the most abundant transposable elements in Drosophila and are believed to have contributed significantly to genome evolution. Different reports have shown that many LTR retrotransposon families in Drosophila melanogaster emerged from recent evolutionary episodes of transpositional activity. To contribute to the knowledge of the evolutionary history of Drosophila LTR retrotransposons and the mechanisms that control their abundance, distribution and diversity, we conducted analyses of four related families of LTR retrotransposons, 297, 17.6, rover and Tom. Our results show that these elements seem to be restricted to species from the D. melanogaster group, except for 17.6, which is also present in D. virilis and D. mojavensis. Genetic divergences and phylogenetic analyses of a 1-kb fragment region of the pol gene illustrate that the evolutionary dynamics of Tom, 297, 17.6 and rover retrotransposons are similar in several aspects, such as low codon bias, the action of purifying selection and phylogenies that are incongruent with those of the host species. We found an extremely complex association among the retrotransposon sequences, indicating that different processes shaped the evolutionary history of these elements, and we detected a very high number of possible horizontal transfer events, corroborating the importance of lateral transmission in the evolution and maintenance of LTR retrotransposons.  相似文献   

13.
14.
We describe the current state of knowledge about transposable elements (TEs) in different mosquito species. DNA-based elements (class II elements), non-LTR retrotransposons (class I elements), and MITEs (Miniature Inverted Repeat Transposable Elements) are found in the three genera, Anopheles, Aedes and Culex, whereas LTR retrotransposons (class I elements) are found only in Anopheles and Aedes. Mosquitoes were the first insects in which MITEs were reported; they have several LTR retrotransposons belonging to the Pao family, which is distinct from the Gypsy-Ty3 and Copia-Ty1 families. The number of TE copies shows huge variations between classes of TEs within a given species (from 1 to 1000), in sharp contrast to Drosophila, which shows only relatively minor differences in copy number between elements (from 1 to 100). The genomes of these insects therefore display major differences in the amount of TEs and therefore in their structure and global composition. We emphasize the need for more population genetic data about the activity of TEs, their distribution over chromosomes and their frequencies in natural populations of mosquitoes, to further the current attempts to develop a transgenic mosquito unable to transmit malaria that is intended to replace the natural populations.  相似文献   

15.
LTR_STRUC: a novel search and identification program for LTR retrotransposons   总被引:10,自引:0,他引:10  
MOTIVATION: Long terminal repeat (LTR) retrotransposons constitute a substantial fraction of most eukaryotic genomes and are believed to have a significant impact on genome structure and function. Conventional methods used to search for LTR retrotransposons in genome databases are labor intensive. We present an efficient, reliable and automated method to identify and analyze members of this important class of transposable elements. RESULTS: We have developed a new data-mining program, LTR_STRUC (LTR retrotransposon structure program) which identifies and automatically analyzes LTR retrotransposons in genome databases by searching for structural features characteristic of such elements. LTR_STRUC has significant advantages over conventional search methods in the case of LTR retrotransposon families having low sequence homology to known queries or families with atypical structure (e.g. non-autonomous elements lacking canonical retroviral ORFs) and is thus a discovery tool that complements established methods. LTR_STRUC finds LTR retrotransposons using an algorithm that encompasses a number of tasks that would otherwise have to be initiated individually by the user. For each LTR retrotransposon found, LTR_STRUC automatically generates an analysis of a variety of structural features of biological interest. AVAILABILITY: The LTR_STRUC program is currently available as a console application free of charge to academic users from the authors.  相似文献   

16.
17.
Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (~3.5 Gb) and the well‐documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain‐containing Gypsy LTR retrotransposons (‘chromoviruses’), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole.  相似文献   

18.
蒋爽  滕元文  宗宇  蔡丹英 《西北植物学报》2013,33(11):2354-2360
反转录转座子是真核生物基因组中普遍存在的一类可移动的遗传因子,它们以RNA为媒介,在基因组中不断自我复制。在高等植物中,反转录转座子是基因组的重要成分之一。反转录转座子可以分为5大类型,其中以长末端重复(LTR)类型报道较多。LTR类型由于其首尾具有长末端重复序列,内部含有PBS、PPT、GAG和POL开放阅读框、TSD等结构,可以采用生物信息学软件进行预测。LTR反转录转座子的活性受到自身甲基化和环境因素的影响,DNA甲基化抑制反转录转座子转座,而外界环境的刺激能够激活转座子,从而影响插入位点周边基因的表达。同时由于LTR反转录转座子在植物中普遍存在,丰富的拷贝数以及多态性为新型分子标记(RBIP、SSAP、IRAP、REMAP)的开发提供了良好的素材。该文对近年来国内外有关植物反转录转座子的类型、结构特征、 LTR反转录转座子的活性及其影响因素、 LTR反转录转座子的预测以及标记开发等方面的研究进展进行综述。  相似文献   

19.
Duret L  Marais G  Biémont C 《Genetics》2000,156(4):1661-1669
We analyzed the distribution of transposable elements (TEs: transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of the nematode Caenorhabditis elegans. The density of transposons (DNA-based elements) along the chromosomes was found to be positively correlated with recombination rate, but this relationship was not observed for LTR or non-LTR retrotransposons (RNA-based elements). Gene (coding region) density is higher in regions of low recombination rate. However, the lower TE density in these regions is not due to the counterselection of TE insertions within exons since the same positive correlation between TE density and recombination rate was found in noncoding regions (both in introns and intergenic DNA). These data are not compatible with a global model of selection acting against TE insertions, for which an accumulation of elements in regions of reduced recombination is expected. We also found no evidence for a stronger selection against TE insertions on the X chromosome compared to the autosomes. The difference in distribution of the DNA and RNA-based elements along the chromosomes in relation to recombination rate can be explained by differences in the transposition processes.  相似文献   

20.
The sex chromosomes of the silkworm Bombyx mori are designated ZW(XY) for females and ZZ (XX) for males. Numerous long terminal repeat (LTR) and non-LTR retrotransposons, retroposons and DNA transposons have accumulated as strata on the W chromosome. However, there are nucleotide sequences that do not show the characteristics of typical transposable elements on the W chromosome. To analyse these uncharacterized nucleotide sequences on the W chromosome, we used whole-genome shotgun (WGS) data and assembled data that was obtained using male genome DNA. Through these analyses, we found that almost all of these uncharacterized sequences were non-autonomous transposable elements that do not fit into the conventional classification. It is notable that some of these transposable elements contained the Bombyx short interspersed element (Bm1) sequences in the elements. We designated them as secondary-Bm1 transposable elements (SBTEs). Because putative ancestral SBTE nucleotide sequences without Bm1 do not occur in the WGS data, we suggest that the Bm1 sequences of SBTEs are not carried on each element merely as a package but are components of each element. Therefore, we confirmed that SBTEs should be classified as a new group of transposable elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号