首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of lipoprotein lipase during the adipose conversion of 3T3 cells.   总被引:19,自引:0,他引:19  
L S Wise  H Green 《Cell》1978,13(2):233-242
Lipoprotein lipase activity is negligible in exponentially growing 3T3-L1 cells and 3T3-F442A cells, but develops in both lines when they reach a confluent state and undergo adipose conversion. 3T3-C2 cells, which undergo adipose conversion with extremely low frequency, do not develop the enzyme. The lipase activity of 3T3-L1 and 3T3-F442A is greatly enhanced by insulin and increases 80–180 fold during the adipose conversion. The lipase has the following characteristics in common with lipoprotein lipase from adipose and other tissues: it is dependent upon serum, is inhibited by 0.5–1.0 M sodium chloride, is recovered from acetone powders, has an alkaline pH optimum and is released from the cells by heparin. Like the lipoprotein lipase of tissue adipose cells, the enzyme of 3T3-L1 decays in the presence of cycloheximide with a half-time of about 25 min at 37°C.The ability of 3T3-F442A and 3T3-L1 to take up triglyceride from the medium depends almost completely upon lipoprotein lipase. They incorporate the fatty acids of a large fraction of a triglyceride emulsion added to the medium, and this utilization is stimulated by heparin. Very little of the glycerol portion of the triglyceride is incorporated. 3T3-C2, which lacks lipoprotein lipase, utilizes very little of either the fatty acid or the glycerol portion of triglyceride.The relevance of external lipid or lipoprotein to both the adipose conversion and the appearance of lipoprotein lipase was tested using confluent cultures in medium depleted of these components. In the presence of serum whose lipoproteins have been removed by flotation, lines 3T3-F442A and 3T3-L1 undergo adipose conversion as completely as in the presence of untreated serum, and lipoprotein lipase activity appears at essentially the same rate. In medium whose serum supplement has been extracted with acetone:ethanol, 3T3-F442A cells undergo adipose conversion to nearly the same extent as in untreated serum, and develop nearly the same increase in lipoprotein lipase activity.Unless even very low concentrations of lipids or lipoprotein are saturating it can be concluded that the adipose conversion does not depend upon external lipids or lipoproteins for its induction; rather the differentiation program is built into the cell type and comes into operation when growth is arrested even in their absence. The source of fatty acids utilized for triglyceride synthesis, however, may be affected by the amount of lipid provided to the cells.  相似文献   

2.
Retinoic acid (RA), at 1-10 microM, inhibited adipose conversion of 3T3-F442A cells as determined by the activities of lipogenic enzymes, glycerophosphate dehydrogenase (GPD) and malic enzyme. This inhibition was reversible by RA removal, but the increase in lipogenic enzyme activities was considerably delayed in a dose-dependent manner. The onset of the two lipogenic enzyme activities could be regulated somewhat independently, suggesting that expression of the two enzymes is subject to noncoordinated regulation. The RA-inhibited cells had a more flattened and elongated shape, suggesting cytoskeletal changes. Cytochalasin B (CB) did not prevent RA inhibition and did not promote adipose conversion in cultures supplemented with nonadipogenic medium. Reversion of inhibition was accelerated if cells were cultured for 3 days with adipogenic medium containing CB. The drug promoted an early increase in lipogenic enzyme activities. On the other hand, cells cultured on fibronectin-coated dishes, a condition that stabilizes actin cytoskeleton, do not undergo adipocyte differentiation. However, we show here that cells cultured on fibronectin and changed to nonadipogenic medium containing insulin underwent adipose conversion; in contrast, cells treated with RA and then supplemented with nonadipogenic medium containing insulin, but without the retinoid, did not undergo differentiation. We conclude that RA blocks adipose conversion probably before commitment to differentiation, and modulates lipogenic enzyme expression in a noncoordinated manner through changes in cytoskeletal elements, whereas fibronectin blocks phenotype expression in differentiating cells.  相似文献   

3.
In the resting state, 3T3-L1 fibroblasts become adipose converted and increase their fatty acid and triglyceride synthetase. We have found that they contain four times the neutral lipase activity and 1.5 times the acid lipase activity of logarithmically dividing cells. The activities of lysosomal acid beta-galactosidase and N-acetyl-beta-D-glucosaminidase were the same in the adipose converted and logarithmically dividing cells. The data suggest a possible relation between the increased neutral lipase activity in 3T3-L1 cells and their adipose conversion and demonstrates that the adipose converted 3T3-L1 fibroblasts, unlike true adipose cells, contain high levels of lysosomal acid hydrolases.  相似文献   

4.
Differentiation of preadipose 3T3-F442A cells into adipose cells is accelerated by the addition of dihydrocytochalasin B. The effect of the drug on 3T3-C2 cells is more marked: these cells are practically unable to differentiate in the absence of H2CB but a long-term exposure to the drug enables the cells to accumulate lipid droplets in medium supplemented with fetal calf serum and insulin. During their differentiation under these conditions the 3T3-C2 cells develop markers typical of adipose cells: glycerophosphate dehydrogenase, ATP-citrate lyase, fatty acid synthetase and glycerophosphate acyltransferase.  相似文献   

5.
The 3T3-F442A preadipocyte cell line was previously shown to possess specific glucocorticoid receptors whose number increased in the time course of differentiation. We have examined the effects of a three day dexamethasone treatment, added at confluence, on cells differentiated in the presence or absence of insulin. Triglyceride accumulation, polyamine content as well as glycerophosphate dehydrogenase and fatty acid synthetase activities were measured during the adipose conversion. We have also determined 2-deoxyglucose uptake in non-differentiated and differentiated cells. Dexamethasone was shown to decrease the adipose conversion by 3T3-F442A cells in the presence or absence of insulin. Intracellular spermidine content in differentiating cells was sensitive to dexamethasone and insulin in the same way as an enzymatic marker of terminal differentiation, glycerophosphate dehydrogenase. Dexamethasone decreases the 2 deoxyglucose uptake in non-differentiated and differentiated cells while insulin increases this uptake only in differentiated cells. This work shows that glucocorticoids inhibit adipocyte metabolism at distinct levels and suggests that these hormones might play an important role in the regulation of adipose tissue mass.Abbreviations DEX dexamethasone - FAS fatty acid synthetase - GPDH glycerophosphate dehydrogenase - MIX 1-methyl-3-isobutylxanthine  相似文献   

6.
B M Spiegelman  H Green 《Cell》1981,24(2):503-510
During the adipose differentiation of 3T3-F442A cells, there is an increase in the synthesis of numerous proteins, including the lipogenic enzymes glycerophosphate dehydrogenase, fatty acid synthetase and malic enzyme. Agents that increase cAMP content (Dibutyryl cAMP, theophylline, and isoproterenol) are known to induce lipolysis in fat cells; but the same agents are shown here to reduce the synthesis of the lipogenic enzymes during adipose differentiation. The extent of reduction depends on the agent used and differs for the three enzymes; fatty acid synthetase is most sensitive and its synthesis can be suppressed completely. In contrast to their effects on lipogenic enzyme synthesis, these agents do not affect morphological changes or the synthesis of several other proteins, of which some increase and others (such as actin) decrease during the differentiation. The effects of the agents on the synthesis of lipogenic enzymes are not dependent on lipolysis, since they take place to the same degree in cells not permitted to accumulate triglyceride. Translation in vitro of mRNA isolated from cells treated with the agents promoting cAMP accumulation indicates that the levels of functional mRNA for lipogenic enzymes are reduced. We conclude that, in addition to its activation of lipolysis, cAMP reduces specifically mRNA accumulation for lipogenic enzymes. These results also demonstrate the independent control of morphological change and enzyme synthesis during adipose differentiation.  相似文献   

7.
Triiodothyronine added at 0.1 nM to 3T3-F442A cells cultured in adipogenic medium having endogenous hormone concentrations similar to those of hypothyroid serum stimulated adipose conversion; activities of both lipogenic enzymes, glycerophosphate dehydrogenase and malic enzyme, increased with hormone treatment. The number of adipocytes was also augmented by L-T3 addition but the number of fat cell clusters remained the same as compared to non-treated cultures, suggesting that thyroid hormone increased the number of adipocytes probably through stimulating selective multiplication of precursor adipose cells. Hormone addition to cells cultured with non-adipogenic medium did not promote conversion showing that L-T3 is not an adipogenic factor by itself. Triiodothyronine added at concentrations similar to those found in hyperthyroidism, from 10 nM up to 10 µM, also increased the proportion of adipocytes without changing the number of fat cell clusters, but they decreased the activity of both lipogenic enzymes and lipid accumulation in mature adipocytes. It can be concluded that during 3T3-F442A differentiation into adipocytes L-T3 increases the number of differentiated adipocytes and, at low concentrations, also enhances lipogenic enzyme activities, whereas at the hyperthyroid hormone levels these enzyme activities are significantly reduced, remaining at levels similar to those of cells cultured with hypothyroid medium. This cloned cell line seems to be a useful model to study thyroid hormone action at both molecular and cellular level.  相似文献   

8.
The glycerophosphate backbone for triglyceride synthesis is commonly believed to be created through the conversion of dihydroxyacetone phosphate (DHAP) by glycerophosphate dehydrogenase (GPD) to sn-glycerol 3-phosphate (GP), which is then converted by glycerophosphate acyltransferase (GPAT) to 1-acyl-GP. Consistent with this, GPD and GPAT are highly induced during differentiation of mouse 3T3-L1 preadipocytes. While the acyl dihydroxyacetone phosphate (acyl-DHAP) pathway for glycerolipid synthesis is commonly believed to be involved only in glycerol ether lipid synthesis, we report here that during conversion of 3T3-L1 preadipocytes to adipocytes, the specific activity of peroxisomal DHAP acyltransferase (DHAPAT) is increased by 9-fold in 6 days, while acyl-DHAP:NADPH reductase is induced by 5-fold. A parallel increase in the catalase (the peroxisomal marker enzyme) activity is also seen. In contrast, the specific activity of alkyl-DHAP synthase, the enzyme catalyzing the synthesis of the ether bond, is decreased by 60% during the same period. Unlike microsomal GPAT, the induced DHAPAT is found to have high activity at pH 5.5 and is resistant to inhibition by sulfhydryl agents, heat, and proteolysis. On subcellular fractionation, DHAPAT is found to be associated with microperoxisomes whereas GPAT activity is mainly present in microsomes. Northern blot analyses reveal that induction of DHAPAT can be largely explained through increases in DHAPAT mRNA. A comparison of microsomal and peroxisomal glycerolipid synthetic pathways, using D-[3-(3)H, U-(14)C]glucose as the precursor of the lipid glycerol backbone shows that about 40-50% of triglyceride is synthesized via the acyl-DHAP pathway. These results indicate that the acyl-DHAP pathway is important not only for the synthesis of ether lipids, but also for the synthesis of triacylglycerol and other non-ether glycerolipids.  相似文献   

9.
Cultured preadipose 3T3 cells are able to undergo a process of differentiation through which they are converted into adipose cells. Growth hormone induces this conversion in resting cultures but not in growing cultures. It was of interest to determine the period of cell sensitivity to the hormone and the timing of the induction of glycerophosphate dehydrogenase, a key enzyme in lipogenesis. It was found that 3T3-F442A cells became highly sensitive to rat growth hormone at confluence but that high sensitivity remained for only 3 days; thereafter, the responsiveness to the rat growth hormone declined rapidly. Refeeding of the cells with fresh medium did not lead to the recovery of the hormone sensitivity, indicating that the decrease in sensitivity was not due to exhaustion of medium components but that it seemed to be a specific property of F442A cells. As glycerophosphate dehydrogenase activity was detected at nearly the same time as its mRNA was measurable, it is likely that the mRNA is translated immediately after its synthesis.  相似文献   

10.
Fatty acid synthesis via the citrate cleavage pathway requires the continual replenishment of oxaloacetate within the mitochondria, probably by carboxylation of pyruvate. Malic enzyme, although present in adipose tissue, is completely localized in the cytoplasm and has insufficient activity to support lipogenesis. Pyruvate carboxylase was found to be active in both the mitochondria and cytoplasm of epididymal adipose tissue cells; it was dependent on both ATP and biotin. Alteractions in dietary conditions induced no significant changes in mitochondrial pyruvate carboxylase activity, but the soluble activity was depressed in fat-fed animals. The possible importance of the soluble activity in lipogenesis lies in its participation in a soluble malate transhydrogenation cycle with NAD malate dehydrogenase and malic enzyme, whereby a continual supply of NADPH is produced. Consequently, the pyruvate carboxylase in adipose tissue both generates mitochondrial oxaloacetate for the citrate cleavage pathway and supplies soluble NADPH for the conversion of acetyl-CoA to fatty acid.  相似文献   

11.
Some alterations in lipid metabolism in mice were observed by the intraperitoneal injection of endotoxin from Salmonella typhimurium. The content of serum triglyceride increased markedly in poisoned mice 16-24 hr postintoxication. The level of free fatty acid (FFA) in the serum of endotoxin-administered mice decreased in inverse proportion to an increase in the injected dose of endotoxin. The electrophoretic analysis of the serum lipoprotein on cellulose acetate membrane showed that pre beta-lipoprotein increased markedly and that FFA fraction in the poisoned mice sera disappeared 18 hr postintoxication. The activity of hormone-sensitive lipase in adipose tissue was elevated appreciably 2 hr after injection, but decreased more significantly after 18 hr than that in fasted control mice. On the other hand, the activity of lipoprotein lipase decreased in the post-heparin serum and adipose tissue 3 hr postintoxication, and decreased significantly after 16 hr. There were no significant differences between changes in the formation of active glycerol (alpha-GP) and in the activity of alpha glycerophosphate dehydrogenase (alpha-GPDH) in the mice liver with or without administration of endotoxin, and after 16 hr levels of both hepatic alpha-GP content and alpha-GPDH activity in poisoned mice showed a tendency to be slightly lower than those in fasted control mice.  相似文献   

12.
The influence of training on fatty acid and glyceride synthesis by liver and adipose tissue homogenates of young and old Fischer-344 rats was examined. Four groups of rats (10 animals/group) were studied: young untrained, young trained, old untrained, and old trained. Training of each group was for 10 wk at 75% maximal O2 uptake. Young rats were killed at 6 mo of age and old rats were killed at 27 mo of age. Fatty acid synthesis was assessed by measuring the activities of acetyl-CoA carboxylase, fatty acid synthase, ATP citrate-lyase, "malic" enzyme, and glucose-6-phosphate dehydrogenase. Glyceride synthesis was evaluated by determining the rate of incorporation of [14C]glycerol 3-phosphate into lipids. In addition, lipoprotein lipase activity was measured in acetone-ether powders of adipose tissue from the four groups of rats. In liver, training had no effect on fatty acid or glyceride synthesis in either group. However, aging caused a significant decrease in the activities of four of the lipogenic enzymes but had no effect on glyceride synthesis. Training caused an increase in fatty acid synthase and glyceride synthesis in adipose tissue, and aging decreased lipoprotein lipase activity. It was concluded that training enhances the synthetic capacity of lipids by adipose tissue but that aging had a more profound effect in that the activities of the enzymes involved in these processes were lower in the old rats. Furthermore, the decreased activity of lipoprotein lipase in the older rats may explain the higher plasma triglyceride levels that were observed in these animals.  相似文献   

13.
HeLa cells cultured in a biotin-deficient medium showed reduced rates of protein synthesis, DNA synthesis and growth. Continuous synthesis is required for the increase in DNA synthesis observed upon addition of biotin to cells cultured in biotin-deficient medium. The addition of biotin to the biotin-deficient culture medium increased the activity of guanylate cyclase in both HeLa cells and fibroblasts. Both cell types cultured in biotin deficient medium showed reduced activity of RNA Polymerase II. The exogenous addition of biotin to the biotin-deficient cell cultures also resulted in increased activity of RNA Polymerase II in HeLa cells and fibroblasts. The maximal response was observed in 4 hours. Significant increase in enzyme activity was observed at 10–8 M biotin in the culture medium. The growth promoting effect of biotin seems to involve stimulations of cellular guanylate cyclase and RNA Polymerase II activity.  相似文献   

14.
Glycerophosphate acyltransferase present in an extract of rat adipocytes is strongly inhibited by excess palmitoyl-CoA. This inhibition is released by serum albumin but an excess of serum albumin is inhibitory, particularly at low palmitoyl-CoA concentrations. An optimal activity is reached when the ratio palmitoyl-CoA/albumin is in the range of 3-6. In the absence of albumin, oleic acid inhibits the activity at all palmitoyl-CoA concentrations. This inhibition is released by albumin and, inversely, oleic acid releases the inhibition by high concentrations of albumin. Another effect of fatty acids is to favour the inactivation of the glycerophosphate acyltransferase in extracts of adipocytes kept at 0 degree C. This inactivation is time-dependent and cannot be reversed by the addition of albumin to the assay mixture. Treatment of adipocytes with noradrenaline had no effect on the activity of the enzyme as long as the cells had been separated from fatty acids and albumin. With extracts of unwashed cells, the effect of noradrenaline on both the activity and stability of glycerophosphate acyltransferase could be explained by the presence of fatty acids in the extract.  相似文献   

15.
To determine whether the estrogen-induced hyperlipidemia is affected by fasting, male growing chicks were administered subcutaneously a single dose of 17 beta-estradiol (25 mg/kg body wt), and the hormone treatment lasted for 2 days with or without feed (Experiment 1). In the second experiment, chicks were initially fasted for 1 or 3 days, and then treated with the same dosage of 17 beta-estradiol as in Experiment 1 for 2 days without feed. Plasma and liver lipids, and the activities of hepatic malic enzyme, glucose-6-phosphate dehydrogenase, and hormone-sensitive lipase in the adipose tissue were determined. Compared with fed control chicks, estrogen treatment in fed birds resulted in a marked elevation of plasma lipids, especially triglyceride during the 2-day period (137 vs 2263 mg/dl). In fasted chicks, the present finding that estrogen also induced a marked hyperlipidemia is noteworthy. Upon estrogen treatment (Experiment 1), the level of plasma triglyceride in fasted birds increased about 16 times over that of the fasted control group (133 vs 2093 mg/dl). Even in chicks fasted for 5 days (Experiment 2), estrogen treatment resulted in a persistent hypertriglyceridemia (75 vs 1369 mg/dl). In fed chicks, estrogen treatment also induced a fatty liver with massive accumulation of triglyceride, but the liver of estrogen-treated/fasted chicks appeared to be normal. In both fed and fasted chicks, malic enzyme was found to be the major NADPH producing enzyme in the liver. Upon fasting, both malic enzyme and glucose-6-phosphate dehydrogenase activities decreased significantly (P less than 0.05). In fed chicks, the total activities of both enzymes increased with estrogen treatment, whereas the effect of hormone on these enzymes was less obvious in fasted chicks. The hormone-sensitive lipase activity in the adipose tissue was much lower in fed chicks compared with that of fasted birds (0.15 vs 0.33 nmol of oleic acid released/min/mg protein). Estrogen treatment in fed chicks had no effect on the hormone-sensitive lipase activity, but its activity was enhanced by the hormone treatment in fasted chicks. The present finding that hyperlipidemia persisted in estrogenized chicks during the fasting seems to indicate the complex nature of this hormonal influence on lipid metabolism.  相似文献   

16.
1. Growth of a biotin-requiring strain of Saccharomyces cerevisiae in a medium containing a suboptimum concentration of biotin for growth caused a decreased synthesis of ornithine carbamoyltransferase as compared with yeast grown in a medium containing an optimum concentration of biotin. Inclusion of the biotin homologues norbiotin or homobiotin, but not bishomobiotin, in the biotin-deficient medium caused an appreciable increase in ornithine carbamoyltransferase synthesis without affecting growth or synthesis of total RNA and protein. The addition of norbiotin to biotin-deficient medium had no effect on the respiratory activity of the yeast or on the synthesis of aspartate carbamoyltransferase, acid phosphatase, beta-fructofuranosidase or malate dehydrogenase. 2. Synthesis of acetylornithine deacetylase and acetylornithine acetyltransferase was slightly diminished by the imposition of biotin deficiency, but the effect was not as great as on ornithine carbamoyltransferase synthesis. Incorporation of norbiotin in the biotin-deficient medium had no marked effect on the synthesis of any other arginine-pathway enzyme except ornithine carbamoyltransferase. 3. l-Ornithine induced synthesis of ornithine carbamoyltransferase in yeast grown in biotin-deficient medium, but in yeast grown in this medium supplemented with norbiotin it repressed synthesis of the enzyme. l-Arginine had no detectable effect on ornithine carbamoyltransferase synthesis by the yeast grown in biotin-deficient medium with or without norbiotin. l-Aspartate repressed synthesis of ornithine carbamoyltransferase in biotin-deficient yeast and completely nullified the stimulatory effect of norbiotin on synthesis of the enzyme in this yeast. 4. There was no increase in ornithine carbamoyltransferase synthesis in biotin-deficient yeast incubated in phosphate buffer, pH4.5, containing glucose and biotin or norbiotin. In biotin-deficient yeast suspended in complete medium containing an optimum concentration of biotin, there was an increase in ornithine carbamoyltransferase synthesis only after the onset of growth.  相似文献   

17.
PURPOSE OF REVIEW: The lipolytic catabolism of stored fat in adipose tissue supplies tissues with fatty acids as metabolites and energy substrates during times of food deprivation. This review focuses on the function of recently discovered enzymes in adipose tissue lipolysis and fatty acid mobilization. RECENT FINDINGS: The characterization of hormone-sensitive lipase-deficient mice provided compelling evidence that hormone-sensitive lipase is not uniquely responsible for the hydrolysis of triacylglycerols and diacylglycerols of stored fat. Recently, three different laboratories independently discovered a novel enzyme that also acts in this capacity. We named the enzyme 'adipose triglyceride lipase' in accordance with its predominant expression in adipose tissue, its high substrate specificity for triacylglycerols, and its function in the lipolytic mobilization of fatty acids. Two other research groups showed that adipose triglyceride lipase (named desnutrin and Ca-independent phospholipase A2zeta, respectively) is regulated by the nutritional status and that it might exert acyl-transacylase activity in addition to its activity as triacylglycerol hydrolase. Adipose triglyceride lipase represents a novel type of 'patatin domain-containing' triacylglycerol hydrolase that is more closely related to plant lipases than to other known mammalian metabolic triacylglycerol hydrolases. SUMMARY: Although the regulation of adipose triglyceride lipase and its physiological function remain to be determined in mouse lines that lack or overexpress the enzyme, present data permit the conclusion that adipose triglyceride lipase is involved in the cellular mobilization of fatty acids, and they require a revision of the concept that hormone-sensitive lipase is the only enzyme involved in the lipolysis of adipose tissue triglycerides.  相似文献   

18.
A reproducible cell culture system is described that allows the study of adipose conversion in fibroblast-like cells isolated by collagenase digestion of epididymal and perirenal adipose tissue from male rats weighing 70-200 g. Adipose conversion as measured by lipid accumulation and increase in glycerophosphate dehydrogenase (GPDH) activity during differentiation strongly depends on the density at which cells are inoculated and starts only when cells are confluent and when physiological amounts of corticosterone and insulin are added. beta-Estradiol, testosterone, thyroxine, triiodothyronine, and growth hormone do not affect the differentiation process. Methylisobutylxanthine added during the first 2 days after confluence, added with insulin and corticosterone, potentiates the effect of insulin on GPDH activity and accelerates triglyceride accumulation. The effect of methyl-isobutylxanthine seems to be mediated by increased cyclic AMP concentrations, inasmuch as it may be replaced by forskolin.  相似文献   

19.
PURPOSE OF REVIEW: The aim of this article is to describe the relative roles of hormone sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis. RECENT FINDINGS: Until recently, only hormone sensitive lipase was considered important for the regulation of lipolysis within fat cells. Recent rodent studies have suggested that adipose triglyceride lipase may, however, be more important. The few human adipose triglyceride lipase studies that have been published point to species differences between humans and rodents. Selective inhibition of hormone sensitive lipase in human fat cells completely counteracts hormone-activated lipolysis, though there is a considerable (>50%) residual nonhormonal (basal) lipolysis. In rodents, adipose triglyceride lipase enzyme activity is stimulated by a cofactor termed CGI-58. In the absence of CGI-58, lipase activity in fat cells is much higher for hormone sensitive lipase than adipose triglyceride lipase. Hormone sensitive lipase expression is regulated by obesity and body weight reduction (decreased and increased, respectively), but this is not the case for adipose triglyceride lipase. A role of adipose triglyceride lipase in human lipolysis is suggested by studies of gene polymorphisms. SUMMARY: Two lipases the 'old' hormone sensitive lipase and the 'new' adipose triglyceride lipase are of importance for the regulation of lipolysis in rodent fat cells. In humans, adipose triglyceride lipase seems essential for maintaining basal lipolytic activity, while hormone sensitive lipase is the enzyme most responsive to stimulated lipolysis.  相似文献   

20.
Regulation of the activity and synthesis of malic enzyme in 3T3-L1 cells   总被引:1,自引:0,他引:1  
Malic enzyme activity in differentiated 3T3-L1 cells was about 20-fold greater than activity in undifferentiated cells. A new steady-state level was achieved about 8 days after initiating differentiation of confluent cultures with a 2-day exposure to dexamethasone, isobutylmethylxanthine, and insulin. This increase in enzyme activity resulted from an increase in the mass of malic enzyme as detected by immunotitration of enzyme activity with goat antiserum directed against purified rat liver malic enzyme. Malic enzyme synthesis was undetectable in undifferentiated cells and increased to about 0.2% of soluble protein in differentiated cells, suggesting that the increase in enzyme mass was due primarily to an increase in enzyme synthesis. Thyroid hormone, a potent stimulator of malic enzyme activity in hepatocytes in culture and in liver and adipose tissue in intact animals, decreased or increased malic enzyme activity in differentiating 3T3-L1 cells by about 40% when it was removed or added to the medium, respectively. Insulin, another physiologically important regulator of malic enzyme activity in vivo, had no effect on the initial rate of accumulation of malic enzyme activity in the differentiating cells and caused a 30 to 40% decrease in the final level of enzyme activity in the fully differentiated cells. Cyclic AMP, a potent inhibitor of malic enzyme synthesis in hepatocytes in culture, inhibited this process in 3T3-L1 cells by 30%. Malic enzyme is like several other enzymes in that the large increase in its concentration which accompanies differentiation of 3T3-L1 cells is due to increased synthesis of enzyme protein. However, the hormonal modulation of malic enzyme characteristic of liver and adipose tissue in intact animals does not appear to occur in differentiated 3T3-L1 cells, suggesting that differentiated 3T3-L1 cells may not be an appropriate model system in which to study the hormonal modulation of malic enzyme that occurs in liver and adipose tissue of intact animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号