首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

2.
Two studies were conducted to determine the changes in gonadotropin secretion associated with growth and development of the largest follicle and the ability of the largest ovarian follicle present on Day 5 following estrus to ovulate if luteal regression is induced. In both studies, cows received either saline (i.m.) or prostaglandin F(2)alpha (PGF(2)alpha; 25 mg i.m.) on the fifth day post estrus. Frequency of LH pulses declined (P<0.01) with increasing day of cycle, while pulse amplitude and duration increased (P<0.05) in saline-treated cows. In PGF(2)alpha-treated cows, LH remained as high frequency-low amplitude pulses. Secretory patterns of FSH were similar between the two groups. In Experiment 2, the largest ovarian follicle present was marked around its periphery with sub-epithelial injections of charcoal. In saline-treated cows, the size of the charcoal marked follicles generally decreased, indicating atresia. A corpus luteum was present within the area of a previously marked follicle in three PGF(2)alpha-treated cows. The size of the marked follicles either decreased or increased in the remaining PGF(2)alpha-treated cows, with ovulation occurring at a different site. In summary, PGF(2)alpha-induced luteal regression on the fifth day of estrus subsequently alters the frequency, amplitude and duration of LH pulses, but not FSH pulses, and the largest follicle present on Day 5 either increases or decreases in size or ovulates when PGF(2)alpha is given on Day 5 following estrus.  相似文献   

3.
We have shown that 4 ng luteinizing hormone releasing hormone (LHRH) pulses induced significantly greater luteinizing hormone (LH) release from proestrous rat superfused anterior pituitary cells with no cycle related differences in follicle stimulating hormone (FSH). Current studies gave 8 ng LHRH in various pulse regimens to study amplitude, duration and frequency effects on LH and FSH secretion from estrous 0800, proestrous 1500 and proestrous 1900 cells. Regimen 1 gave 8 ng LHRH as a single bolus once/h; regimen 2 divided the 8 ng into 3 equal 'minipulses' given at 4 min intervals to extend duration; regimen 3 gave the 3 'minipulses' at 10 min intervals, thereby further extending duration: regimen 4 was the same as regimen 2, except that the 3 'minipulses' were given at a pulse frequency of 2 h rather than 1 h. In experiment 1, all four regimens were employed at proestrus 1900. FSH was significantly elevated by all 8 ng regimens as compared to 4 ng pulses; further, 8 ng divided into 3 equal 'minipulses' separated by 4 min at 1 and 3 h frequencies (regimens 2 and 4) resulted in FSH secretion that was significantly greater than with either a single 8 ng bolus (regimen 1) or when the 'minipulses' were separated by 10 min (regimen 3). In experiment 2, at proestrus 1500, FSH response to the second pulse of regimen 4 was significantly greater than in regimen 2; LH release was significantly suppressed at pulse 2 compared to regimen 2 accentuating divergent FSH secretion. At estrus 0800, FSH response to the second pulse of regimen 4 was significantly stimulated FSH at proestrus 1900, 1500 and estrus 0800, FSH divergence was most marked at proestrus 1500. These data indicate a potential role for hypothalamic LHRH secretory pattern in inducing divergent gonadotropin secretion in the rat.  相似文献   

4.
T A Kellom  J L O'Conner 《Steroids》1991,56(5):284-290
The effects of luteinizing hormone releasing hormone (LHRH) pulse amplitude, duration, and frequency on divergent gonadotropin secretion were examined using superfused anterior pituitary cells from selected stages of the rat estrous cycle. Cells were stimulated with one of five LHRH regimens. With low-amplitude LHRH pulses (regimen 1) in the presence of potentially estrogenic phenol red, LH response in pituitary cells from proestrus 1900, estrus 0800, and diestrus 1,0800 were all significantly larger (P less than 0.05) than the other stages tested. In the absence of phenol red, responsiveness at proestrus 1900 was significantly larger than proestrus 0800, proestrus 1500, and estrus 0800 (P less than 0.01, 0.05, and 0.05, respectively); other cycle stages tested were smaller. No significant differences were observed between cycle stages for follicle-stimulating hormone (FSH) secretion in the presence or absence of phenol red. Because pituitary cells at proestrus 1900 were the most responsive to low-amplitude 4 ng LHRH pulses, they were also used to study the effects of LHRH pulses of increased amplitude or duration and decreased frequency. Increasing the amplitude (regimen 2) or the duration (regimens 3 to 5) increased FSH secretion; this effect was greatest with regimens 3 and 5. When regimens 3 and 5 were studied in pituitary cells obtained at proestrus 1500, FSH was significantly increased by both regimes, but most by regimen 5; furthermore, LH release was significantly reduced. When regimens 3 and 5 were studied in pituitary cells obtained at estrus 0800, FSH release was elevated most significantly by regimen 5. Thus, variations in LHRH pulse regimen were found to be capable of inducing significant divergence in FSH release from superfused anterior pituitary cells derived from specific stages of the estrous cycle.  相似文献   

5.
A single injection of estradiol valerate (EV) induces, after a lag period of 4-6 wk, a chronic anovulatory polycystic ovarian (PCO) condition in adult rats. This condition is associated with a selective compromise of luteinizing hormone (LH) release and/or synthesis reflected in low basal serum LH concentrations, decreased pituitary content of LH, and decreased gonadotropin-releasing hormone (GnRH)-stimulated LH secretion. The present study was undertaken to determine to what extent the aberrant LH release in rats with PCO could be related to alterations in pituitary content of GnRH receptors. Pituitary GnRH-receptor content was assessed by the evaluation of saturation binding of a GnRH analog, [125I]-D-Ala6-des-Gly10-GnRH, to pituitary membrane preparations. The receptor content of pituitaries from rats with PCO was compared to that obtained from intact animals at estrus and diestrus. Receptor levels in ovariectomized normal rats and rats with PCO were also assessed. The pituitary GnRH receptor content in PCO rats was similar to that observed in normal controls at estrus and was significantly lower than that for rats at diestrus. Although a twofold increase in pituitary GnRH receptor content was observed at 28 days following the castration of control rats, GnRH receptor content in the pituitaries of PCO rats, at 28 days following ovariectomy, remained unchanged. Although, castration-induced elevations in mean serum LH and follicle-stimulating hormone (FSH) concentrations were observed in both the PCO and control animals, the rise in both gonadotropins was significantly attenuated in the PCO-castrates when compared to the ovariectomized controls. Since GnRH is a major factor in the regulation of pituitary GnRH receptor content, these findings suggest that hypothalamic GnRH release is impaired in rats with PCO and that this impairment is independent of any influences from the polycystic ovaries.  相似文献   

6.
This experiment concerned the changing patterns in secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and growth hormone (GH) under conditions of food restriction and subsequent catch-up growth. Weanling male rats were given either restricted (4 g food/day) or unrestricted access to food until 60 days of age. At this age, food-restricted rats weighed only 25% as much as rats fed ad libitum. Food restriction resulted in a dramatic decrease in the frequency of LH and GH pulses, and in the amplitude of GH pulses. It also slightly but significantly decreased mean blood levels of FSH (which was not secreted in a pulsatile manner in 60-day-old controls fed ad libitum). When restricted rats were given unrestricted access to food, frequency of LH and GH pulses and mean levels of FSH increased significantly and simultaneously within 2 days in half of the animals. Only an additional 8-10% of their body weight decrement was recovered at this time. After 10 days of food restoration, when restricted rats still weighed 50% less than controls, their secretory patterns of all three hormones were not significantly different from those of controls. Thus, recovery of gonadotropin and GH secretion was relatively rapid. Except for the quantitatively lesser impact of food restriction on FSH secretion, there was no evidence of any priorities in the secretion of the three hormones. Under conditions of rapid catch-up growth, the secretory patterns of LH, FSH, and GH appeared to develop simultaneously.  相似文献   

7.
Consecutive daily plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol-17 beta (E2), progesterone (P4) and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OHP) were monitored in estrous rabbits and in these same doses during pseudopregnancy (PSP); these daily hormone levels, as well as the immediate post-coital changes in gonadotropin secretion, were similar to those in previous reports. To examine the pulsatile patterns of the gonadotropins and ovarian steroids, sequential, 10-min plasma samples were collected for 6 h from estrous does and on Days 3, 10, and 17 of PSP. All five hormones were measured in the serial samples from estrous and PSP Day 10 does; LH and FSH only were assayed in the remaining sequential samples. The amplitude and frequency of FSH pulses did not differ between any of these stages. In marked contrast, LH pulse amplitudes, and even pulse frequencies in Day 17 does, were profoundly increased during PSP above those in estrous does. Progestin secretions, both P4 and 20 alpha-OHP, also were sharply elevated in PSP Day 10 does as compared with those in estrous rabbits; the pulse amplitudes of both progestins were severalfold higher during PSP. P4 pulse frequencies were also increased at this time. Conversely, the parameters of E2 secretion did not differ between estrous and PSP Day 10 animals. In PSP Day 10 does, high amplitude pulses of both P4 and 20 alpha-OHP occurred simultaneously with high amplitude LH pulses. Simultaneous E2 and P4 pulses were evident in these same sequential plasma samples, and this E2-P4 pulse association was greater than that of 20 alpha-OHP pulses with E2 pulses. Our findings failed to identify conclusively the trophic stimulus for the progestin pulse patterns, but the mechanism may involve the coordinated action of LH and E2. The results do demonstrate that each gonadotropin and ovarian steroid is secreted in a pulsatile manner in both estrous and pseudopregnant rabbits. There are altered profiles in LH and progestin pulses, without major changes in FSH and E2 patterns, between the stages of estrus and PSP. The causes and consequences of these divergent endocrine shifts cannot be deduced from these data.  相似文献   

8.
A chronic anovulatory polycystic ovarian (PCO) condition can be induced in rats with estradiol valerate (EV). We have previously shown that the early stages (8-10 wk after EV treatment) of the condition are characterized by low basal plasma luteinizing hormone (LH) and estradiol concentrations, as well as poor LH responsiveness to LH-releasing hormone (LHRH). These observations suggested that alterations in pituitary LH secretory activity may be involved in induction and maintenance of the PCO condition. In order to examine this possibility we have measured basal plasma LH and follicle-stimulating hormone (FSH) concentrations at various times (6, 15, 20 and 22 wk) after treatment with EV. AT 22 wk animals were subjected to a double LHRH pulse or equivalent treatment with saline. Basal plasma LH concentrations in EV-treated animals doubled between 6 and 22 wk. Despite this sharp increase, basal plasma LH concentrations at 22 wk were still significantly lower in EV-treated animals compared to proestrous controls. Basal FSH in EV-treated animals, remained in the proestrous range throughout the 22-wk period. Pituitary FSH and LH secretions in response to the LHRH challenge were significantly greater in EV-treated animals compared to proestrous controls. Plasma estradiol was significantly greater at 22 wk post-EV treatment than at 9 wk and this difference was reflected in the histology of the endometrium. These results indicate that a PCO condition is compatible with radical alterations in basal LH, and responsiveness to LHRH. Thus, aberrations in the ability to secrete LH do not appear to be causal in maintaining the condition.  相似文献   

9.
Neonatal allylestrenol treatment administered to female rats significantly increases the duration of estrus phase in the sexual cycle. Treatment with follicle stimulating hormone (FSH) + luteinizing hormone (LH) in adulthood prolongs the duration of estrus even on its own; the effect, however, is more pronounced in those animals who were treated (imprinted) with allylestrenol neonatally. When administered to the control animals, the chemically related thyreotrop hormone (TSH) is either indifferent or it even decreases the estrus index. In animals having received neonatal allylestrenol treatment, however, TSH administration increases significantly the duration of the estrus phase. Either with or without FSH+LH treatment, the ratio of estrogenic to gestagenic phase increases following neonatal allylestrenol treatment. The experiments call attention to the potential functional risks inherent in neonatal allylestrenol treatment. The actual risks, however, seem to be smaller than the effects seen at the receptor level.  相似文献   

10.
Gonadotropin pulsatile secretion in girls with premature menarche   总被引:1,自引:0,他引:1  
Five prepubertal girls (2.3-8.1 years old) were studied for isolated or recurrent vaginal bleeding in the absence of other signs of precocious puberty (premature menarche). Four of these girls with recurrent vaginal bleeding were studied for pulsatile gonadotropin secretory patterns. During sleep 3 girls showed luteinizing hormone (LH) pulses with low amplitude and a pubertal pattern of frequency whereas follicle-stimulating hormone (FSH) increased without demonstrable episodic secretion. Luteinizing hormone-releasing hormone (LHRH) tests demonstrated that FSH responses are greater than the LH responses, as in prepuberty. In 3 cases estradiol levels had augmented above normal prepubertal range. The menses spontaneously stopped during the follow-up. A reevaluation of the gonadotropin pattern, having the menses stopped for 6 months, in one of the girls with pulsatile LH secretion showed an apulsatile prepubertal LH pattern. Also estradiol levels returned to prepubertal range. A follow-up of 10-66 months of these patients did not show any growth and bone acceleration or signs of precocious puberty. Our data suggest that in premature menarche a partial and transient activation of hypothalamo-pituitary axis could be present. Premature menarche seems to be a benign and self-limiting condition and one of the girls had a normal onset of puberty during follow-up.  相似文献   

11.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

12.
The aim of this study was to investigate the effect of medroxyprogesterone acetate (MPA) on pulsatile secretion of gonadotropins in the bitch. Five intact Beagle bitches were treated with MPA in a dose of 10mg/kg body weight subcutaneously at intervals of 4 weeks for a total of 13 injections, starting during anestrus. The 6-h plasma profiles of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were determined before, and 3, 6, 9, and 12 months after the start of MPA treatment. After 6 months of MPA treatment basal plasma LH concentration was transiently increased significantly. Basal plasma FSH concentration and the area under the curve above the zero level (AUC0) for FSH were significantly higher after 3 months of MPA treatment than before or after 9 and 12 months of treatment. MPA treatment did not significantly affect pulse frequency, pulse amplitude, or AUC above the baseline for either LH or FSH. During treatment 58 significant LH pulses were identified, and although each LH pulse coincided with an increase in plasma FSH concentration, in 17 cases the amplitude of the increase was too small to be recognized as a significant FSH pulse. In conclusion, MPA treatment did not suppress basal plasma gonadotropin levels in the bitches. On the contrary, it caused a temporary rise in the basal concentration of both FSH and LH, which may have been due to a direct effect of MPA on the ovary. In addition, several LH pulses were not accompanied by a significant FSH pulse, suggesting that MPA treatment attenuated the pulsatile pituitary release of FSH.  相似文献   

13.
The post-partum secretion of LH, FSH and prolactin was monitored in 15 suckling and 6 non-suckling Préalpes du Sud ewes lambing during the breeding season by measuring plasma hormone concentrations daily at 6-h intervals and also weekly at 20-min intervals for 6 h from parturition to resumption of regular cyclic ovarian activity. There was a constant phenomenon in the resumption of normal patterns of FSH and LH secretion: there was a rise in FSH values culminating on average on Day 4 post partum and returning subsequently to values observed during the oestrous cycle, and concurrently an increase in the frequency and amplitude of LH pulses more progressive in suckling than in non-suckling ewes which led to an elevation of LH mean concentrations and occurrence of an LH surge. Since neither the FSH secretory pattern nor FSH mean values differed between suckling and non-suckling ewes, the results suggested that LH pulsatile pattern was a major limiting factor for the resumption of normal oestrous cycles. Before regular oestrous cycles resumed other changes in preovulatory LH surges also occurred: (i) they increased in duration and probably in amplitude; (ii) they were preceded by an acceleration in LH pulse frequency and a large decrease in FSH values as in normal cyclic ewes; and (iii) at least in non-suckling ewes they occurred concurrently with a prolactin surge.  相似文献   

14.
A single injection of estradiol valerate (EV) to adult female rats induces a persistent anovulatory polycystic ovarian (PCO) condition. During the 8-20-wk interval following EV treatment, this condition is associated with a selective compromise of LH release, decreased pituitary content of LH, and decreased GnRH-stimulated LH secretion. A marked increase in mean plasma concentrations of LH and enhanced LH response to GnRH occur after 20 wk post-EV treatment. Despite this apparent improvement, the PCO condition remains unchanged. The present study was undertaken to elucidate the underlying causes for these spontaneous improvements in LH parameters. We reasoned that these changes may be the result of alterations in 1) pituitary GnRH receptor levels; or 2) the mode of LH secretion, i.e. GnRH-dependent versus GnRH-independent; or 3) post-GnRH receptor events. Hence, we assessed pituitary GnRH receptor concentration as well as the pituitary content of LH and FSH in rats with PCO of 9 wk and 22 wk duration. To examine the possibility of a change in the mode of LH secretion, we examined the effects of in vivo suppression of LH secretion by treatment with a GnRH antagonist [N-Ac-D-Nal1, D-Phe2,3, D-Arg6, Phe7, D-Ala10]-GnRH (GnRH-ANTAG) in the same groups of animals. Mean pituitary weights were greater in the 9-wk-PCO than in the 22-wk-PCO animals. The pituitary concentration of GnRH receptors (on either a weight or milligram pituitary-membrane protein basis) was similar in the 9-wk- and 22-wk-PCO animals. Pituitary LH and FSH contents, however, were significantly higher (5-fold and 2-fold, respectively) in 22-wk-PCO rats compared to the 9-wk-PCO animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Kisspeptins have emerged as potent elicitors of gonadotropin secretion and, therefore, putative targets for pharmacological intervention. In this context, desensitization of gonadotropin responses to continuous administration of kisspeptins has begun to be characterized, but information so far available is mostly restricted to LH responses in males, whereas the similar phenomenon in females, of obvious therapeutic interest, remains virtually unexplored. We report herein LH and FSH responses to continuous intracerebral administration of kisspeptin in female rats at different developmental and metabolic states. Infusion of kisspeptin-10 to adult female rats induced a transient elevation in serum LH concentrations, followed by a precipitous drop and normalization of LH levels thereafter. Elevation of LH after kisspeptin infusion was prolonged in underfed animals; a phenomenon mimicked by leptin administration. Conversely, FSH levels were persistently heightened along continuous kisspeptin infusion, but duration of this response was shortened by undernutrition. In pubertal females, LH and FSH levels remained elevated at the end of a 7-day infusion of kisspeptin; responses whose magnitude was augmented by subnutrition but not mimicked by leptin. In all settings, terminal gonadotropin-releasing hormone responses were fully preserved, suggesting that eventual desensitization must occur upstream from the pituitary. In summary, our current data document the pharmacological consequences of continuous administration of kisspeptin to female rats, with remarkable differences being detected between LH and FSH responses, in different developmental and metabolic states. These observations of potential pharmacological interest might help also to delineate the physiological roles of kisspeptins in the dynamic regulation of gonadotropin secretion in the female.  相似文献   

16.
A wide range of experimental manipulations results in an anovulatory polycystic ovarian (PCO) condition in the rat. Although PCO has been studied in a number of these models, research has centered on the condition after it is well established rather than as it develops. Consequently, it is still not clear exactly what follicular cysts are or how and why they form. Therefore, we studied the development of PCO in rats treated with estradiol-valerate (EV). In this model, definitive cysts were present 8-9 wk after a single injection of EV. Animals were killed at 5, 11, 16, 21, 28 and 56 days after EV treatment. Serum was assayed for luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Ovaries were weighed and prepared for histologic examination. The ovaries were serially sectioned such that the number and size distribution of normal and atretic follicles could be assessed quantitatively. Oviducts were examined for the presence of ova. Immediately after EV treatment, ovulatory cycles ceased; by 16-20 days posttreatment, all animals exhibited persistent vaginal cornification. Basal concentrations of serum LH and FSH fell to a nadir at 11 days posttreatment, after which both gonadotropins exhibited a trend toward recovery. Within the first 28 days after treatment, ovarian weights declined significantly as did the total number of healthy follicles. Atretic follicles of all sizes were particularly numerous at 16 days. By 28 days, the decline in the number of healthy follicles reached a plateau. Numerous atretic, large secondary follicles were particularly prominent on the background of the decreasing number of normal follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Excitatory amino acids (EAAs) can potently modulate gonadotropin secretion in the male rat and monkey. In the present study we examined of EAAs on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the female rat under low estrogen (ovariectomized) and high estrogen (proestrus) backgrounds. In ovariectomized immature female rats (NMDA) inhibited LH but not FSH secretion at 30 min post-injection. In contrast, NMDA potently stimulated LH but not FSH secretion when administered on proestrus to adult female rats. Both glutamate and kainate were also found to stimulate LH but not FSH secretion in estrogen-treated ovariectomized immature rats. This study suggests that EAA neurotransmission may be an important component in the expression of gonadotropin surges and that EAA effects appear to be subject to gonadal steroid regulation.  相似文献   

18.
The hormonal interactions required for the generation of a secondary surge of FSH on the evening of proestrus have not been clearly defined. The role of GnRH in driving a surge of FSH has been questioned by findings in previous studies. In the current study, gonadotropin secretion was measured from pituitary fragments obtained from rats at 0900 and 2400 h on each day of the estrous cycle. Pituitary fragments were perifused in basal (unstimulated) conditions or in the presence of GnRH pulses to determine whether a selective increase in basal release of FSH and/or an increase in the responsiveness to GnRH occurs during the secondary FSH surge. Each anterior pituitary was cut into eighths and placed into a microchamber for perifusion. Seven pulses of GnRH (peak amplitude = 50 ng/ml; duration = approximately 2 min) were administered at a rate of one per hour starting at 30 min. Fractions of perfusate were collected every 5 min and frozen until RIA for LH and FSH. The mean total amount of LH or FSH secreted during the hour interval following each of the last six pulses of GnRH (or the corresponding basal hour) was calculated. Analysis of variance with repeated measures indicated that the evening secretion of LH on proestrus (2400 h) dropped significantly (p less than 0.05) from a maximum on the morning of proestrus (0900 h), whereas the FSH secretion remained elevated at this time. Therefore, the ratio of FSH to LH secreted in response to GnRH pulses was highest during the secondary FSH surge and lowest on the morning of proestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A study was conducted to identify relationships between serum sex steroid concentrations and release of gonadotropins in dairy cows with ovarian cysts. Cows with ovarian cysts were grouped according to sex steroid profiles as being under estrogenic (n = 6) or low steroid (n = 6) influence. All cows were submitted to a sampling and treatment protocol to 1) record basal pulsatile release of gonadotropins and 2) determine whether luteinizing hormone (LH) or follicle stimulating hormone (FSH) was released after sequential administration of exogenous estradiol and gonadotropin releasing hormone (GnRH) treatments were given 30 h apart. Basal LH was higher in the estrogen-influence group (P < 0.05). There were no differences between groups in basal FSH concentrations or frequency and amplitude of pulsatile LH or FSH release. Only one of the twelve cows, an individual from the low steroid group, had a preovulatory-like surge of gonadotropins after exogenous estradiol. All cows released LH and FSH in response to GnRH treatment, with no differences between groups. These results show that 1) there is considerable variation in pulsatile release of gonadotropins in cows with ovarian cysts, even among individuals with similar sex steroid profiles, and 2) suggest that a factor in the persistence, and perhaps initiation, of the cystic condition is refractoriness to the positive feedback effect of estradiol on gonadotropin release.  相似文献   

20.
The objective of this experiment was to characterise temporal changes in estradiol and pulsatile secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH) during the interval between weaning and estrus in the sow. Five multiparous sows were sampled at 10-min intervals for 3 h beginning 8 h after weaning and continuing every 12 h until estrus. Interval to estrus was 102 ± 2 h (range 96–108) after litters were weaned, and interval to preovulatory LH and FSH surges was 109 ± 5 h (range 92–116). With the exception of the period of the preovulatory surge, neither average nor basal concentrations of LH or FSH changed over time. Number of LH peaks per 3 h reached a maximum of 2.8 at 48 h before the preovulatory surge, then declined to 0.8 at 12 h before the surge. Peak amplitude for LH and peak frequency and amplitude for FSH also declined with time before preovulatory surges. Relative ranks were computed for individual sows based on the mean concentration of LH or FSH for each bleeding period. Rankings were consistent over the periods, but were not correlated with interval to estrus. Estradiol concentrations peaked (88 ± 7 pg/ml) at 36 h before preovulatory surges, coincident with the decline in peak frequency of LH. We conclude that pulsatile secretion of LH and FSH changes during the interval between weaning and estrus but secretion of these two hormones may be controlled by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号