首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 20S proteasome from the extreme thermophile Methanococcus jannaschii (Mj) was purified and sequenced to facilitate production of the recombinant proteasome in E. coli. The recombinant proteasome remained in solution at a purity level of 80-85% (according to SDS PAGE) following incubation of cell lysates at 70 degrees C. Temperature-activity profiles indicated that the temperature optima of the wild-type and recombinant enzymes differed substantially, with optimal activities occurring at 119 degrees C and 95 degrees C, respectively. To ameliorate this discrepancy, two recombinant enzyme preparations were produced, each of which included denaturation of the proteasome by 4 M urea followed by high-temperature (85 degrees C) dialysis. The wild-type temperature optimum was restored, but only if proteasome subunits were denatured and refolded prior to assembly (a preparation designated as alpha & beta). In contrast, when proteasome assembly preceded denaturation (designated alpha + beta) the optimum temperature was raised to a lesser degree. Moreover, the alpha & beta and alpha + beta preparations had apparent thermal half-lives at 114 degrees C of 54.2 and 26.2 min, respectively, and the thermostability of the less stable enzyme was more sensitive to a reduction in pH. Attainment of wild-type activity and stability thus required the proper folding of both the alpha- and beta-subunits prior to proteasome assembly. Consistent with this behavior, dual-scanning calorimetry (DSC) measurements revealed differences in the reassembly efficiency of the two proteasome preparations. The ability to produce structural conformers with dramatically different thermal optima and thermostabilities may facilitate the determination of molecular forces and structural motifs responsible for enzyme thermostablity and high-temperature activity.  相似文献   

2.
3.
Systemic salt loading has been reported to facilitate operant heat-escape/cold-seeking behavior. In the present study, we hypothesized that the median preoptic nucleus (MnPO) would be involved in this mechanism. Rats were divided into two groups (n = 6 each): one group had the MnPO lesion with ibotenic acid (4.0 mug) and the other was the vehicle control. After subcutaneous injection (10 ml/kg) of either isotonic- (154 mM) or hypertonic-saline (2,500 mM), each rat was placed in a behavior box, where the ambient temperature was changed to 26 degrees C, 35 degrees C, and 40 degrees C every 1 h. The position of a rat in the box and the body core temperature (T(core)) were monitored. A rat could trigger 0 degrees C air for 45 s in the 35 degrees C and 40 degrees C heat when moved in a specific area in the box (operant behavior). In the control group, counts of the operant behavior were greater (P < 0.05) in the hypertonic- than in the isotonic-saline injection (17 +/- 2 and 10 +/- 2 at 35 degrees C, 24 +/- 2 and 18 +/- 1 at 40 degrees C). T(core) remained unchanged throughout the exposure, although the level was lower (P < 0.05) in the hypertonic- than in the isotonic-saline trial (36.6 +/- 0.2 degrees C and 37.4 +/- 0.1 degrees C at 26 degrees C and 36.9 +/- 0.2 degrees C and 37.4 +/- 0.1 degrees C at 40 degrees C, respectively). However, in the MnPO-lesion group, counts of the behavior were similar between the hypertonic- and isotonic-saline injection trials (10 +/- 2 and 8 +/- 1 at 35 degrees C, and 17 +/- 1 and 16 +/- 1 at 40 degrees C, respectively). T(core) increased (P < 0.05) in the heat in both trials (36.8 +/- 0.1 degrees C and 37.4 +/- 0.1 degrees C at 26 degrees C and 37.4 +/- 0.2 degrees C and 37.8 +/- 0.2 degrees C at 40 degrees C in the hypertonic- and isotonic-saline injection trials, respectively). These results may suggest that, at least in part, the MnPO is involved in the facilitation of heat-escape/cold-seeking behavior during osmotic stimulation.  相似文献   

4.
5.
Cells of Tetrahymena pyriformis--NT1 were cultured at 38 degrees C (Tg 38 degrees C) and 20 degrees C (Tg 20 degrees C) and their properties investigated over the range 0-40 degrees C. Tg 20 degrees C cells were viable in the range 3-33 degrees C and changes in their properties were readily reversible between 10 degrees C and 30 degrees C. Tg 38 degrees cells were viable in the range 40-10 degrees C and their property changes were immediately reversible in the range 40-23 degrees C. The I-V relations of Tg 38 degrees C cells showed increased excitability as the cells were cooled from 40 degrees C. At 10 degrees C there was a considerable loss of excitability and slope resistance. Cooling Tg 20 degrees C cells from 20 degrees C gave a similar pattern, although over a narrower temperature range. Warming Tg 20 degrees C Tetrahymena above 20 degrees C led to a progressive loss of excitability and the cells were markedly less viable above 35 degrees C. Within physiological limits the regenerative spike magnitude, repolarization time, time to peak and input resistance increased as temperature was lowered, whereas resting potential was diminished. When compared at their growth temperatures and most intermediate temperatures, the value of the various parameters monitored were generally different for the two cultures. The Q10 value for resting potential changes of Tg 20 degrees C cells about 20 degrees C was 1.20. As in T. vorax this was significantly (P less than 0.01) greater than that predicted for a diffusion potential and suggested that T. pyriformis--NT1 may have an electrogenic pump component in its membrane potential.  相似文献   

6.
During cold exposure, animals upregulate their metabolism and food intake, potentially exposing them to elevated reactive oxygen species (ROS) production and oxidative damage. We investigated whether acute cold (7 +/- 3 degrees C) exposure (1, 10, or 100 h duration) affected protein oxidation and proteasome activity, when compared to warm controls (22 +/- 3 degrees C), in a small mammal model, the short-tailed field vole Microtus agrestis. Protein carbonyls and the chymotrypsin-like proteasome activity were measured in plasma, heart, liver, kidney, small intestine (duodenum), skeletal muscle (gastrocnemius), and brown adipose tissue (BAT). Trypsin-like and peptidyl-glutamyl-like proteasome activities were determined in BAT, liver, and skeletal muscle. Resting metabolic rate increased significantly with duration of cold exposure. In skeletal muscle (SM) and liver, protein carbonyl levels also increased with duration of cold exposure, but this pattern was not repeated in BAT where protein carbonyls were not significantly elevated. Chymotrpsin-like proteasome activity did not differ significantly in any tissue. However, trypsin-like activity in SM and peptidyl-glutamyl-like activity in both skeletal muscle and liver, were reduced during the early phase of cold exposure (1-10 h), correlated with the increased carbonyl levels in these tissues. In contrast there was no reduction in proteasome activity in BAT during the early phase of cold exposure and peptidyl-glutamyl-like activity was significantly increased, correlated with the lack of accumulation of protein carbonyls in this tissue. The upregulation of proteasome activity in BAT may protect this tissue from accumulated oxidative damage to proteins. This protection may be a very important factor in sustaining uncoupled respiration, which underpins nonshivering thermogenesis at cold temperatures.  相似文献   

7.
In cells exposed in vitro to the cytotoxic and mutagenic antitumor drug cisplatin (cis-Pt(NH3)2Cl2), various adducts with nuclear DNA are formed. A comparative study was made of the influence of temperature variation during treatment of cultured Chinese hamster ovary (CHO) cells with cisplatin on cytotoxicity, mutation induction and Pt-DNA adduct formation. Before and after treatment (1 h at 32, 37 or 40 degrees C) cells were kept at 37 degrees C. Cytotoxicity increased with temperature; D0 values were 29.6 +/- 1.6, 21.1 +/- 1.2 and 11.4 +/- 0.6 microM at 32, 37 and 40 degrees C, respectively. Pt-DNA binding to DNA at 40 degrees C was 2.0 (+/- 0.3) times as high as at 32 degrees C. This factor remained practically constant over a 24-h post-treatment incubation of the cells, during which about 60% of DNA-bound Pt were removed. As the increase in cytotoxicity between 32 and 40 degrees C was roughly in proportion to that in Pt binding, no substantial changes in the spectrum of adducts appeared to occur. The induction of DNA interstrand cross-links, studied at 32 and 40 degrees C, varied linearly with dose. Influence of temperature on cross-link formation was comparable to that on total Pt binding. Amounts of cross-links highly increased during 24 h after treatment. Plots of cross-links against survival after treatments at 32 and 40 degrees C almost coincided. Induction of 6-thioguanine-resistant (HGPRT) mutants at various cisplatin concentrations did not show a clear temperature dependency. Consequently, equitoxic treatments were significantly more mutagenic at 32 degrees C than at 40 degrees C, the opposite of what has been reported for E. coli.  相似文献   

8.
The 20S proteasome is a self-compartmentalized protease which degrades unfolded polypeptides and has been purified from eucaryotes, gram-positive actinomycetes, and archaea. Energy-dependent complexes, such as the 19S cap of the eucaryal 26S proteasome, are assumed to be responsible for the recognition and/or unfolding of substrate proteins which are then translocated into the central chamber of the 20S proteasome and hydrolyzed to polypeptide products of 3 to 30 residues. All archaeal genomes which have been sequenced are predicted to encode proteins with up to approximately 50% identity to the six ATPase subunits of the 19S cap. In this study, one of these archaeal homologs which has been named PAN for proteasome-activating nucleotidase was characterized from the hyperthermophile Methanococcus jannaschii. In addition, the M. jannaschii 20S proteasome was purified as a 700-kDa complex by in vitro assembly of the alpha and beta subunits and has an unusually high rate of peptide and unfolded-polypeptide hydrolysis at 100 degrees C. The 550-kDa PAN complex was required for CTP- or ATP-dependent degradation of beta-casein by archaeal 20S proteasomes. A 500-kDa complex of PAN(Delta1-73), which has a deletion of residues 1 to 73 of the deduced protein and disrupts the predicted N-terminal coiled-coil, also facilitated this energy-dependent proteolysis. However, this deletion increased the types of nucleotides hydrolyzed to include not only ATP and CTP but also ITP, GTP, TTP, and UTP. The temperature optimum for nucleotide (ATP) hydrolysis was reduced from 80 degrees C for the full-length protein to 65 degrees C for PAN(Delta1-73). Both PAN protein complexes were stable in the absence of ATP and were inhibited by N-ethylmaleimide and p-chloromercuriphenyl-sulfonic acid. Kinetic analysis reveals that the PAN protein has a relatively high V(max) for ATP and CTP hydrolysis of 3.5 and 5.8 micromol of P(i) per min per mg of protein as well as a relatively low affinity for CTP and ATP with K(m) values of 307 and 497 microM compared to other proteins of the AAA family. Based on electron micrographs, PAN and PAN(Delta1-73) apparently associate with the ends of the 20S proteasome cylinder. These results suggest that the M. jannaschii as well as related archaeal 20S proteasomes require a nucleotidase complex such as PAN to mediate the energy-dependent hydrolysis of folded-substrate proteins and that the N-terminal 73 amino acid residues of PAN are not absolutely required for this reaction.  相似文献   

9.
The 20S proteasome, the catalytic core of the 26S proteasome, has previously been isolated, purified and partially characterised from ostrich skeletal muscle (Thomas, A.R., Oosthuizen, V., Naude, R.J., Muramoto, K. 2002. Biol. Chem. 383, 1267-1270). Due to the apparent latency of the 20S proteasome purified from various sources, this study focuses on further characterising the ostrich enzyme in terms of the effects of selected detergents, fatty acids and cations, as well as heating at 60 degrees C, on four of its activities. Results showed that ostrich skeletal muscle 20S proteasome was affected in a non-concentration-dependent manner by the selected detergents and fatty acids. Monounsaturated fatty acids, unlike unsaturated fatty acids, showed no major effects on the activities of the ostrich enzyme. The enzyme did not show sensitivity towards monovalent cations and the only divalent cations that showed a relevant effect were Ca2+ and Mg2+. Heating at 60 degrees C for 1-2 min had a substantial activating effect only on the peptidylglutamylpeptide-hydrolase (PGPH) and caseinolytic activities. In conclusion, many of the effects by the abovementioned reagents and conditions were noticeably different to those shown on different sources of the enzyme, further demonstrating the unique kinetic characteristics of the ostrich skeletal muscle 20S proteasome.  相似文献   

10.
Contractile properties of the fast-twitch glycolytic (FG) portion of the iliofibularis muscle and sprint running performance were studied at approximately 5 degrees C intervals from 15-44 degrees C in the lizard Dipsosaurus dorsalis. Maximal running velocity (VR) and stride frequency (f) were both greatest when body temperature (Tb) was 40 degrees C, the field-active Tb in Dipsosaurus. At 40 degrees C VR was 4.3 +/- 0.2 m/s and f was 13.5 +/- 0.5 s-1. Between 25 and 40 degrees C, the thermal dependencies of VR and f were approximately constant (Q10's of 1.31 and 1.36 got VR and f, respectively). Below 25 degrees C performance declined more markedly with decreasing temperature. At 20 degrees C strides were qualitatively normal, but VR was only half of the value at 25 degrees C. At 15 degrees C the lizards were substantially incapacitated, and VR was 10% of the value at 20 degrees C. Stride length was approximately 0.33 m and changed very little with Tb from 20-44 degrees C. The time dependent contractile properties of FG muscle were affected more by temperature than was sprint performance. The maximal velocity of shortening at zero load (VO) was 18.7 0/s at 40 degrees C and had a Q10 of 1.7 from 25-40 degrees C. Maximal power output (Wmax) determined from the force-velocity curve was 464 W/kg at 40 degrees C. Below 40 degrees C max varied with temperature with a Q10 of 2-3. The shape of the force-velocity curve changed little with temperature (Wmax/POVO = 0.11). Between 25 and 40 degrees C a relatively temperature-independent process must modulate the effects of temperature on the contractile properties of the muscles that supply the power for burst locomotion. Storage and recovery of elastic energy appears to be a likely candidate for such a process. Below 25 degrees C, however, the contraction time is prolonged to such an extent that the f attainable is limited by the minimum time taken to contract and relax the muscles.  相似文献   

11.
Takeuchi J  Toh-e A 《Biochimie》2001,83(3-4):333-340
Rpn9 is one of the subunits of the regulatory particle of the yeast 26S proteasome and is needed for stability or efficient assembly of the 26S proteasome. As anticipated from the fact that the rpn9 disruptant grew at 25 degrees C but arrested in G2/M phase at 37 degrees C, the CDK inhibitor Sic1p was found to be degraded at the G1/S boundary in the Deltarpn9 cells. The degradation of the anaphase inhibitor Pds1p was delayed in the Deltarpn9 cells. Clb2p in M phase, as well as that ectopically expressed in G1 and S phases, was degraded more slowly in the Deltarpn9 cells than in the wild type cells, indicating that the 26S proteasome lacking Rpn9 uses Sic1p as a better substrate than Pds1p and Clb2p. These results, in addition to the fact that multiubiquitinated proteins were accumulated in the Deltarpn9 cells incubated at 37 degrees C, strongly suggest that Rpn9 is involved in the proteolysis of a subset of the substrates degraded by the 26S proteasome. The Deltarpn9 Deltapds1 double mutant was unable to elongate spindle at a restrictive temperature, suggesting that some protein(s) other than Scc1 (cohesin) should be degraded during progression of anaphase.  相似文献   

12.
The effect of the rate of rewarming on the survival of 8-cell mouse embryos and blastocysts was examined. The samples were slowly cooled (0.3--0.6 degrees C/min) in 1.5 M-DMSO to temperatures between -10 and -80 degrees C before direct transfer to liquid nitrogen (-196 degrees C). Embryos survived rapid thawing (275--500 degrees C/min) only when slow cooling was terminated at relatively high subzero temperatures (-10 to -50 degrees C). The highest levels of survival in vitro of rapidly thawed 8-cell embryos were obtained after transfer to -196 degrees C from -35 and -40 degrees C (72 to 88%) and of rapidly thawed blastocysts after transfer from -25 to -50 degrees C (69 to 74%). By contrast, for embryos to survive slow thawing (8 to 20 degrees C/min) slow cooling to lower subzero temperatures (-60 degrees C and below) was required before transfer to -196 degrees C. The results indicate that embryos transferred to -196 degrees C from high subzero temperatures contain sufficient intracellular ice to damage them during slow warming but to permit survival after rapid warming. Survival of embryos after rapid dilution of DMSO at room temperature was similar to that after slow (stepwise) dilution at 0 degrees C. There was no difference between the viability of rapidly and slowly thawed embryos after transfer to pseudopregnant foster mothers. It is concluded that the behaviour of mammalian embryos subjected to the stresses of freezing and thawing is similar to that of other mammalian cells. A simpler and quicker method for the preservation of mouse embryos is described.  相似文献   

13.
球孢白僵菌Bb174固态发酵产几丁质酶产酶及酶学特征研究   总被引:5,自引:0,他引:5  
对球孢白僵菌(Beauveria bassiana)Bb174产几丁质酶进行了固态发酵条件及酶学特征的研究.结果表明,以4:1麸皮:蚕蛹粉、蛋白胨1g·L^-1作为产酶最适培养基,在7.5g培养基中接种3ml液态种子,自然pH下28℃培养2d,酶活可达最高,为126U·g^-1(干培养基).粗酶液的最适反应温度为40℃,最适反应pH5.0,在30-70℃保温1h,得半失活温度48℃.在30--40℃、pH4~6范围内,酶的性质最稳定.根据Lineweaver-Burk作图法,得到该酶的动力学参数Km为0.52mg·ml^-1,Vm为0.7△E680·h^-1.  相似文献   

14.
Temperature dependence of ADP/ATP translocation in mitochondria   总被引:1,自引:0,他引:1  
The temperature dependence of the adenine nucleotide exchange in mitochondria has been determined by employing a rapid mixing, quenching and sampling apparatus and the inhibitor quench-back exchange method. Thus the exchange is resolved down to 0.1 s. Rates are evaluated from accumulating the time-dependent progress at about 10 points. The exchange rate in liver mitochondria was determined from -10 degrees C to + 10 degrees C in the presence of 20% glycol, from 0 degrees C to 25 degrees C, and from 20 degrees C to 40 degrees C under partial inhibition by carboxyatractylate. The total range between -10 degrees C to + 40 degrees C has only one temperature break at 13 degrees C. From the Arrhenius plot between -10 degrees C to + 13 degrees C, EA approximately equal to 140 kJ and above 13 degrees C, EA approximately equal to 56 kJ is evaluated, corresponding to a Q10 of 8 and 2 respectively. In beef heart mitochondria the exchange rate was measured between 0 degrees C and 20 degrees C, and between 15 degrees C and 30 degrees C under partial inhibition with carboxyatractylate. There is a temperature break around 14 degrees C with EA approximately equal to 143 kJ between 0 degrees C and 14 degrees C and EA approximately equal to 60 kJ from 15 degrees C to 30 degrees C. The extrapolated translocation rates at 37 degrees C are 500 and 1800 mumol min-1 (g protein)-1 for rat liver and for beef heart mitochondria respectively. The temperature break is suggested to reflect a conformation change since there is no reversed break at low temperature, the temperature break changes in sonic particles and no lipid phase transition at 14 degrees C in mitochondria has been reported.  相似文献   

15.
The goal of this study was to estimate the three-dimensional (3D) temperature distribution in liver cryolesions and assess the margin of the transition zone between the tumoricidal core of the lesion and the surrounding unfrozen tissue, using criteria proposed in the literature. Local recurrences after liver tumor cryoablation are frequent. Temperatures below -40 degrees C and a 1-cm zone of normal tissue included in the cryolesion are considered necessary for adequate ablation. The 3D temperature distribution in 10 pig cryolesions was estimated by numerical solution of a simplified bioheat equation using magnetic resonance imaging data to establish cryolesion border conditions. Volumes encompassed by the -20, -40, and -60 degrees C isotherms were estimated. The shortest distance from every voxel on the -40 degrees C isotherm to the cryolesion edge was calculated and the mean and the maximal of these distances were defined for each cryolesion. Median cryolesion volumes with temperatures of -20, -40, and -60 degrees C or colder were 53, 26, and 14% of the total cryolesion volume, respectively. The median cryolesion volume was 12.3 cm(3). The median of the mean distances calculated between the -40 degrees C isotherm and the cryolesion edge was 4.1 mm and increased with increasing cryolesion volume. The median of the largest of these distances calculated for each cryolesion was 8.1 mm. Temperatures claimed to be adequate for tumor destruction were obtained only in parts of the cryolesion. The adequacy of a 1-cm zone of normal liver tissue included in the cryolesion to ensure tumor ablation is questioned.  相似文献   

16.
CO(2) release patterns of three drywood termite species were investigated using flow-through respirometry techniques. Eight hours of real-time CO(2) release data were recorded for pseudergates of Cryptotermes cavifrons Banks, Incisitermes minor (Hagen), and I. tabogae (Snyder) at 20-40 degrees C. Cyclic release of CO(2) was observed in 20-90% of C. cavifrons, 70-100% of I. tabogae, and 87-100% of I. minor pseudergates. Variability of the recordings (calculated as the coefficient of variability or CV) was used to estimate the level of cycling in each recording. CV ranged from 14.53+/-2.57 (40 degrees C) to 32.33+/-1.12% (30 degrees C) in C. cavifrons, 20.24+/-2.44 (35 degrees C) to 67.3+/-10.3% (20 degrees C) in I. minor, and 15.9+/-1.46 (35 degrees C) to 34.15+/-6.18% (20 degrees C) in I. tabogae. The relationship between temperature and CV for each species was modeled using non-linear regression. CV of both Incisitermes spp. decreased exponentially with temperature, while C. cavifrons CV followed a Gaussian model, indicating an optimal cycling temperature of approximately 30 degrees C. Mean V.CO(2) values were determined for each species as a function of temperature, and ranged from 0.1 ml CO(2) g(-1) h(-1) (I. minor at 20 degrees C) to 0.8 ml CO(2) g(-1) h(-1) (C. cavifrons at 40 degrees C). For all three species, V.CO(2) significantly increased linearly with temperature. Colinearity tests indicated that different models described the V.CO(2) relationship with temperature for both genera. Q(10) values for V.CO(2) over the range of 20-40 degrees C were 1.92 for I. minor, 1.66 for I. tabogae, and 1.62 for C. cavifrons pseudergates.  相似文献   

17.
The principal objective of this study was to derive an improved procedure for cryopreservation of swamp buffalo (Bubalus bubalis) spermatozoa. Experiments were conducted to determine effects of cooling rate, intermediate plunge temperature and warming rate on motility and acrosome integrity of spermatozoa. Spermatozoa were obtained from three bulls (three ejaculates/bull) and were subjected to nine cooling conditions before being frozen in liquid nitrogen: cooling at 10, 20, or 30 degrees C/min each to -40, -80, or -120 degrees C before being plunged into liquid nitrogen. The spermatozoa frozen under a given condition were then thawed either at 1000 or 200 degrees C/min. Cooling rate, intermediate temperature and warming rate significantly affected survival of spermatozoa obtained from the three bulls. Cooling spermatozoa from 4 to -120 degrees C either at 20 or 30 degrees C/min yielded better progressive motility compared to other cooling conditions (50 versus 30%). Rapid warming was superior to slow warming. In an additional study, motility and fertility of spermatozoa frozen after being cooled to -120 degrees C at 20 degrees C and 30 degrees C/min and those frozen by a standard protocol used routinely for semen processing were assessed. Progressive motility of cryopreserved spermatozoa cooled at 20 degrees C and 30 degrees C/min was 40%, while that of spermatozoa cryopreserved using a standard protocol was 25%. A total of 178 buffalo cows were inseminated with cryopreserved spermatozoa obtained from one bull, and their pregnancy status was assessed 60 days later by rectal palpation. Out of the 60, 26 (43%) and 23 of 58 (40%) cows inseminated with sperm cooled at 20 and 30 degrees C/min, respectively, became pregnant, whereas 17 of 60 (28%) cows inseminated with sperm frozen by a standard protocol became pregnant. This study demonstrates that an effective cryopreservation procedure for buffalo spermatozoa can be derived by systematic examination of various cryobiological factors.  相似文献   

18.
Seeds of the inbred maize lines, W64A, R6-67, and D10, were germinated and grown at 25 degrees, 35 degrees, or 40 degrees C for up to 10 days. The catalase activity in scutella of W64A seedlings grown at 40 degrees C was slightly lower than that in seedlings grown at 25 degrees C. The total superoxide dismutase activity in scutella was lower in seedlings grown at 40 degrees C than in those grown at 25 degrees C during the first 3 days of germination, but thereafter was not significantly different at these temperatures. The high-catalase mutant lines, R6-67 and D10, grown at 40 degrees C exhibited a developmental pattern of catalase activity that was severalfold lower than that seen in seedlings grown at 25 degrees C. The decrease in catalase activity in R6-67 seedlings grown at 40 degrees C was correlated with lower amounts of CAT-2 protein, which is normally present at significantly high levels in this line. The application of a catalase synthesis inhibitor revealed that the low levels of CAT-2 in R6-67 grown at 40 degrees C were due to slightly higher degradation rates and a significant drop in the rate of catalase protein synthesis.  相似文献   

19.
To gain insight into the significance of alterations in the proteasome pathway for sarcopenia and its attenuation by calorie restriction, we examined protein oxidation and components of the proteasome pathway in plantaris muscle in 8-, 30-, and 35-mo-old ad libitum-fed (AL) rats; and in 8-, 35-, and 40-mo-old calorie-restricted (CR) rats. We hypothesized that CR rats would exhibit a lesser accumulation of protein carbonyls with aging and that this would be associated with a better maintenance of skeletal muscle proteasome activity and function with aging. Consistent with this view, whereas AL rats had a significant increase in protein carbonylation with aging, there was no such increase in CR rats. Protein levels of the ubiquitin ligases MuRF1 and MAFbx increased similarly with aging in both AL and CR rats. On the other hand, chymotrypsin-like activity of the proteasome increased with aging more gradually in CR rats, and this increase was paralleled by increases in the expression of the C2 subunit in both groups, suggesting that differences in activity were not related to differences in proteasome function with aging. Interestingly, the plot of muscle mass vs. proteasome activity showed that the oldest animals in both diets had a lower muscle mass than would be predicted by their proteasome activity, suggesting that other factors explain the acceleration of sarcopenia at advanced age. Since calorie restriction better protects skeletal muscle function than muscle mass with aging (Hepple RT, Baker DJ, Kaczor JJ, Krause DJ, FASEB J 19: 1320-1322, 2005), and our current results show that this protection of function is associated with a prevention of oxidative protein damage accumulation, we suggest that calorie restriction optimizes the proteasome pathway to preserve skeletal muscle function at the expense of modest muscle atrophy.  相似文献   

20.
Factors affecting the cryosurvival of mouse two-cell embryos   总被引:1,自引:0,他引:1  
A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号