首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
G. Renger  B. Hanssum  H. Gleiter  H. Koike  Y. Inoue 《BBA》1988,936(3):435-446
The interaction of exogenous quinones with the Photosystem II (PS II) acceptor side has been analyzed by measurements of flash-induced 320 nm absorption changes, transient flash-induced variable fluorescence changes, thermoluminescence emission and oxygen yield in dark-adapted thylakoids and PS II membrane fragments. Two classes of 1,4-benzoquinones were shown to give rise to remarkably different reaction patterns. (A) Phenyl-p-benzoquinone (Ph-p-BQ) -type compounds give rise to a marked binary oscillation of the initial amplitudes of 320 nm absorption changes induced by a flash train in dark-adapted PS II membrane fragments and a retardation of the decay kinetics of the flash-induced variable fluorescence. The electron transfer reactions to these type of quinones are severely inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). (B) In the presence of tribromotoluquinone (TBTQ) a different oscillation pattern of the 320 nm absorption changes is observed characterized by a marked relaxation after the first flash in the 5 ms domain. This relaxation is insensitive to 10 μM DCMU. Likewise the decay of the flash-induced variable fluorescence in TBTQ-treated samples is much less sensitive to DCMU than in control. The thermoluminescence emission exhibits an oscillation in samples incubated for 5 min with TBTQ before addition of 30 μM DCMU. Under the same conditions a significant flash-induced oxygen evolution is observed only after the third and fourth flash, respectively, whereas in the presence of TBTQ alone a normal oscillation pattern is observed. The different functional patterns of PS II caused by the two types of classes of exogenous quinones are interpreted by their binding properties: a noncovalent association with the QB-site of Ph-p-BQ-type quinones versus a tight (covalent?) binding in the vicinity of QA (possibly also at the QB-site) in the case of halogenated 1,4-benzoquinones. The mechanistic implications of these findings are discussed.  相似文献   

2.
《BBA》1985,808(1):13-20
The lineshape of the polarized prereduced primary quinone acceptor of Rhodopseudomonas sphaeroides after a laser flash was studied using time-resolved continuous wave EPR and electron spin echo techniques. The EPR as well as the electron spin echo experiments show that the lineshape of the ubiquinone shortly after a laser flash is time-dependent. This is attributed to magnetic interactions between the ubiquinone and the triplet state of the primary donor. Taking into account both dipolar and exchange interactions, a simulation of the EPR lineshape of the ubiquinone at 50 μs after the laser flash is performed, yielding a distance of 1.85 nm between the primary donor and the primary acceptor. From the simulation it is also concluded that the plane of the ubiquinone is approximately parallel to the surface of the membrane.  相似文献   

3.
This work describes fluorescence yield measurements in suspensions of strains of Rhodospirillum rubrum and Rhodopseudomonas sphaeroides in which the iron . quinone complex (X) was chemically reduced (state [PIX-]; P is the reaction center bacteriochlorophyll dimer, I is the long wavelength bacteriopheophytin), and compares these with the fluorescence observed when all the traps are open (state [PIX]) and with the fluorescence observed when all the traps are closed (state [P+IX]). At 77 K the amplitude and the shape of the fluorescence emission spectrum in [PIX-] are identical to those observed in [PIX]. This is a strong indication that all the extra fluorescence observed at room temperature in [PIX-] is, in fact, caused by an efficient back reaction [P+I-X-] leads to [P*IX-]. Using an equation similar to the original Vredenberg-Duysens relationship (Vredenburg, W.J. and Duysens, L.N.M. (1963) Nature 197, 355-357) but now assuming that a single reaction center has a probability pt of trapping an excitation and (1--pt) of re-emitting it to the surroundings, we are able to calculate pt as a function of the temperature by measuring the fluorescence in [PIX], [PIX-] and [P+IX] as a function of the temperature. The calculated pt values agree reasonably well with triplet yields measured in isolated reaction centers. Finally, we have measured the reaction center triplet yield (PTR) in intact systems and we have shown that the sum of the triplet yield and the remaining loss processes (PL) in the antenna bacteriochlorophyll including the bacteriochlorophyll dimer (such as fluorescence, internal conversion or direct triplet formation) is approximately constant; if we assume that at 77 K the only process which occurs in the reaction center is the formation of a reaction center triplet, than PTR + PL=1. The energy barrier between [P*IX-] and [P+I-X-] was estimated to be 0.11--0.15 eV for a set of preparations.  相似文献   

4.
Electron transfer in reaction center core (RCC) complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum was studied by measuring flash-induced absorbance changes. The first preparation contained approximately three iron-sulfur centers, indicating that the three putative electron acceptors F(X), F(A), and F(B) were present; the Chl. tepidum complex contained on the average only one. In the RCC complex of Ptc. aestuarii at 277 K essentially all of the oxidized primary donor (P840(+)) created by a flash was rereduced in several seconds by N-methylphenazonium methosulfate. In RCC complexes of Chl. tepidum two decay components, one of 0.7 ms and a smaller one of about 2 s, with identical absorbance difference spectra were observed. The fast component might be due to a back reaction of P840(+) with a reduced electron acceptor, in agreement with the notion that the terminal electron acceptors, F(A) and F(B), were lost in most of the Chl. tepidum complexes. In both complexes the terminal electron acceptor (F(A) or F(B)) could be reduced by dithionite, yielding a back reaction of 170 ms with P840(+). At 10 K in the RCC complexes of both species P840(+) was rereduced in 40 ms, presumably by a back reaction with F(X)(-). In addition, a 350 micros component occurred that can be ascribed to decay of the triplet of P840, formed in part of the complexes. For P840(+) rereduction a pronounced temperature dependence was observed, indicating that electron transfer is blocked after F(X) at temperatures below 200 K.  相似文献   

5.
To assess the extent of genotypic and phenotypic diversity within species of purple nonsulfur bacteria found in aquatic sediments, a total of 128 strains were directly isolated from agar plates that had been inoculated with sediment samples from Haren and De Biesbosch in The Netherlands. All isolates were initially characterized by BOX-PCR genomic DNA fingerprinting, and 60 distinct genotypes were identified. Analyses of 16S rRNA gene sequences of representatives of each genotype showed that five and eight different phylotypes of purple nonsulfur bacteria were obtained from the Haren and De Biesbosch sites, respectively. At the Haren site, 80.5% of the clones were Rhodopseudomonas palustris, whereas Rhodoferax fermentans and Rhodopseudomonas palustris were numerically dominant at the De Biesbosch site and constituted 45.9 and 34.4% of the isolates obtained, respectively. BOX-PCR genomic fingerprints showed that there was a high level of genotypic diversity within each of these species. The genomic fingerprints of Rhodopseudomonas palustris isolates were significantly different for isolates from the two sampling sites, suggesting that certain strains may be endemic to each sampling site. Not all Rhodopseudomonas palustris isolates could degrade benzoate, a feature that has previously been thought to be characteristic of the species. There were differences in the BOX-PCR genomic fingerprints and restriction fragment length polymorphisms of benzoate-coenzyme A ligase genes and form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes between benzoate-degrading and non-benzoate-degrading genotypes. The ability to distinguish these two Rhodopseudomonas palustris groups based on multiple genetic differences may reflect an incipient speciation event resulting from adaptive evolution to local environmental conditions.  相似文献   

6.
Picosecond and nanosecond spectroscopic techniques have been used to study the primary electron transfer processes in reaction centers isolated from the photosynthetic bacterium Rhodopseudomonas viridis. Following flash excitation, the first excited singlet state (P1) of the bacteriochlorophyll complex (P) transfers an electron to an intermediate acceptor (I) in less than 20 ps. The radical pair state (P+I?) subsequently transfers an electron to another acceptor (X) in about 230 ps. There is an additional step of unknown significance exhibiting 35 ps kinetics. P+ subsequently extracts an electron from a cytochrome, with a time constant of about 270 ns. At low redox potential (X reduced before the flash), the state P+I? (or PF) lives approx. 15 ns. It decays, in part, into a longer lived state (PR), which appears to be a triplet state. State PR decays with an exponential time of approx. 55 μs. After continuous illumination at low redox potential (I and X both reduced), excitation with an 8-ps flash produces absorption changes reflecting the formation of the first excited singlet state, P1. Most of P1 then decays with a time constant of 20 ps. The spectra of the absorbance changes associated with the conversion of P to P1 or P+ support the view that P involves two or more interacting bacteriochlorophylls. The absorbance changes associated with the reduction of I to I? suggest that I is a bacteriopheophytin interacting strongly with one or more bacteriochlorophylls in the reaction center.  相似文献   

7.
The effect of UV-B irradiation at temperatures of 22 and 4 °C on flash induced oxygen yields, photochemical activity, and energy transfer in pea thylakoid membranes in the absence and presence of scavengers of reactive oxygen species (ROS) was studied. Three different scavengers were used: dimethyl sulfoxide (DMSO), histidine (His), and n-propyl gallate (nPG). As result of the UV-B treatment of isolated membranes, the flash oxygen yields were considerably affected — the amplitudes decreased and the oscillation pattern was lost. The analysis of the flash oxygen yields and initial oxygen burst showed alterations of a number of oxygen evolving centers in the S0 state as well as changes of decay kinetics of the oxygen burst under continuous irradiation. ROS scavengers exhibited more or less expressed protective effects, nPG being the most effective against UV-B induced damages of the flash oxygen yields. At both the temperatures, photosystem II (PS II) mediated electron transport was more sensitive to the UV-B treatment in comparison with photosystem I (PS I). The analysis of 77 K fluorescence spectra showed that the fluorescence ratio F735/F685 increased by the UV-B treatment probably due to a redistribution of excitation energy between both photosystems most likely caused by partial unstacking and due to a decrease of PS II fluorescence resulting from reaction center-type quenching. The nPG was the most powerful scavenger which protected the oxygen evolution capacity of PS II in the absence and presence of an exogenous electron acceptor to the highest extent.  相似文献   

8.
1. The inhibition by antimycin A of the cyclic electron transfer has been studied in chromatophores from Rhodopseudomonas sphaeroides Ga following an approach based on the analysis of the relaxation kinetics of the reaction center optical changes in pulsed light. The recovery kinetics of the bacteriochlorophyll redox state have been found to be clearly biphasic. The half-times of the fast phase (13 ms) and slow phase (about 400 ms) were not modified by antimycin in a range of concentrations from 0.1 to 9 μM. On the other hand the percentage extent of the fast phase, which reflects the rate of the cyclic electron transfer, was monotonically decreased by increasing concentrations of the inhibitor. This indicates that antimycin decreases progressively the fraction of the photosynthetic units, active in cyclic electron transfer. 2. The ATP yield per flash observed under conditions of controlled inhibition of electron flow was strongly dependent upon the amount of active redox cycles. On the other hand, the amplitude of the carotenoid band shift, which has been demonstrated unequivocally to be correlated to the ATP yield per flash in uninhibited chromatophores, was not affected by antimycin up to a 40% inhibition of electron flow. 3. The effect of a progressive limitation by DCCD in the number of active ATP synthetase complexes on flash-induced phosphorylation has been examined. The decrease in ATP yield observed over a wide range of flash frequencies is related simply to the ATPase activity and to phosphorylation in continuous light, irrespective of the value of the membrane potential, which appears to be stabilized by this inhibitor. 4. As a whole, the results obtained at low concentrations of antimycin and under conditions of partial inhibition by DCCD evidence a localized coupling between the redox reactions and phosphorylation.  相似文献   

9.
Sediment samples obtained from three freshwater lakes and off-shore coastal marine waters on Signy Island, South Orkney Islands, Antarctica have been inoculated into selective enrichment media for purple non-sulphur bacteria (Rhodospirillaceae). From the freshwater sediments strains of Rhodopseudomonas sphaeroides (1), Rhodopseudomonas palustris (1), Rhodospirillum fulvum (1), Rhodospirillum molischanum (1) and Rhodomicrobium vannielii (3) have been isolated. The only purple non-sulphur bacteria obtained from Lake 10 (Amos lake) were strains of Rhodomicrobium vannielii which were able to tolerate hydrogen sulphide (up to 0.04% w/v) found in this lake. Growth of all the other isolates is inhibited by the presence of hydrogen sulphide. Marine sediments yielded strains of Rhodopseudomonas palustris and Rhodomicrobium vannielii . All the isolates grow optimally at temperatures between 25 and 30 °C. mean generation times vary between 8 and 10.7 h depending on species. There is no evidence of cold adaptation in any of the strains studied.  相似文献   

10.
The triplet state EPR spectra of magnetically aligned whole cells of Rhodopseudomonas viridis and Rhodopseudomonas palustris display a marked dependence on the orientation of the static EPR field with respect to the alignment field direction. This observation implies that the primary donor species on which the triplets are localized are ordered within the membranes. We have developed a theoretical model for the system to enable calculation of the orientation of the magnetic axes of the primary donor species with respect to the membranes in which they reside. The triplet state spectra are generated by an ensemble of partially ordered magnetic systems and a computer simulation of the experimental results. The triplet orientation is very similar for the two organisms studied, where one axis lies predominantly in the plane of the membrane and the other two axes have approximately equal projections onto the normal to the membrane.  相似文献   

11.
One prominent difference between the photosystem II (PSII) reaction center protein D1' in Synechocystis 6803 and normal D1 is the replacement of Phe-186 in D1 with leucine in D1'. Mutants of Synechocystis 6803 producing only D1', or containing engineered D1 proteins with Phe-186 substitutions, were analyzed by 77 K fluorescence emission spectra, chlorophyll a fluorescence induction yield and decay kinetics, and flash-induced oxygen evolution. Compared to D1-containing PSII centers, D1' centers exhibited a 50% reduction in variable chlorophyll a fluorescence yield, while the flash-induced O(2) evolution pattern was unaffected. In the F186 mutants, both the P680(+)/Q(A)(-) recombination and O(2) oscillation pattern were noticeably perturbed.  相似文献   

12.
Light-induced absorbance changes were measured at low temperatures in reaction center preparations from Rhodopseudomonas sphaeroides. Absorbance difference spectra measured at 100 degrees K show that ubiquinone is photoreduced at this temperature, both by continuous light and by a short actinic flash. The reduction occurred with relatively high efficiency. These results give support to the idea that ubiquinone is involved in the primary photochemical reaction in Rhodopseudomonas sphaeroides. Reduction of ubiquinone was accompanied by a shift of the infrared absorption band of bacteriopheophytin. The rate of decay of the primary photoproducts (P+870 and ubisemiquinone) appeared to be approximately independent of temperature below 180 degrees K and above 270 degrees K; in the region between 180 and 270 degrees K it increased with decreasing temperature. The rate of decay was not affected by 0-phenanthroline. Secondary reactions were inhibited by lowering the temperature. The light-induced absorbance changes were inhibited by chaotropic agents, like thiocyanate and perchlorate. It was concluded that these agents lower the efficiency of the primary photoconversion. The kinetics indicated that the degree of inhibition was not the same for all reaction centers. The absorption spectrum of the photoconverted reaction centers appeared to be somewhat modified by thiocyanate.  相似文献   

13.
A. Vermeglio  J.M. Carrier 《BBA》1984,764(2):233-238
The inhibition of respiration by continuous or flashing light has been studied in intact cells of different species of photosynthetic bacteria. For Rhodopseudomonas palustris, Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata, the inhibition by short actinic flashes shows a remarkable periodicity of two: each flash induces an inhibition of respiration, but a stimulation is observed after an even number of flashes. On the other hand, no oscillation is observed for Rhodospirillum rubrum and Rhodopseudomonas viridis cells. These different behaviours are explained by a difference in the redox state of the secondary electron acceptor as shown by the effect of ortho-phenanthroline on the amperometric signal. Addition of uncouplers (carbonyl cyanide m-chlorophenylhydrazone) or of an ATPase inhibitor (tri-N-butyl tin), has little effect on the oscillatory pattern induced by flash excitation. However, inhibition of respiration by continuous light is suppressed in the presence of carbonyl cyanide m-chlorophenylhydrazone. In the presence of tri-N-butyl tin the steady-state level is reached more rapidly than in the control experiment for a given light intensity. These results are interpreted as evidence of two modes of light inhibition of respiration in photosynthetic bacteria. A first type of inhibition, clearly shown under flash excitation, is due to interaction between respiratory and photosynthetic chains at the level of electron carriers. After each flash, an electron is diverted from the respiratory chain to the photooxidized reaction center. Because of the gating mechanism at the level of the secondary acceptor, the respiration is stimulated after an even number of flashes. The second mode of inhibition prevails under continuous illumination. Under these conditions, the rate of respiration is controlled essentially by the photoinduced proton electrochemical gradient.  相似文献   

14.
Emission spectra of bacteriochlorophyll a fluorescence and absorption spectra of various purple bacteria were measured at temperatures between 295 and 4 K. For Rhodospirillum rubrum the relative yield of photochemistry was measured in the same temperature region. In agreement with earlier results, sharpening and shifts of absorption bands were observed upon cooling to 77 K. Below 77 K further sharpening occurred. In all species an absorption band was observed at 751-757 nm. The position of this band and its amplitude relative to the concentration of reaction centers indicate that this band is due to reaction center bacteriopheophytin. The main infrared absorption band of Rhodopseudomonas sphaeroides strain R26 is resolved in two bands at low temperature, which may suggest that there are two pigment-protein complexes in this species. Emission bands, like the absorption bands, shifted and sharpened upon cooling. The fluorescence yield remained constant or even decreased in some species between room temperature and 120 K, but showed an increased below 120 K. This increase was most pronounced in species, such as R. rubrum, which showed single banded emission spectra. In Chromatium vinosum three (835, 893 and 934 nm) and in Rps. sphaeroides two (888 and 909 nm) emission bands were observed at low temperature. The temperature dependence of the amplitudes of the short wavelength bands indicated the absence of a thermal equilibrium for the excitation energy distribution in C. vinosum and Rps. sphaeroides. In all species the increased in the yield was larger when all reaction centers were photochemically active than when the reaction centers were closed. In R. rubrum the increase in the fluorescence yield was accompanied by a decrease of the quantum yield of charge separation upon excitation of the antenna but not of the reaction center chlorophyll. Calculation of the F?rster resonance integral at various temperatures indicated that the increase in fluorescence yield and the decrease in the yield of photochemistry may be due to a decrease in the rate of energy transfer between antenna bacteriochlorophyll molecules. The energy transfer from carotenoids to bacteriochlorophyll was independent of the temperature in all species examined. The results are discussed in terms of existing models for energy transfer in the antenna pigment system.  相似文献   

15.
Soluble inorganic pyrophosphatases of five species of nonsulfur purple bacteria were investigated in respect to reaction kinetics, regulatory behavior, and other characteristics. The enzymes appear to fall into two groups with correlated properties. The pyrophosphatases of Rhodopseudomonas capsulata and R. spheroides have molecular weights of approximately 60,000, are stabilized by Co(2+), and exhibit simple Michaelis-Menten reaction kinetics. On the other hand, the enzymes of R. palustris, R. gelatinosa, and Rhodospirillum rubrum are larger (molecular weight approximately 100,000), require Zn(2+) for maintenance of catalytic activity, and show complex reaction kinetics; these pyrophosphatases are activated by free Mg(2+) ions and, in the absence of the latter, are inhibited by 2-phosphoglyceric acid. The results described indicate the existence of alternative control patterns for regulation of intracellular turnover of phosphate, which is in part mediated by pyrophosphatases.  相似文献   

16.
The dark, anaerobic fermentation of pyruvate under growth conditions was examined with the following species of phototrophic purple bacteria: Rhodospirillum rubrum strains Ha and S1, Rhodopseudomonas gelatinosa strain 2150, Rhodopseudomonas acidophila strain 7050, Rhodopseudomonas palustris strain ATCC 17001, Rhodopseudomonas capsulata strains Kb1 and 6950, Rhodopseudomonas sphaeroides strain ATCC 17023, and Chromatium vinosum strain D. Fermentation balances were established for all experiments. Under fermentative conditions cell protein and dry weight increased only slightly, if at all. The species differed considerably in their fermentative activity; R. rubrum and R. gelatinosa exhibited the highest rates (2-8 mumoles pyruvate/mg protein-h). R. acidophila and R. capsulata showed an intermediate fermentation rate (0.4--2.0 mumoles pyruvate/mg protein-h), while the other strains tested fermented at quite low rates (0.2-0.4 mumoles pyruvate/mg protein-h). The extremes of fermentation times were from 30-380 hours. Based on the products of fermentation which were formed in addition to acetate, formate, and CO2, the species can be grouped as follows: a) R. rubrum, R. gelatinosa, and R. sphaeroides additionally form propionate. b) R. gelatinosa, R. palustris, R. capsulata, R. sphaeroides, and C. vinosum additionally form lactate. R. palustris also produces butyrate. c) R. acidophila and R. capsulata additionally form much 2,3-butanediol, acetoin, and diacetyl. Small amounts of acetoin were formed by the rest of the strains. A comparison of the fermentation of pyruvate by normal and starved cells (4 days in the light without a carbon source) of R. rubrum and R. gelatinosa shows that the latter ferment more slowly and produce less acetate and formate, but more propionate or lactate. The fermentation of pyruvate by R. rubrum was also studied in cultures in which the pH fell (7.2--6.6). Compared with the fermentation at neutral pH (7.3, 7.4), the following differences were found: a slower fermentation rate, an increased production of dry weight, an increased formation of propionate, but a reduced formation of acetate and a very low production of formate.  相似文献   

17.
Delayed fluorescence from Rhodopseudomonas viridis membrane fragments has been studies using a phosphoroscope employing single, short actinic flashes, under conditions of controlled redox potential and temperature. The emission spectrum shows that delayed fluorescence is emitted by the bulk, antenna bacteriochlorophyll. The energy for delayed fluorescence, however, must be stored in a reaction-center complex including the photooxidized form (P+) of the primary electron-donor (P) and the photoreduced form (X MINUS) of the primary electron-acceptor. This is shown by the following observations: (1) Delayed luminescence is quenched (a) at low redox potentials which allow cytochromes to reduce P+ rapidly after the flash, (b) at higher redox potentials which, by oxidizing P chemically, prevent the photochemical formation of P+X minus, and (c) upon transfer of an electron from X minus to a secondary acceptor, Y. (2) Under conditions that prevent the reduction of P+ by cytochromes and the oxidation of X minus by Y, the decay kinetics of delayed fluorescence are identical with those of P+X minus, as measured from optical absorbance changes. The main decay route for P+X minus under these conditions has a rate-constant of approximately 10-3-s-minus 1. In contrase, a comparison of the intensities of delayed and prompt fluorescence indicates that the process in which P+X minus returns energy to the bulk bacteriochlorophyll has a rate-constant of 3.7 s-minus 1, at 295 degrees K and pH 7.8. The decay kinetics of P+X minus and delayed fluorescence change little with temperature, whereas the intensity of delayed fluorescence increases with increasing temperature, having an activation energy of 12.5 kcal mol-mol- minus 1. We conclude that the main decay route involves tunneling of an electron from X minus to P+, without the promotion of P to an excited state. Delayed fluorescence requires such a promotion, followed by transfer of energy to the bulk bacteriochlorophyll, and this combination of events is rare. The activation energy, taken with potentiometric data, indicates that the photochemical conversion of PX to P+X minus results in increases of both the energy and the entropy of the system, by 16.6 kcal-mol- minus 1 and 8.8 cal-mol- minus 1-deg- minus 1. The intensity of delayed fluorescence depends strongly on the pH; the origin of this effect remains unclear.  相似文献   

18.
The low temperature EPR signal of the excited triplet state of bacteriochlorophyll has been quantitatively studied in reaction centers from Rhodopseudomonas spheroides (carotenoid free R 26 mutant). Using laser flash excitation the light saturation curve of the triplet signal has been compared with that of the free-radical formation due to photooxidation of P870 under identical optical conditions. This comparison shows that the quantum yield of triplet formation is nearly the same as that of the photochemical bleaching of bacteriochlorophyll.  相似文献   

19.
The fluorescence quantum yield in spinach chloroplasts at room temperature has been studied utilizing a 0.5-4.0 mus duration dye laser flash of varying intensities as an excitation source. The yield (phi) and carotenoid triplet concentration were monitored both during and following the laser flash. The triplet concentration was monitored by transient absorption spectoscopy at 515 nm, while the yield phi following the laser was probed with a low intensity xenon flash. The fluorescence is quenched by factors of up to 10-12, depending on the intensity of the flash and the time interval following the onset of the flash. This quenching is attributed to a quencher Q whose concentration is denoted by Q. The relative instantaneous concentration of Q was calculated from phi utilizing the Stern-Volmer equation, and its buildup and decay kinetics were compared to those of carotenoid triplets. At high flash intensities (greater than 10(16) photon . cm-2) the decay kinetics of Q are slower than those of the carotenoid triplets, while at lower flash intensities they are similar. Q is sensitive to oxygen and it is proposed that Q, at the higher intensities, is a trapped chlorophyll triplet. This hypothesis accounts well for the continuing rise of the carotenoid triplet concentration for 1-2 mus after the cessation of the laser pulse by a slow detrapping mechanism, and the subsequent capture of the triplet energy by carotenoid molecules. At the maximum laser intensities, the carotenoid triplet concentration is about one per 100 chlorophyll molecules. The maximum chlorophyll ion concentration generated by the laser pulses was estimated to be below 0.8 ions/100 chlorophyll molecules. None of the observations described here were altered when a picosecond pulse laser train was substituted for the microsecond pulse. A simple kinetic model describing the generation of singlets and triplets (by intersystem crossing), and their subsequent interaction leading to fluorescence quenching, accounts well for the observations. The two coupled differential equations describing the time dependent evolution of singlet and triplet excited states are solved numerically. Using a single-triplet bimolecular rate constant of gammast = 10(-8) cm3 . s-1, the following observations can be accounted for: (1) the rapid initial drop in phi and its subsequent levelling off with increasing time during the laser pulse, (2) the buildup of the triplets during the pulse, and (3) the integrated yield of triplets per pulse as a function of the energy of the flash.  相似文献   

20.
The structural analysis of the individual components of the photosynthetic apparatus of Rhodopseudomonas palustris, or those of related species, is almost complete. To shed light on the assembly and organization of this machinery, we have studied native membranes of Rps.palustris grown under different light conditions using atomic force microscopy (AFM). The organization of the complexes in the membranes is different from any previously observed: with areas of crystalline core-complexes, crystalline peripheral antennae, mixed domains, and apparently pure lipid membranes devoid of protein. Examination of antennae structure shows that chromatic adaptation is associated with modifications in absorption and size of the peripheral light harvesting complexes (LH2) as light intensity is reduced. The core-complex is observed to contain a reaction centre (RC) surrounded by an elliptical assembly of 15 LH1 subunits and a "gap" attributed to the W-subunit. The localization of the W-subunit is not restricted to the periapsis of the core-complex but randomly located with respect to the RC imposed axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号