首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular aging is accompanied by alterations in gene expression patterns. Here, using two models of replicative senescence, we describe the influence of the RNA-binding protein HuR in regulating the expression of several genes whose expression decreases during senescence. We demonstrate that HuR levels, HuR binding to target mRNAs encoding proliferative genes, and the half-lives of such mRNAs are lower in senescent cells. Importantly, overexpression of HuR in senescent cells restored a "younger" phenotype, while a reduction in HuR expression accentuated the senescent phenotype. Our studies highlight a critical role for HuR during the process of replicative senescence.  相似文献   

2.
3.
Senescence-associated beta-galactosidase is lysosomal beta-galactosidase   总被引:1,自引:0,他引:1  
Replicative senescence limits the proliferation of somatic cells passaged in culture and may reflect cellular aging in vivo. The most widely used biomarker for senescent and aging cells is senescence-associated beta-galactosidase (SA-beta-gal), which is defined as beta-galactosidase activity detectable at pH 6.0 in senescent cells, but the origin of SA-beta-gal and its cellular roles in senescence are not known. We demonstrate here that SA-beta-gal activity is expressed from GLB1, the gene encoding lysosomal beta-D-galactosidase, the activity of which is typically measured at acidic pH 4.5. Fibroblasts from patients with autosomal recessive G(M1)-gangliosidosis, which have defective lysosomal beta-galactosidase, did not express SA-beta-gal at late passages even though they underwent replicative senescence. In addition, late passage normal fibroblasts expressing small-hairpin interfering RNA that depleted GLB1 mRNA underwent senescence but failed to express SA-beta-gal. GLB1 mRNA depletion also prevented expression of SA-beta-gal activity in HeLa cervical carcinoma cells induced to enter a senescent state by repression of their endogenous human papillomavirus E7 oncogene. SA-beta-gal induction during senescence was due at least in part to increased expression of the lysosomal beta-galactosidase protein. These results also indicate that SA-beta-gal is not required for senescence.  相似文献   

4.
In cell senescence, cultured cells cease proliferating and acquire aberrant gene expression patterns. MicroRNAs (miRNAs) modulate gene expression through translational repression or mRNA degradation and have been implicated in senescence. We used deep sequencing to carry out a comprehensive survey of miRNA expression and involvement in cell senescence. Informatic analysis of small RNA sequence datasets from young and senescent IMR90 human fibroblasts identifies many miRNAs that are regulated (either up or down) with cell senescence. Comparison with mRNA expression profiles reveals potential mRNA targets of these senescence-regulated miRNAs. The target mRNAs are enriched for genes involved in biological processes associated with cell senescence. This result greatly extends existing information on the role of miRNAs in cell senescence and is consistent with miRNAs having a causal role in the process.  相似文献   

5.
6.
In mammalian cells, microRNAs regulate the expression of target mRNAs generally by reducing their stability and/or translation, and thereby control diverse cellular processes such as senescence. We recently reported the differential abundance of microRNAs in young (early-passage, proliferating) relative to senescent (late-passage, non-proliferating) WI-38 human diploid fibroblasts. Here we report that the levels of the vast majority of mRNAs were unaltered in senescent compared to young WI-38 cells, while overall mRNA translation was potently reduced in senescent cells. Downregulation of Dicer or Drosha, two major enzymes in microRNA biogenesis, lowered microRNA levels, but, unexpectedly, it also reduced global translation. While a reduction in Dicer levels markedly enhanced cellular senescence, reduction of Drosha levels did not, suggesting that the Drosha/Dicer effects on translation may be independent of senescence, and further suggesting that microRNAs may directly or indirectly enhance mRNA translation in WI-38 cells. We discuss possible scenarios through which Dicer/Drosha/microRNAs could enhance translation.  相似文献   

7.
8.
Microarray analysis of replicative senescence.   总被引:33,自引:0,他引:33  
BACKGROUND: Limited replicative capacity is a defining characteristic of most normal human cells and culminates in senescence, an arrested state in which cells remain viable but display an altered pattern of gene and protein expression. To survey widely the alterations in gene expression, we have developed a DNA microarray analysis system that contains genes previously reported to be involved in aging, as well as those involved in many of the major biochemical signaling pathways. RESULTS: Senescence-associated gene expression was assessed in three cell types: dermal fibroblasts, retinal pigment epithelial cells, and vascular endothelial cells. Fibroblasts demonstrated a strong inflammatory-type response, but shared limited overlap in senescent gene expression patterns with the other two cell types. The characteristics of the senescence response were highly cell-type specific. A comparison of early- and late-passage cells stimulated with serum showed specific deficits in the early and mid G1 response of senescent cells. Several genes that are constitutively overexpressed in senescent fibroblasts are regulated during the cell cycle in early-passage cells, suggesting that senescent cells are locked in an activated state that mimics the early remodeling phase of wound repair. CONCLUSIONS: Replicative senescence triggers mRNA expression patterns that vary widely and cell lineage strongly influences these patterns. In fibroblasts, the senescent state mimics inflammatory wound repair processes and, as such, senescent cells may contribute to chronic wound pathologies.  相似文献   

9.
10.
11.
Lamin B1 loss is a senescence-associated biomarker   总被引:1,自引:0,他引:1  
Cellular senescence is a potent tumor-suppressive mechanism that arrests cell proliferation and has been linked to aging. However, studies of senescence have been impeded by the lack of simple, exclusive biomarkers of the senescent state. Senescent cells develop characteristic morphological changes, which include enlarged and often irregular nuclei and chromatin reorganization. Because alterations to the nuclear lamina can affect both nuclear morphology and gene expression, we examined the nuclear lamina of senescent cells. We show here than lamin B1 is lost from primary human and murine cell strains when they are induced to senesce by DNA damage, replicative exhaustion, or oncogene expression. Lamin B1 loss did not depend on the p38 mitogen-activated protein kinase, nuclear factor-κB, ataxia telangiectasia-mutated kinase, or reactive oxygen species signaling pathways, which are positive regulators of senescent phenotypes. However, activation of either the p53 or pRB tumor suppressor pathway was sufficient to induce lamin B1 loss. Lamin B1 declined at the mRNA level via a decrease in mRNA stability rather than by the caspase-mediated degradation seen during apoptosis. Last, lamin B1 protein and mRNA declined in mouse tissue after senescence was induced by irradiation. Our findings suggest that lamin B1 loss can serve as biomarker of senescence both in culture and in vivo.  相似文献   

12.
13.
The hic-5 gene encodes a novel protein with Zn finger-like (LIM) motifs, the expression of which increases during cellular senescence. The ectopic expression of hic-5 in nontumorigenic immortalized human fibroblasts, whose expression levels of hic-5 were significantly reduced in comparison with those of mortal cells, decreased colony-forming efficiency. Stable clones expressing high levels of hic-5 mRNA showed higher levels of mRNAs for several extracellular matrix-related proteins, along with the alteration of an alternative splicing as seen in senescent cells and decreased c-fos inducibility. Furthermore, these clones acquired a senescence-like phenotype, such as growth retardation; senescence-like morphology; and increased expression of Cip1/WAF1/sdi1 after 20 to 40 population doublings. On the other hand, antisense RNA expression of hic-5 in human normal diploid fibroblasts delayed the senescence process. HIC-5 was localized in nuclei and had affinity for DNA. Based on these observations, we speculated that HIC-5 affected the expression of senescence-related genes through interacting with DNA and thereby induced the senescence-like phenotypes. To our knowledge, hic-5 is the first single gene that could induce senescence-like phenotypes in a certain type of immortalized human cell and mediate the normal process of senescence.  相似文献   

14.
为研究人胸苷激酶 (humanthymidinekinase ,hTK)基因在复制衰老细胞及早衰细胞中表达下调的分子机制 ,构建了含hTK启动子的荧光素酶报告基因载体 .转染结果显示 ,复制衰老细胞与早衰细胞中hTK启动子的转录活性比年轻细胞中下降了近 3倍 ,表明转录水平的调控是hTK在衰老细胞中表达下降的主要调控机制 .定点突变的结果显示 ,转录因子Sp1、NF Y结合位点的突变可使hTK启动子活性降低近 5 0 % ,而E2F结合位点的突变可使其活性升高 2倍多 ,提示Sp1和NF Y是hTK基因的转录活化因子 ,而E2F为转录抑制因子 .电泳迁移率变更实验发现 ,与年轻细胞相比 ,Sp1、NF Y与hTK启动子的DNA结合活性在复制衰老细胞和早衰细胞中无明显改变 ,提示转录活化因子Sp1、NF Y并非hTK在衰老细胞中下调的主要因素 .染色质免疫共沉淀结果显示 ,在细胞内Rb结合在hTK启动子上 ,且同年轻细胞相比 ,复制衰老细胞及早衰细胞中的hTK启动子结合着更多的Rb ,这提示细胞衰老过程中Rb的去磷酸化可能与hTK基因在衰老过程中的下调有关 .  相似文献   

15.
Most cancers arise in old individuals, which also accumulate senescent cells. Cellular senescence can be experimentally induced by expression of oncogenes or telomere shortening during serial passage in culture. In vivo, precursor lesions of several cancer types accumulate senescent cells, which are thought to represent a barrier to malignant progression and a response to the aberrant activation of growth signaling pathways by oncogenes (oncogene toxicity). Here, we sought to define gene expression changes associated with cells that bypass senescence induced by oncogenic RAS. In the context of pancreatic ductal adenocarcinoma (PDAC), oncogenic KRAS induces benign pancreatic intraepithelial neoplasias (PanINs), which exhibit features of oncogene‐induced senescence. We found that the bypass of senescence in PanINs leads to malignant PDAC cells characterized by gene signatures of epithelial‐mesenchymal transition, stem cells, and mitochondria. Stem cell properties were similarly acquired in PanIN cells treated with LPS, and in primary fibroblasts and mammary epithelial cells that bypassed Ras‐induced senescence after reduction of ERK signaling. Intriguingly, maintenance of cells that circumvented senescence and acquired stem cell properties was blocked by metformin, an inhibitor of complex I of the electron transport chain or depletion of STAT3, a protein required for mitochondrial functions and stemness. Thus, our studies link bypass of senescence in premalignant lesions to loss of differentiation, acquisition of stemness features, and increased reliance on mitochondrial functions.  相似文献   

16.
The cellular function of p53 is complex. It is well known that p53 plays a key role in cellular response to DNA damage. Moreover, p53 was implicated in cellular senescence, and it was demonstrated that p53 undergoes modification in senescent cells. However, it is not known how these modifications affect the ability of senescent cells to respond to DNA damage. To address this question, we studied the responses of cultured young and old normal diploid human fibroblasts to a variety of genotoxic stresses. Young fibroblasts were able to undergo p53-dependent and p53-independent apoptosis. In contrast, senescent fibroblasts were unable to undergo p53-dependent apoptosis, whereas p53-independent apoptosis was only slightly reduced. Interestingly, instead of undergoing p53-dependent apoptosis, senescent fibroblasts underwent necrosis. Furthermore, we found that old cells were unable to stabilize p53 in response to DNA damage. Exogenous expression or stabilization of p53 with proteasome inhibitors in old fibroblasts restored their ability to undergo apoptosis. Our results suggest that stabilization of p53 in response to DNA damage is impaired in old fibroblasts, resulting in induction of necrosis. The role of this phenomenon in normal aging and anticancer therapy is discussed.  相似文献   

17.
SAG12, an Arabidopsis gene encoding a cysteine protease, is expressed only in senescent tissues. Studies of the expression patterns of a variety of genes showing senescence-specific or senescence-preferential expression indicate that plant senescence involves multiple regulatory pathways. In this study it is shown that the expression of SAG12 is specifically activated by developmentally controlled senescence pathways but not by stress- or hormone-controlled pathways. Using SAG12 as a molecular marker for the study of developmental senescence, we show that cytokinin, auxin, and sugars can repress developmental senescence at the molecular level. Studies using promoter deletions and recombination of promoter fragments indicate that a highly conserved region of the SAG12 promoter is responsible for senescence-specific regulation, while at least two other regions of the SAG12 promoter are important for full promoter activity. Extracts from young and senescent Arabidopsis leaves contain factors that exhibit differential binding to the senescence-responsive promoter element.  相似文献   

18.
19.
Reduced replicative capacity is a consistent characteristic of cells derived from patients with Werner syndrome. This premature senescence is phenotypically similar to replicative senescence observed in normal cell strains and includes altered cell morphology and gene expression patterns. Telomeres shorten with in vitro passaging of both WRN and normal cell strains; however, the rate of shortening has been reported to be faster in WRN cell strains, and the length of telomeres in senescent WRN cells appears to be longer than that observed in normal strains, leading to the suggestion that senescence in WRN cell strains may not be exclusively associated with telomere effects. We report here that the telomere restriction fragment length in senescent WRN fibroblasts cultures is within the size range observed for normal fibroblasts strains and that the expression of a telomerase transgene in WRN cell strains results in lengthened telomeres and replicative immortalization, thus indicating that telomere effects are the predominant trigger of premature senescence in WRN cells. Microarray analyses showed that mRNA expression patterns induced in senescent WRN cells appeared similar to those in normal strains and that hTERT expression could prevent the induction of most of these genes. However, substantial differences in expression were seen in comparisons of early-passage and telomerase-immortalized derivative lines, indicating that telomerase expression does not prevent the phenotypic drift, or destabilized genotype, resulting from the WRN defect.  相似文献   

20.
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX-null fibroblasts exhibit decreased cell-matrix and cell-cell adhesion. In this study, we used a differential display technique to determine the genes involved in this process. Differential display analysis of wild-type and TNX-null fibroblasts revealed that mRNA expression level of type VI collagen alpha3 is predominantly decreased in TNX-null fibroblasts. Expression levels of mRNAs of other subunits of type VI collagen, alpha2 and alpha3 chains, were also remarkably decreased in TNX-null fibroblasts. The protein level of alpha3 chain of type VI collagen was also reduced in TNX-null fibroblasts. However, the organization of type VI collagen in the extracellular matrix of TNX-null fibroblasts was similar to that of wild-type fibroblasts. Transient expression of TNX in Balb3T3 cells caused an increase in the level of mRNA of type VI collagen compared with that in vector control and increased the promoter activity of type VI collagen alpha1 subunit gene. In addition, the expression levels of type I collagen and other collagen fibril-associated molecules such as type XII and type XIV collagens, decorin, lumican and fibromodulin in wild-type and TNX-null fibroblasts were compared. It was found that the mRNA expression levels of type I collagen and collagen fibril-associated molecules other than decorin were decreased and that the expression level of decorin was increased in TNX-null fibroblasts. The results suggest the possibility that TNX mediates not only cell-cell and cell-matrix interactions but also fibrillogenesis via collagen fibril-associated molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号