首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of Myostatin and Growth Factors on Cultured Human Cells   总被引:1,自引:0,他引:1  
A dedicated cell-based biological test system was used to study specific effects of myostatin and other human growth factors on the proliferation of cultured myoblasts and fibroblasts. Myostatin inhibited myoblast growth without affecting human fibroblasts. In this test system, human growth hormone and insulin-like growth factor I acted as antagonists of myostatin, which indicates that these agents have a potential for blocking its effects in vivo.  相似文献   

2.
Myostatin directly regulates skeletal muscle fibrosis   总被引:3,自引:0,他引:3  
Skeletal muscle fibrosis is a major pathological hallmark of chronic myopathies in which myofibers are replaced by progressive deposition of collagen and other extracellular matrix proteins produced by muscle fibroblasts. Recent studies have shown that in the absence of the endogenous muscle growth regulator myostatin, regeneration of muscle is enhanced, and muscle fibrosis is correspondingly reduced. We now demonstrate that myostatin not only regulates the growth of myocytes but also directly regulates muscle fibroblasts. Our results show that myostatin stimulates the proliferation of muscle fibroblasts and the production of extracellular matrix proteins both in vitro and in vivo. Further, muscle fibroblasts express myostatin and its putative receptor activin receptor IIB. Proliferation of muscle fibroblasts, induced by myostatin, involves the activation of Smad, p38 MAPK and Akt pathways. These results expand our understanding of the function of myostatin in muscle tissue and provide a potential target for anti-fibrotic therapies.  相似文献   

3.
4.
Myostatin mutations in mice and cattle are associated with increased muscularity, suggesting that myostatin is a negative regulator of skeletal muscle mass. To test the hypothesis that myostatin inhibits muscle cell growth, we examined the effects of recombinant myostatin in mouse skeletal muscle C2C12 cells. After verification of the expression of cDNA constructs in a cell-free system and in transfected Chinese hamster ovary cells, the human recombinant protein was expressed as the full-length (375-amino acid) myostatin in Drosophila cells (Mst375D), or the 110-amino acid carboxy-terminal protein in Escherichia coli (Mst110EC). These proteins were identified by immunoblotting and were purified. Both Mst375D and Mst110EC dose dependently inhibited cell proliferation (cell count and Formazan assay), DNA synthesis ([3H]thymidine incorporation), and protein synthesis ([1-14C]leucine incorporation) in C2C12 cells. The inhibitory effects of both proteins were greater in myotubes than in myoblasts. Neither protein had any significant effects on protein degradation or apoptosis. In conclusion, recombinant myostatin proteins inhibit cell proliferation, DNA synthesis, and protein synthesis in C2C12 muscle cells, suggesting that myostatin may control muscle mass by inhibiting muscle growth or regeneration.  相似文献   

5.
Recent studies have shown that myostatin, first identified as a negative regulator of skeletal muscle growth, may also be involved in the formation of fibrosis within skeletal muscle. In this study, we further explored the potential role of myostatin in skeletal muscle fibrosis, as well as its interaction with both transforming growth factor-beta1 and decorin. We discovered that myostatin stimulated fibroblast proliferation in vitro and induced its differentiation into myofibroblasts. We further found that transforming growth factor-beta1 stimulated myostatin expression, and conversely, myostatin stimulated transforming growth factor-beta1 secretion in C2C12 myoblasts. Decorin, a small leucine-rich proteoglycan, was found to neutralize the effects of myostatin in both fibroblasts and myoblasts. Moreover, decorin up-regulated the expression of follistatin, an antagonist of myostatin. The results of in vivo experiments showed that myostatin knock-out mice developed significantly less fibrosis and displayed better skeletal muscle regeneration when compared with wild-type mice at 2 and 4 weeks following gastrocnemius muscle laceration injury. In wild-type mice, we found that transforming growth factor-beta1 and myostatin co-localize in myofibers in the early stages of injury. Recombinant myostatin protein stimulated myofibers to express transforming growth factor-beta1 in skeletal muscles at early time points following injection. In summary, these findings define a fibrogenic property of myostatin and suggest the existence of co-regulatory relationships between transforming growth factor-beta1, myostatin, and decorin.  相似文献   

6.
Hu S  Ni W  Sai W  Zhang H  Cao X  Qiao J  Sheng J  Guo F  Chen C 《Biotechnology letters》2011,33(10):1949-1953
Myostatin is a negative regulator of skeletal muscle growth. Myostatin dysfunction therefore offers a strategy for promoting animal muscle growth in livestock production. Knockdown of myostatin was achieved by combining RNA interference and the Sleeping Beauty (SB) transposon system in sheep cells. Four targeting sites of sheep myostatin were designed and measured for myostatin silencing in sheep fetal fibroblasts by real-time PCR. The sh3 construct induced significant decrease of myostatin gene expression by 90% (P < 0.05). Myostatin silencing induced by SB-mediated sh3 was further tested in stably transfected cells. SB transposition increased the integration frequency of genes into sheep genomes and mediated a more efficient myostatin knockdown than random integration of sh3. We suggest that SB-mediated shRNA provides a novel potential tool for gene knockdown in the donor cells of animal cloning.  相似文献   

7.
A human therapeutic that specifically modulates skeletal muscle growth would potentially provide a benefit for a variety of conditions including sarcopenia, cachexia, and muscular dystrophy. Myostatin, a member of the TGF-beta family of growth factors, is a known negative regulator of muscle mass, as mice lacking the myostatin gene have increased muscle mass. Thus, an inhibitor of myostatin may be useful therapeutically as an anabolic agent for muscle. However, since myostatin is expressed in both developing and adult muscles, it is not clear whether it regulates muscle mass during development or in adults. In order to test the hypothesis that myostatin regulates muscle mass in adults, we generated an inhibitory antibody to myostatin and administered it to adult mice. Here we show that mice treated pharmacologically with an antibody to myostatin have increased skeletal muscle mass and increased grip strength. These data show for the first time that myostatin acts postnatally as a negative regulator of skeletal muscle growth and suggest that myostatin inhibitors could provide a therapeutic benefit in diseases for which muscle mass is limiting.  相似文献   

8.
The transforming growth factor (TGF)-β family member myostatin is an important regulator of myoblast, adipocyte, and fibroblast growth and differentiation, but the signaling mechanisms remain to be established. We therefore determined the contribution of myostatin type I receptors activin receptor-like kinase-4 (ALK4) and -5 (ALK5) and different coreceptors in C2C12 myoblasts, C3H10T1/2 mesenchymal stem cells, and 3T3-L1 fibroblasts, as well as in primary myoblast and fibroblasts. We performed siRNA-mediated knockdown of each receptor and measured signaling activity using Smad3-dependent luciferase and Smad2 phosphorylation assays with nontargeting siRNA as control. We find that myostatin utilizes ALK4 in myoblasts, whereas it has a preference for ALK5 in nonmyogenic cells. Notably, our results show that coreceptor Cripto is expressed in myoblasts but not in the nonmyogenic cells and that it regulates myostatin activity. More specifically, myostatin requires Cripto in myoblasts, whereas Cripto represses activin activity and TGF-β signaling is Cripto independent. Cripto-mediated myostatin signaling is dependent on both epidermal growth factor (EGF)-like and Cripto-FRL1-cryptic (CFC) domains, whereas activin signaling is solely conferred by the CFC domain. Furthermore, Cripto down-regulation enhances myoblast differentiation, showing its importance in myostatin signaling. Together, our results identify a molecular mechanism that explains the cell-type specific aspects of signaling by myostatin and other TGF-β family members.  相似文献   

9.
Myostatin represses muscle growth by negatively regulating the number and size of muscle fibers. Myostatin loss-of-function can result in the double-muscling phenotype and increased muscle mass. Thus, knockout of myostatin gene could improve the quality of meat from mammals. In the present study, zinc finger nucleases, a useful tool for generating gene knockout animals, were designed to target exon 1 of the myostatin gene. The designed ZFNs were introduced into porcine primary fibroblasts and early implantation embryos via electroporation and microinjection, respectively. Mutations around the ZFNs target site were detected in both primary fibroblasts and blastocysts. The proportion of mutant fibroblast cells and blastocyst was 4.81% and 5.31%, respectively. Thus, ZFNs can be used to knockout myostatin in porcine primary fibroblasts and early implantation embryos.  相似文献   

10.
11.
Lee SJ 《PloS one》2007,2(8):e789
Myostatin is a transforming growth factor-beta family member that normally acts to limit skeletal muscle growth. Mice genetically engineered to lack myostatin activity have about twice the amount of muscle mass throughout the body, and similar effects are seen in cattle, sheep, dogs, and a human with naturally occurring loss-of-function mutations in the myostatin gene. Hence, there is considerable interest in developing agents capable of inhibiting myostatin activity for both agricultural and human therapeutic applications. We previously showed that the myostatin binding protein, follistatin, can induce dramatic increases in muscle mass when overexpressed as a transgene in mice. In order to determine whether this effect of follistatin results solely from inhibition of myostatin activity, I analyzed the effect of this transgene in myostatin-null mice. Mstn(-/-) mice carrying a follistatin transgene had about four times the muscle mass of wild type mice, demonstrating the existence of other regulators of muscle mass with similar activity to myostatin. The greatest effect on muscle mass was observed in offspring of mothers homozygous for the Mstn mutation, raising the possibility that either myostatin itself or a downstream regulator may normally be transferred from the maternal to fetal circulations. These findings demonstrate that the capacity for increasing muscle growth by manipulating TGF-beta signaling pathways is much more extensive than previously appreciated and suggest that muscle mass may be controlled at least in part by a systemic mode of action of myostatin.  相似文献   

12.
13.
Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway.  相似文献   

14.
15.
16.
Since its identification in 1997, myostatin has been considered as a novel and unique negative regulator of muscle growth, as mstn-/- mice display a dramatic and widespread increase in skeletal muscle mass. Myostatin also appears to be involved in muscle homeostasis in adults as its expression is regulated during muscle atrophy. Moreover, deletion of the myostatin gene seems to affect adipose tissue mass in addition to skeletal muscle mass. Natural myostatin gene mutations occur in cattle breeds such as Belgian Blue, exhibiting an obviously increased muscle mass, but also in humans, as has recently been demonstrated. Here we review these natural mutations and their associated phenotypes as well as the physiological influence of the alterations in myostatin expression and the physiopathological consequences of changes in myostatin expression, especially with regard to satellite cells. Interestingly, studies have demonstrated some rescue effects of myostatin in muscular pathologies such as myopathies, providing a novel pharmacological strategy for treatment. Furthermore, the myostatin pathway is now better understood thanks to in vitro studies and it consists of inhibition of myoblast progression in the cell cycle, inhibition of myoblast terminal differentiation, in both cases associated to protection from apoptosis. The molecular pathway driving the myogenic myostatin influence is currently under extensive study and many molecular partners of myostatin have been identified, suggesting novel potent muscle growth enhancers for both human and agricultural applications.  相似文献   

17.
Sarcopenia is a notable and debilitating age-associated condition. Flavonoids are known for their healthy effects and limited toxicity. The flavanol (−)-epicatechin (Epi) enhances exercise capacity in mice, and Epi-rich cocoa improves skeletal muscle structure in heart failure patients. (−)-Epicatechin may thus hold promise as treatment for sarcopenia.We examined changes in protein levels of molecular modulators of growth and differentiation in young vs. old, human and mouse skeletal muscle. We report the effects of Epi in mice and the results of an initial proof-of-concept trial in humans, where muscle strength and levels of modulators of muscle growth were measured. In mice, myostatin and senescence-associated β-galactosidase levels increase with aging, while those of follistatin and Myf5 decrease. (−)-Epicatechin decreases myostatin and β-galactosidase and increases levels of markers of muscle growth. In humans, myostatin and β-galactosidase increase with aging while follistatin, MyoD and myogenin decrease. Treatment for 7 days with (−)-epicatechin increases hand grip strength and the ratio of plasma follistatin/myostatin.In conclusion, aging has deleterious effects on modulators of muscle growth/differentiation, and the consumption of modest amounts of the flavanol (−)-epicatechin can partially reverse these changes. This flavanol warrants its comprehensive evaluation for the treatment of sarcopenia.  相似文献   

18.
Myostatin is mainly secreted by skeletal muscle and negatively regulates skeletal muscle growth. However, the roles of myostatin on bone metabolism are still largely unknown. Here, we recruited two large populations containing 6308 elderly Chinese and conducted comprehensive statistical analyses to evaluate the associations among lean body mass (LBM), plasma myostatin, and bone mineral density (BMD). Our data revealed that total myostatin in plasma was mainly determined by LBM. The relative abundance of mature myostatin (mature/total) was significantly lower in high versus low BMD subjects. Moreover, the relative abundance of mature myostatin was positively correlated with bone resorption marker. Finally, we carried out in vitro experiments and found that myostatin has inhibitory effects on the proliferation and differentiation of human osteoprogenitor cells. Taken together, our results have demonstrated that the relative abundance of mature myostatin in plasma is negatively associated with BMD, and the underlying functional mechanism for the association is most likely through inhibiting osteoblastogenesis and promoting osteoclastogenesis.  相似文献   

19.
The expression of myostatin mRNA was examined in regenerating skeletal muscle of the rat. Skeletal muscle regeneration was induced by injecting bupivacaine or hypertonic saline solution into the femoral muscle, and the tissues were collected 48 h after the treatment. In situ hybridization analysis revealed that the cells positive for myostatin message were localized in the regenerating area of the bupivacaine-treated tissues, where a numerous number of mononucleated cells were present. The myostatin-positive mononucleated cells contained both myogenic and nonmyogenic cells, as revealed by immunohistochemical staining for desmin and vimentin. Bupivacaine treatment to the testes resulted in no myostatin message expression in the testicular vimentin-positive cells, suggesting that the expression of myostatin message in vimentin-positive cells is a skeletal muscle-specific phenomenon. Furthermore, crushed muscle extract prepared from regenerating skeletal muscle had induced myostatin mRNA expression in skeletal muscle-derived fibroblasts in a dose-dependent manner. These results indicated that myostatin is expressed during skeletal muscle regeneration both in myogenic and nonmyogenic cells, and suggested that some factor(s) capable of inducing myostatin expression in fibroblasts are present in regenerating skeletal muscle.  相似文献   

20.
Myostatin and mechano-growth factor (MGF), an isoform of insulin-like growth factor-I (IGF-I), are two important regulators of muscle hypertrophy. The aim of the present study was to investigate the effects of recombinant human growth hormone (rhGH) and/or testosterone on muscle MGF/IGF-IEa/myostatin expression in intact and hypophysectomized rats treated for 15 d with 1) saline or rhGH, 2) sesame oil or testosterone, 3) saline+sesame oil, or rhGH+testosterone (first experiment) or for 7 d with saline or rhGH (second experiment). Animals were killed by decapitation 24 h or 4 d after the last injection (first or second experiment, respectively). Muscle expressions of MGF, IGF-IEa, and myostatin were determined by RT-PCR. A significant increase in the weight of gastrocnemius muscle was observed only in hypophysectomized rats treated with rhGH alone or in combination with testosterone. Administration of rhGH to hypophysectomized rats caused a marked increase in both MGF and IGF-IEa muscle mRNA levels (without any change in the muscle expression of myostatin), an effect that was abolished when testosterone was combined with rhGH. Conversely, in intact rats rhGH increased myostatin muscle mRNA levels without affecting those of MGF and IGF-IEa. Testosterone, alone or combined with rhGH, induced an inhibition of myostatin expression in the muscle of intact rats, but did not change muscle paradigms of hypophysectomized rats. In conclusion, rhGH and/or testosterone anabolic effects in the muscle are mediated by a different expression of MGF/IGF-IEa/myostatin, which is related to the pituitary function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号