首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propagation of action potentials during neuronal signal transduction in phospholipid membranes is mediated by ion channels, a diverse group of membrane proteins. The S4-S5 linker peptide (S4-S5), that connects the S4 and S5 transmembrane segments of voltage-gated potassium channels is an important region of the Shaker ion-channel protein. Despite its importance, very little is known about its structure. Here we provide evidence for an amphipathic alpha-helical conformation of a synthetic S4-S5 peptide of the voltage-gated Drosophila melanogaster Shaker potassium channel in water/trifluoroethanol and in aqueous phospholipid micelles. The three-dimensional solution structures of the S4-S5 peptide were obtained by high-resolution nuclear magnetic resonance spectroscopy and distance-geometry/simulated-annealing calculations. The detailed structural features are discussed with respect to model studies and available mutagenesis data on the mechanism and selectivity of the potassium channel.  相似文献   

2.
Alamethicin is an amphipathic alpha-helical peptide that forms ion channels. An early event in channel formation is believed to be the binding of alamethicin to the surface of a lipid bilayer. Molecular dynamics simulations are used to compare the structural and dynamic properties of alamethicin in water and alamethicin bound to the surface of a phosphatidylcholine bilayer. The bilayer surface simulation corresponded to a loosely bound alamethicin molecule that interacted with lipid headgroups but did not penetrate the hydrophobic core of the bilayer. Both simulations started with the peptide molecule in an alpha-helical conformation and lasted 2 ns. In water, the helix started to unfold after approximately 300 ps and by the end of the simulation only the N-terminal region of the peptide remained alpha-helical and the molecule had collapsed into a more compact form. At the surface of the bilayer, loss of helicity was restricted to the C-terminal third of the molecule and the rod-shaped structure of the peptide was retained. In the surface simulation about 10% of the peptide/water H-bonds were replaced by peptide/lipid H-bonds. These simulations suggest that some degree of stabilization of an amphipathic alpha-helix occurs at a bilayer surface even without interactions between hydrophobic side chains and the acyl chain core of the bilayer.  相似文献   

3.
Alamethicin is a 20-amino acid antibiotic peptide that forms voltage-gated ion channels in lipid bilayers. Here we report calculations of its association free energy with membranes. The calculations take into account the various free-energy terms that contribute to the transfer of the peptide from the aqueous phase into bilayers of different widths. The electrostatic and nonpolar contributions to the solvation free energy are calculated using continuum solvent models. The contributions from the lipid perturbation and membrane deformation effects and the entropy loss associated with peptide immobilization in the bilayer are estimated from a statistical thermodynamic model. The calculations were carried out using two classes of experimentally observed conformations, both of which are helical: the NMR and the x-ray crystal structures. Our calculations show that alamethicin is unlikely to partition into bilayers in any of the NMR conformations because they have uncompensated backbone hydrogen bonds and their association with the membrane involves a large electrostatic solvation free energy penalty. In contrast, the x-ray conformations provide enough backbone hydrogen bonds for the peptide to associate with bilayers. We tested numerous transmembrane and surface orientations of the peptide in bilayers, and our calculations indicate that the most favorable orientation is transmembrane, where the peptide protrudes approximately 4 A into the water-membrane interface, in very good agreement with electron paramagnetic resonance and oriented circular dichroism measurements. The calculations were carried out using two alamethicin isoforms: one with glutamine and the other with glutamate in the 18th position. The calculations indicate that the two isoforms have similar membrane orientations and that their insertion into the membrane is likely to involve a 2-A deformation of the bilayer, again, in good agreement with experimental data. The implications of the results for the biological function of alamethicin and its capacity to oligomerize and form ion channels are discussed.  相似文献   

4.
Planar systems - monolayers and films - constitute a useful platform for studying membrane-active peptides. Here, we summarize varied approaches for studying peptide organization and peptide-lipid interactions at the air/water interface, and focus on three representative antimicrobial membrane-associated peptides—alamethicin, gramicidin, and valinomycin. Experimental data, specifically surface pressure/area isotherms and Brewster angle microscopy images, provided information on peptide association and the effects of the lipid monolayers on peptide surface organization. In general, film analysis emphasized the effects of lipid layers in promoting peptide association and aggregation at the air/water interface. Importantly, the data demonstrated that in many cases peptide domains are phase-separated within the phospholipid monolayers, suggesting that this behavior contributes to the biological actions of membrane-active antimicrobial peptides.  相似文献   

5.
The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel.  相似文献   

6.
Incorporation of the helical antimicrobial peptide alamethicin from aqueous phase into hydrated phases of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) was investigated within a range of peptide concentrations and temperatures by time-resolved synchrotron X-ray diffraction. It was found that alamethicin influences the organizations of the non-bilayer-forming (DOPE) and the bilayer-forming (DOPC) lipids in different ways. In DOPC, only the bilayer thickness was affected, while in DOPE new phases were induced. At low peptide concentrations (<1.10(-4) M), an inverted hexagonal (H(II)) phase was observed as with DOPE dispersions in pure buffer solution. A coexistence of two cubic structures was found at the critical peptide concentration for induction of new lipid/peptide phases. The first one Q224 (space group Pn3m) was identified within the entire temperature region studied (from 1 to 45 degrees C) and was found in coexistence with H(II)-phase domains. The second lipid/peptide cubic structure was present only at temperatures below 16 degrees C and its X-ray reflections were better fitted by a Q212 (P4(3)32) space group, rather than by the expected Q229 (Im3m) space group. At alamethicin concentrations of 1 mM and higher, a nonlamellar phase transition from a Q224 cubic phase into an H(II) phase was observed. Within the investigated range of peptide concentrations, lamellar structures of two different bilayer periods were established with the bilayer-forming lipid DOPC. They correspond to lipid domains of associated and nonassociated helical peptide. The obtained X-ray results suggest that the amphiphilic alamethicin molecules adsorb from the aqueous phase at the lipid head group/water interface of the DOPE and DOPC membranes. At sufficiently high (>1.10(-4) M) solution concentrations, the peptide is probably accommodated in the head group region of the lipids thus inducing structural features of mixed lipid/peptide phases.  相似文献   

7.
The linear polypeptide antibiotic alamethicin is known to form channels in artificial lipid membranes. Synthetic 13- and 17-residue alamethicin fragments, labelled with a fluorescent dansyl group at the N-terminus, have been shown to translocate divalent cations across phospholipid membranes and to uncouple oxidative phosphorylation in rat liver mitochondria, in a manner analogous to the parent peptides. From studies of the aqueous phase aggregation behavior of the peptides, as well as their interaction with rat liver mitochondria, it is concluded that the interaction of the peptides with membranes is a complex process, probably involving both aqueous and membrane phase aggregation.  相似文献   

8.
Interaction of cationic antimicrobial peptides with model membranes   总被引:14,自引:0,他引:14  
A series of natural and synthetic cationic antimicrobial peptides from various structural classes, including alpha-helical, beta-sheet, extended, and cyclic, were examined for their ability to interact with model membranes, assessing penetration of phospholipid monolayers and induction of lipid flip-flop, membrane leakiness, and peptide translocation across the bilayer of large unilamellar liposomes, at a range of peptide/lipid ratios. All peptides were able to penetrate into monolayers made with negatively charged phospholipids, but only two interacted weakly with neutral lipids. Peptide-mediated lipid flip-flop generally occurred at peptide concentrations that were 3- to 5-fold lower than those causing leakage of calcein across the membrane, regardless of peptide structure. With the exception of two alpha-helical peptides V681(n) and V25(p,) the extent of peptide-induced calcein release from large unilamellar liposomes was generally low at peptide/lipid molar ratios below 1:50. Peptide translocation across bilayers was found to be higher for the beta-sheet peptide polyphemusin, intermediate for alpha-helical peptides, and low for extended peptides. Overall, whereas all studied cationic antimicrobial peptides interacted with membranes, they were quite heterogeneous in their impact on these membranes.  相似文献   

9.
The hydropathy plot of ROMK1, an inwardly rectifying K+ channel, suggests that the channel contains two transmembrane domains (M1 and M2) and a linker between them with significant homology to the H5 pore region of voltage-gated K+ channels. To gain structural information on the pore region of the ROMK1 channel, we used a spectrofluorimetric approach and characterized the structure, the organization state, and the ability of the putative membranous domains of the ROMK1 channel to self-assemble and coassemble within lipid membranes. Circular dichroism (CD) spectroscopy revealed that M1 and M2 adopt high alpha-helical structures in egg phosphatidylcholine small unilamellar vesicles and 40% trifluoroethanol (TFE)/water, whereas H5 is not alpha-helical in either egg phosphatidylcholine small unilamellar vesicles or 40% TFE/water. Binding experiments with 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole (NBD)-labeled peptide demonstrated that all of the peptides bind to zwitterionic phospholipid membranes with partition coefficients on the order of 10(5) M-1. Tryptophan quenching experiments using brominated phospholipids revealed that M1 is dipped into the hydrophobic core of the membrane. Resonance energy transfer (RET) measurements between fluorescently labeled pairs of donor (NBD)/acceptor (rhodamine) peptides revealed that H5 and M2 can self-associate in their membrane-bound state, but M1 cannot. Moreover, the membrane-associated nonhelical H5 serving as a donor can coassemble with the alpha-helical M2 but not with M1, and M1 can coassemble with M2. No coassembly was observed between any of the segments and a membrane-embedded alpha-helical control peptide, pardaxin. The results are discussed in terms of their relevance to the proposed topology of the ROMK1 channel, and to general aspects of molecular recognition between membrane-bound polypeptides.  相似文献   

10.
Phospholipid bilayers made from monolayers on patch-clamp pipettes.   总被引:19,自引:8,他引:11       下载免费PDF全文
Phospholipid bilayers were made from phospholipid monolayers at the air/water interface on patch-clamp pipettes. Lipid bilayers were characterized using the K+ carrier nonactin and the channel formers gramicidin and alamethicin. Bilayers were also formed from monolayers spontaneously assembled in a suspension of native vesicles from cardiac sarcolemma and lobster axonal membranes and an excess of lipids. In these types of bilayers we observed several different channels including one contained in the axonal membrane that shows delayed rectifier behavior. This technique permits the study of reconstituted channels on a time scale and noise comparable to cellular patch-clamp standards.  相似文献   

11.
We present a first study using synchrotron grazing incidence diffraction and X-ray reflectivity measurements on mixed phospholipid/peptide monolayers at the air/water interface. The thermodynamic properties of the pure and mixed monolayers were characterized using the classical film balance technique. Surface pressure/potential-area isotherms showed that the antimicrobial frog skin peptide PGLa formed a very stable monolayer with two PGLa molecules per kinetic unit and a collapse pressure of ~22 mN/m. X-ray grazing incidence diffraction indicated that the peptide-dimer formation did not lead to self-aggregation with subsequent crystallite formation. However, the scattering length density profiles derived from X-ray reflectivity measurements yield information on the PGLa monolayer that protrudes into the air phase by about 0.8 nm, suggesting that the peptide is aligned parallel to the air/water interface. The monolayers, composed of disaturated phosphatidylcholines or phosphatidylglycerols, were stable up to 60 mN/m and exhibited a first-order transition from a liquid-expanded to a liquid-condensed state around 10 mN/m. Structural details of the phospholipid monolayers in the presence and absence of PGLa were obtained from synchrotron experiments. Thereby, the X-ray data of distearoylphosphatidylcholine/PGLa can be analyzed by being composed of the individual components, while the peptide strongly perturbed the lipid acyl chain order of distearoylphosphatidylglycerol. These results are in agreement that PGLa mixes at a molecular level with negatively charged lipids, but forms separate islands in zwitterionic phosphatidylcholine monolayers and demonstrates that antimicrobial peptides can discriminate between the major phospholipid components of bacterial and mammalian cytoplasmic membranes.  相似文献   

12.
Alamethicin is a 19-residue hydrophobic peptide, which is extended by a C-terminal phenylalaninol but lacks residues that might anchor the ends of the peptide at the lipid-water interface. Voltage-dependent ion channels formed by alamethicin depend strongly in their characteristics on chain length of the host lipid membranes. EPR spectroscopy is used to investigate the dependence on lipid chain length of the incorporation of spin-labeled alamethicin in phosphatidylcholine bilayer membranes. The spin-label amino acid TOAC is substituted at residue positions n = 1, 8, or 16 in the sequence of alamethicin F50/5 [TOAC(n), Glu(OMe)(7,18,19)]. Polarity-dependent isotropic hyperfine couplings of the three TOAC derivatives indicate that alamethicin assumes approximately the same location, relative to the membrane midplane, in fluid diC(N)PtdCho bilayers with chain lengths ranging from N = 10-18. Residue TOAC(8) is situated closest to the bilayer midplane, whereas TOAC(16) is located farther from the midplane in the hydrophobic core of the opposing lipid leaflet, and TOAC(1) remains in the lipid polar headgroup region. Orientational order parameters indicate that the tilt of alamethicin relative to the membrane normal is relatively small, even at high temperatures in the fluid phase, and increases rather slowly with decreasing chain length (from 13 degrees to 23 degrees for N = 18 and 10, respectively, at 75 degrees C). This is insufficient for alamethicin to achieve hydrophobic matching. Alamethicin differs in its mode of incorporation from other helical peptides for which transmembrane orientation has been determined as a function of lipid chain length.  相似文献   

13.
The droplet interface bilayer (DIB) method offers simple control over initial leaflet compositions in model membranes, enabling an experimental path to filling gaps in our knowledge about the interplay between compositional lipid asymmetry, membrane properties, and the behaviors of membrane-active species. Yet, the stability of lipid leaflet asymmetry in DIBs has received very little attention, particularly in the presence of peptides and ion channels that are often studied in DIBs. Herein, we demonstrate for the first time parallel, capacitance-based measurements of intramembrane potential with arrays of asymmetric DIBs assembled in a microfluidic device to characterize the stability of leaflet asymmetry over many hours in the presence and absence of membrane-active peptides. DIBs assembled from opposing monolayers of the ester (DPhPC) and ether (DOPhPC) forms of diphytanoyl-phosphatidylcholine yielded asymmetric bilayers with leaflet compositions that were stable for at least 18?h as indicated by a stable |137?mV| intramembrane potential. In contrast, the addition of surface-bound alamethicin peptides caused a gradual, concentration-dependent decrease in the magnitude of the dipole potential difference. Intermittent current-voltage measurements revealed that alamethicin in asymmetric DIBs also shifts the threshold voltage required to drive peptide insertion and ion channel formation. These outcomes take place over the course of 1 to 5?h after membrane formation, and suggest that alamethicin peptides promote lipid flip-flop, even in the un-inserted, surface-bound state, by disordering lipids in the monolayer to which they bind. Moreover, this methodology establishes the use of parallel electrophysiology for efficiently studying membrane asymmetry in arrays of DIBs.  相似文献   

14.
Alamethicin, a linear 20-amino acid antibiotic, forms voltage-dependent channels in lipid bilayer membranes. We show here that alamethicin-phospholipid conjugates can be prepared by photolysis of unilamellar vesicles containing alamethicin and a phosphatidylcholine analogue with a carbene precursor at the end of the C-2 fatty acyl chain. This result indicates that at least a portion of the alamethicin molecule is in contact with the hydrocarbon moiety of the membrane in the absence of an applied voltage. Furthermore, the alamethicin-phospholipid photoproduct is able to induce a voltage-gated conductance similar to that of natural alamethicin. The importance of these results in terms of mechanisms for channel gating is discussed.  相似文献   

15.
Planar systems--monolayers and films--constitute a useful platform for studying membrane-active peptides. Here, we summarize varied approaches for studying peptide organization and peptide-lipid interactions at the air/water interface, and focus on three representative antimicrobial membrane--associated peptides-alamethicin, gramicidin, and valinomycin. Experimental data, specifically surface pressure/area isotherms and Brewster angle microscopy images, provided information on peptide association and the effects of the lipid monolayers on peptide surface organization. In general, film analysis emphasized the effects of lipid layers in promoting peptide association and aggregation at the air/water interface. Importantly, the data demonstrated that in many cases peptide domains are phase-separated within the phospholipid monolayers, suggesting that this behavior contributes to the biological actions of membrane-active antimicrobial peptides.  相似文献   

16.
An experimental study of phosphocholine membranes made from one lipid, from mixtures of DPPC and DLPC, and also from lipids and small amounts of alamethicin is presented. We used atomic force microscopy to investigate the spatial organization and structure of lipid domains and also of the defects induced by the peptide. Alamethicin was found to alter the state of lipids in the gel state in a way that domains of fluid lipids are formed close to the defects. Differential calorimetry revealed phase characteristics of the lipid mixtures and the effect of small amounts of alamethicin on the phase behavior. It was also shown that the sound velocity profiles of the membranes suspensions can be well calculated from the heat capacity traces of the samples. This result confirms the correlation between the mechanical properties and the specific heat of membrane systems.  相似文献   

17.
Understanding the binding and insertion of peptides in lipid bilayers is a prerequisite for understanding phenomena such as antimicrobial activity and membrane-protein folding. We describe molecular dynamics simulations of the antimicrobial peptide alamethicin in lipid/water and octane/water environments, taking into account an external electric field to mimic the membrane potential. At cis-positive potentials, alamethicin does not insert into a phospholipid bilayer in 10 ns of simulation, due to the slow dynamics of the peptide and lipids. However, in octane N-terminal insertion occurs at field strengths from 0.33 V/nm and higher, in simulations of up to 100 ns duration. Insertion of alamethicin occurs in two steps, corresponding to desolvation of the Gln7 side chain, and the backbone of Aib10 and Gly11. The proline induced helix kink angle does not change significantly during insertion. Polyalanine and alamethicin form stable helices both when inserted in octane and at the water/octane interface, where they partition in the same location. In water, both polyalanine and alamethicin partially unfold in multiple simulations. We present a detailed analysis of the insertion of alamethicin into the octane slab and the influence of the external field on the peptide structure. Our findings give new insight into the mechanism of channel formation by alamethicin and the structure and dynamics of membrane-associated helices.  相似文献   

18.
Alamethicin incorporation in lipid bilayers: a thermodynamic study   总被引:8,自引:0,他引:8  
V Rizzo  S Stankowski  G Schwarz 《Biochemistry》1987,26(10):2751-2759
Interaction of the peptide antibiotic alamethicin with phospholipid vesicles has been monitored by changes in its circular dichroic and fluorescent properties. The data are consistent with an incorporation of the peptide in the lipid bilayer. Aggregation of alamethicin in the membrane phase is evident from a characteristic concentration dependence of the incorporation, reflecting the existence of a critical concentration. The data can be fully understood in terms of a theoretical approach that includes aggregation and thermodynamic nonideality. Thermodynamic parameters of the peptide-lipid interaction have been evaluated under a variety of conditions of temperature, ionic strength, and lipid type (saturated and unsaturated fatty acid chains). From the results obtained in this study, one can extrapolate to the incorporation behavior of alamethicin at low concentrations, as they are typical for measurements of conductance across planar lipid films. This leads to a simple explanation of the voltage-gating mechanism of alamethicin in a straightforward way.  相似文献   

19.
The membrane-interacting domain that precedes the transmembrane anchor of Ebola glycoprotein has been characterized. This aromatic-rich region is predicted to bind the membrane interface adopting an alpha-helical structure. Peptides representing either the Ebola glycoprotein pre-transmembrane sequence, or a 'scrambled' control with a different hydrophobic-at-interface moment, have been studied. Insertion into lipid monolayers, changes in intrinsic fluorescence and in infrared spectra demonstrated that only the wild-type peptide bound the interface under equilibrium conditions and adopted an alpha-helical conformation. The presence of the raft-associated lipid sphingomyelin did not affect membrane insertion, but it stimulated highly the membrane-destabilizing capacity of the pre-transmembrane sequence. A parallel study of the effects of the viral sequence and of melittin suggests that Ebola glycoprotein pre-transmembrane sequence might target membranes inherently prone to destabilization by lytic peptides.  相似文献   

20.
Basic amphipathic alpha-helical peptides Ac-(Leu-Ala-Arg-Leu)3 or 4-NHCH3 (4(3) or 4(4)) and H-(Leu-Ala-Arg-Leu)3-(Leu-Arg-Ala-Leu)2 or 3-OH (4(5) or 4(6)) were synthesized and studied in terms of their interactions with phospholipid membranes, biological activity, and ion channel-forming ability. CD study of the peptides showed that they form alpha-helical structures in the presence of phospholipid liposomes and thus they have amphipathic distribution of the side chains along the axis of the helix. A leakage study of carboxyfluorescein encapsulated in phospholipid vesicles indicated that the peptides possess a highly potent ability to perturb the membrane structure. Membrane current measurements using the planar lipid bilayer technique revealed that the peptide 4(6), which was long enough to span the lipid bilayer in the alpha-helical structure, formed cation-selective ion channels at a concentration of 0.5 microM in a planar diphytanoylphosphatidylcholine bilayer. In contrast, other shorter peptides failed to form discrete and stable channels though they occasionally induced an increase in the membrane current with erratic conductance levels. The probability of detecting a conductance increase was in the order of 4(6) greater than 4(5) greater than 4(4) greater than 4(3), which corresponds to the order of the peptide chain lengths. Furthermore, 4(6) but not 4(5) showed an antimicrobial activity against both Gram-positive and -negative bacteria. The structure of ion channels formed by 4(6) and the relationship between the peptide chain length and biological activity of the synthetic peptides are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号