首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoubiquitination of the 12-transmembrane segment (12-TMS) Saccharomyces cerevisiae maltose transporter promoted the maximal internalization rate of this protein. This modification is similar to that of the 7-TMS alpha-factor receptor but different from that of the 12-TMS uracil and general amino acid permeases. This result shows that binding of ubiquitin-Lys63 chains is not required for maximal internalization of all 12-TMS-containing proteins.  相似文献   

2.
CD83 is a dimer: Comparative analysis of monomeric and dimeric isoforms   总被引:4,自引:0,他引:4  
Recently, we reported that soluble CD83 has a strong immunosuppressive activity in vitro as well as in vivo. Sequence alignment of CD83 between different species revealed the presence of five cysteines in the extracellular Ig-domain of the protein. This opens up the possibility that four cysteines are involved in the formation of two intramolecular disulfide bonds and a possible involvement of the remaining fifth cysteine in the formation of an intermolecular covalent disulfide bond, leading to the dimerization of the extracellular protein domains. Using recombinant mutational analyses, where the fifth cytosine at amino acid position 129 was mutated to a serine, we could prove that the fifth cysteine residue was indeed necessary for the dimerization. Functional analyses revealed that the mutant protein inhibited almost completely the upregulation of CD83-expression during DC maturation. Furthermore, the functional activity of the mutant protein was investigated using MLR assays and we could show that the mutant soluble CD83 protein inhibited DC-mediated allogeneic T-cell stimulation in vitro.  相似文献   

3.
Horak J  Wolf DH 《Journal of bacteriology》2001,183(10):3083-3088
In Saccharomyces cerevisiae, the addition of glucose to cells growing on galactose induces internalization of the galactose transporter Gal2p and its subsequent proteolysis in the vacuole. Here we report that the essential step in Gal2p down-regulation is its ubiquitination through the Ubc1p-Ubc4p-Ubc5p triad of ubiquitin-conjugating enzymes and Npi1/Rsp5p ubiquitin-protein ligase. Moreover, Gal2p appears to be stabilized in mutant cells defective in the ubiquitin-hydrolase Npi2p/Doa4p, and the mutant phenotype can be reversed by overexpression of ubiquitin. An analysis of the fate of Gal2p in cells overexpressing wild-type ubiquitin as well as its variants incompetent to form polyubiquitin chains showed that monoubiquitination of Gal2p is sufficient to signal internalization of the protein into the endocytic pathway.  相似文献   

4.
5.
The Chinese hamster cells V-79 were treated with BUdR during one cell cycle; after that the cells were grown in the medium without BUdR and were irradiated by longwave-UV-light at different time. The cell survival after photolysis was compared with the percentage of metaphase plates with different number of chromosomes containing BUdR. It is concluded that for cell inactivation the presence of only one destroyed chromosome (or its part) is enough.  相似文献   

6.
The alpha(2) Heremans-Schmid glycoprotein (AHSG) gene is implicated in the regulation of body fat and insulin sensitivity. The Met/Met genotype of the common single-nucleotide polymorphism (SNP), rs4917, in the AHSG gene has been shown to be associated with reduced plasma levels as well as lower body fat. Here, we studied the association of this variation with subcutaneous adipocyte lipolysis. Ninety-three obese and nonobese healthy men were genotyped for Thr230Met, and subcutaneous adipose tissue biopsies were analyzed for lipolysis characteristics. The Met/Met genotype was associated with a marked increase of 1.5 log units in the lipolytic sensitivity to the beta2-adrenoceptor agonist terbutaline (P=0.0008) as compared with the Thr/Thr and Thr/Met genotypes. This corresponds to an approximately 35-fold increase in beta2-adrenoceptor function. The genotype effect was independent of body mass index and waist circumference. In contrast, lipolytic sensitivity to both the beta1-adrenoceptor agonist dobutamine (P=0.25) and the alpha2A-adrenoceptor agonist clonidine (P=0.54) was unaffected by the Thr230Met variation. Moreover, no difference in either maximal stimulation or inhibition of lipolysis was found between genotypes. We conclude that a common variation (Thr230Met) in the AHSG gene is associated with a marked increase in beta2-adrenoceptor sensitivity in subcutaneous fat cells, which may be of importance in body weight regulation.  相似文献   

7.
Quantal size is the postsynaptic response to the release of a single synaptic vesicle and is determined in part by the amount of transmitter within that vesicle. At glutamatergic synapses, the vesicular glutamate transporter (VGLUT) fills vesicles with glutamate. While elevated VGLUT expression increases quantal size, the minimum number of transporters required to fill a vesicle is unknown. In Drosophila DVGLUT mutants, reduced transporter levels lead to a dose-dependent reduction in the frequency of spontaneous quantal release with no change in quantal size. Quantal frequency is not limited by vesicle number or impaired exocytosis. This suggests that a single functional unit of transporter is both necessary and sufficient to fill a vesicle to completion and that vesicles without DVGLUT are empty. Consistent with the presence of empty vesicles, at dvglut mutant synapses synaptic vesicles are smaller, suggesting that vesicle filling and/or transporter level is an important determinant of vesicle size.  相似文献   

8.
G protein-coupled receptors (GPCRs) regulate a wide variety of physiological functions in response to structurally diverse ligands ranging from cations and small organic molecules to peptides and glycoproteins. For many GPCRs, structurally related ligands can have diverse efficacy profiles. To investigate the process of ligand binding and activation, we used fluorescence spectroscopy to study the ability of ligands having different efficacies to induce a specific conformational change in the human beta2-adrenoceptor (beta2-AR). The 'ionic lock' is a molecular switch found in rhodopsin-family GPCRs that has been proposed to link the cytoplasmic ends of transmembrane domains 3 and 6 in the inactive state. We found that most partial agonists were as effective as full agonists in disrupting the ionic lock. Our results show that disruption of this important molecular switch is necessary, but not sufficient, for full activation of the beta2-AR.  相似文献   

9.
Alcohols and volatile anesthetics enhance the function of inhibitory glycine receptors (GlyRs). This is hypothesized to occur by their binding to a pocket formed between the transmembrane domains of individual alpha1 GlyR subunits. Because GlyRs are pentameric, it follows that each GlyR contains up to five alcohol/anesthetic binding sites, with one in each subunit. We asked how many subunits per pentamer need be bound by drug in order to enhance receptor-mediated currents. A cysteine mutation was introduced at amino acid serine 267 (S267C) in the transmembrane 2 domain as a tool to block GlyR potentiation by some anesthetic drugs and to provide a means for covalent binding by the small, anesthetic-like thiol reagent propyl methanethiosulfonate. Xenopus laevis oocytes were co-injected with various ratios of wild-type (wt) to S267C alpha1 GlyR cDNAs in order to express heteromeric receptors with a range of wt:mutant subunit stoichiometries. The enhancement of GlyR currents by 200 mm ethanol and 1.5 mm chloroform was positively correlated with the number of wt subunits found in heteromeric receptors. Furthermore, currents from oocytes injected with high ratios of wt to S267C cDNAs (up to 200:1) were significantly and irreversibly enhanced following propyl methanethiosulfonate labeling and washout, demonstrating that drug binding to a single subunit in the receptor pentamer is sufficient to induce enhancement of GlyR currents.  相似文献   

10.
The adenovirus-2 major late promoter (Ad2MLP) upstream element (Ad2MLP-UE) contains a sequence of interrupted dyad symmetry. By inverting this element we have found that it functions in a bidirectional manner both in vivo and in vitro. Footprinting and binding kinetics studies have demonstrated that both orientations of the upstream element bind the sequence-specific upstream factor (UEF) in a similar fashion. These data strongly suggest that the dyad symmetric sequence is sufficient for fully functional binding of the UEF. Binding studies of the UEF to the Ad2MLP-UE indicate that, contrary to prokaryotic palindromic promoter elements which bind multimers of specific factors, the entire Ad2MLP dyad symmetric upstream element binds a single monomeric UEF molecule.  相似文献   

11.
Trafficking of ionotropic glutamate receptors to the plasma membrane commonly requires occupation of the agonist binding sites. This quality control check does not typically involve receptor activation, as binding by competitive antagonists or to non-functional channels may also permit surface expression. The tetrameric kainate receptors can be assembled from five different subunits (GluK1–GluK5). While the “low-affinity” GluK1-3 subunits are able to produce functional homomeric receptors, the “high-affinity” GluK4 and GluK5 subunits require co-assembly with GluK1, 2, or 3 for surface expression. These two different types of subunits have distinct functional roles in the receptor. Therefore, we examined the relative importance of occupancy of the agonist site of the GluK2 or GluK5 subunit for surface expression of heteromeric receptors. We created subunits with a mutation within the S2 ligand-binding domain which decreased agonist affinity. Mutations at this site reduced functional surface expression of homomeric GluK2 receptors, but surface expression of these receptors could be increased with either a competitive antagonist or co-assembly with wild-type GluK5. In contrast, mutations in the GluK5 subunit reduced the production of functional heteromeric receptors at the membrane, and could not be rescued with either an antagonist or wild-type GluK2. These findings indicate that ligand binding to only the GluK5 subunit is both necessary and sufficient to allow trafficking of recombinant GluK2/K5 heteromers to the cell membrane, but that occupancy of the GluK2 site alone is not. Our results suggest a distinct role for the GluK5 subunit in regulating surface expression of heteromeric kainate receptors.  相似文献   

12.
Camelid single domain antibodies (sdAb) are known for their thermal stability and reversible refolding. We have characterized an unusually stable sdAb recognizing Staphylococcal enterotoxin B with one of the highest reported melting temperatures (Tm = 85°C). Unexpectedly, ~10?20% of the protein formed a dimer in solution. Three other cases where <20% of the sdAb dimerized have been reported; however, this is the first report of both the monomeric and dimeric X‐ray crystal structures. Concentration of the monomer did not lead to the formation of new dimer suggesting a stable conformationally distinct species in a fraction of the cytoplasmically expressed protein. Comparison of periplasmic and cytoplasmic expression showed that the dimer was associated with cytoplasmic expression. The disulfide bond was partially reduced in the WT protein purified from the cytoplasm and the protein irreversibly unfolded. Periplasmic expression produced monomeric protein with a fully formed disulfide bond and mostly reversible refolding. Crystallization of a disulfide‐bond free variant, C22A/C99V, purified from the periplasm yielded a structure of a monomeric form, while crystallization of C22A/C99V from the cytoplasm produced an asymmetric dimer. In the dimer, a significant conformational asymmetry was found in the loop residues of the edge β‐strands (S50‐Y60) containing the highly variable complementarity determining region, CDR2. Two dimeric assemblies were predicted from the crystal packing. Mutation of a residue at one of the interfaces, Y98A, disrupted the dimer in solution. The pleomorphic homodimer may yield insight into the stability of misfolded states and the importance of the conserved disulfide bond in preventing their formation. Proteins 2014; 82:3101–3116. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
通过主体、主体程序、内化、外化(进化)等核心概念的揭示和接入,展开了生命演化的崭新画卷——导致生物外在进化的根本动因是基于宇宙演化而产生的主体程序。论述了基于主体程序内化的引领及其与外化(进化)的互动,才使生物不断由低级走向到高级,并最终导致人类及人类精神的产生。主体程序理论的提出主旨在于弥补进化论在内在动因方面的重大缺陷,并由此奠定根本性解释生命现象的理论基础。  相似文献   

14.
Banerjee N  Sengupta S  Roy A  Ghosh P  Das K  Das S 《PloS one》2011,6(4):e18593

Background

Allium sativum leaf agglutinin (ASAL) is a 25-kDa homodimeric, insecticidal, mannose binding lectin whose subunits are assembled by the C-terminal exchange process. An attempt was made to convert dimeric ASAL into a monomeric form to correlate the relevance of quaternary association of subunits and their functional specificity. Using SWISS-MODEL program a stable monomer was designed by altering five amino acid residues near the C-terminus of ASAL.

Methodology/Principal Findings

By introduction of 5 site-specific mutations (-DNSNN-), a β turn was incorporated between the 11th and 12th β strands of subunits of ASAL, resulting in a stable monomeric mutant ASAL (mASAL). mASAL was cloned and subsequently purified from a pMAL-c2X system. CD spectroscopic analysis confirmed the conservation of secondary structure in mASAL. Mannose binding assay confirmed that molecular mannose binds efficiently to both mASAL and ASAL. In contrast to ASAL, the hemagglutination activity of purified mASAL against rabbit erythrocytes was lost. An artificial diet bioassay of Lipaphis erysimi with mASAL displayed an insignificant level of insecticidal activity compared to ASAL. Fascinatingly, mASAL exhibited strong antifungal activity against the pathogenic fungi Fusarium oxysporum, Rhizoctonia solani and Alternaria brassicicola in a disc diffusion assay. A propidium iodide uptake assay suggested that the inhibitory activity of mASAL might be associated with the alteration of the membrane permeability of the fungus. Furthermore, a ligand blot assay of the membrane subproteome of R. solani with mASAL detected a glycoprotein receptor having interaction with mASAL.

Conclusions/Significance

Conversion of ASAL into a stable monomer resulted in antifungal activity. From an evolutionary aspect, these data implied that variable quaternary organization of lectins might be the outcome of defense-related adaptations to diverse situations in plants. Incorporation of mASAL into agronomically-important crops could be an alternative method to protect them from dramatic yield losses from pathogenic fungi in an effective manner.  相似文献   

15.
16.
17.
Phospholamban (PLB) can be phosphorylated at Ser(16) by cyclic AMP-dependent protein kinase and at Thr(17) by Ca(2+)-calmodulin-dependent protein kinase during beta-agonist stimulation. A previous study indicated that mutation of S16A in PLB resulted in lack of Thr(17) phosphorylation and attenuation of the beta-agonist stimulatory effects in perfused mouse hearts. To further delineate the functional interplay between dual-site PLB phosphorylation, we generated transgenic mice expressing the T17A mutant PLB in the cardiac compartment of the null background. Lines expressing similar levels of T17A mutant, S16A mutant, or wild-type PLB in the null background were characterized in parallel. Cardiac myocyte basal mechanics and Ca(2+) kinetics were similar among the three groups. Isoproterenol stimulation was associated with phosphorylation of both Ser(16) and Thr(17) in wild-type PLB and Ser(16) phosphorylation in T17A mutant PLB, whereas there was no detectable phosphorylation of S16A mutant PLB. Phosphorylation of Ser(16) alone in T17A mutant PLB resulted in responses of the mechanical and Ca(2+) kinetic parameters to isoproterenol similar to those in wild-type myocytes, which exhibited dual-site PLB phosphorylation. However, those parameters were significantly attenuated in the S16A mutant myocytes. Thus, Ser(16) in PLB can be phosphorylated independently of Thr(17) in vivo, and phosphorylation of Ser(16) is sufficient for mediating the maximal cardiac responses to beta-adrenergic stimulation.  相似文献   

18.
The colicin E2 immunity (ceiB) and lysis (celB) genes of colicin plasmid ColE2-P9 were cloned as a 900-base-pair insert under the control of the lac promoter in high-copy-number plasmid pUR222. Hosts carrying this plasmid were immune to colicin E2, produced increased amounts of immunity protein (molecular weight, 9,000) and two smaller proteins (molecular weights, 5,000 and 3,000), and lysed when incubated in medium containing isopropyl-beta-D-thiogalactopyranoside (IPTG). A 400-base-pair lacp-distal fragment derived from the insert in this plasmid was recloned in the same orientation into pUR222. Although hosts carrying this plasmid also lysed when grown in the presence of IPTG, they were sensitive to colicin E2 and produced increased amounts of the 5,000- and 3,000-molecular-weight proteins (but not the full-length immunity protein) when treated with IPTG. The results were consistent with the idea that expression of celB (production of the 5,000- and 3,000-molecular-weight proteins) is sufficient to cause host cell lysis in the absence of colicin production and derepression of the host cell SOS system.  相似文献   

19.
20.
Skeletal muscle atrophy is a prominent and disabling feature of chronic wasting diseases. Prevention or reversal of muscle atrophy by administration of skeletal muscle growth (hypertrophy)-stimulating agents such as insulin-like growth factor I (IGF-I) could be an important therapeutic strategy in these diseases. To elucidate the IGF-I signal transduction responsible for muscle formation (myogenesis) during muscle growth and regeneration, we applied IGF-I to differentiating C2C12 myoblasts and evaluated the effects on phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3 (GSK-3) signaling and myogenesis. IGF-I caused phosphorylation and inactivation of GSK-3 activity via signaling through the PI3K/Akt pathway. We assessed whether pharmacological inhibition of GSK-3 with lithium chloride (LiCl) was sufficient to stimulate myogenesis. Addition of IGF-I or LiCl stimulated myogenesis, evidenced by increased myotube formation, muscle creatine kinase (MCK) activity, and troponin I (TnI) promoter transactivation during differentiation. Moreover, mRNAs encoding MyoD, Myf-5, myogenin, TnI-slow, TnI-fast, MCK, and myoglobin were upregulated in myoblasts differentiated in the presence of IGF-I or LiCl. Importantly, blockade of GSK-3 inhibition abrogated IGF-I- but not LiCl-dependent stimulation of myogenic mRNA accumulation, suggesting that the promyogenic effects of IGF-I require GSK-3 inactivation and revealing an important negative regulatory role for GSK-3 in myogenesis. Therefore, this study identifies GSK-3 as a potential target for pharmacological stimulation of muscle growth. insulin-like growth factor I; muscle hypertrophy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号