首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The number of gamma-turns in a representative protein dataset selected from the current Protein Data Bank has increased almost seven times during the past decade. Eighty percent classic gamma-turns and 57% inverse gamma-turns are associated as multiple turns with either another y-turn or a beta-turn. We refer to these as multiple turns of the (gammabeta)1,2,3 or (betagamma)1,2,3 type, depending upon whether the gamma-turn is before or after the beta-turn along the protein chain, respectively. However, for multiple turns involving only gamma-turns, we follow the nomenclature analogous to that proposed earlier for the multiple (or double) beta-turns. Fifty-eight per cent beta-turns are associated as multiple turns with another beta-turn. We extracted multiple turns from the protein dataset and classified them on the basis of individual gamma- or beta-turn types and the number of overlapping residues. Furthermore, we evaluated the amino acid positional potentials and determined the statistically significant amino acid preferences, hydrogen bond/side-chain interaction preferences in the multiple turns and secondary structure preferences for residues immediately flanking these turns. The results of our analysis would be useful in the modeling, prediction or design of multiple turns in proteins. The amino acid sequence corresponding to the multiple turn, position in the protein chain, PDB Code/chain in which multiple turn is present and the individual turn types constituting the multiple turns are available from our website and this information would also be integrated in our Database of Structural Motifs in Proteins (http://www.cdfd.org.in/dsmp.html).  相似文献   

2.
We observed that beta- and gamma-turns in protein structure may be associated as peptides representing combinations of turns that span between nine and 26 amino acid residues along the polypeptide backbone chain and often correspond to loops in the protein structure. Around 475 peptides resulted from the analysis of a non-redundant data set corresponding to 248 protein crystal structures selected from the Protein Data Bank. Nearly 40% protein chains are associated with two or more peptides and the peptides with nine and 10 amino acid residues are more frequent. A maximum of four distinct peptides varying in number of amino acid residues were observed in at least 10 proteins along the same protein chain. Nearly 80% peptides comprise type IV beta-turns that are associated with irregular dihedral angle values suggesting this may be important for the conformational diversity associated with the loops in proteins. In general, predominant interactions that possibly stabilize these peptides involve main-chain and side-chain interactions with solvent, in addition to hydrogen bond, salt-bridge and non-bonded interactions. Majority of the peptides were observed in hydrolase, oxidoreductase, transferase, serine proteinase/inhibitor complex, electron transport/electron transfer and lyase proteins.  相似文献   

3.
C A Bush  S K Sarkar  K D Kopple 《Biochemistry》1978,17(23):4951-4954
Circular dichroism (CD) spectra are reported for two groups of cyclic hexapeptides having beta turns whose geometry can be firmly established by X-ray crystallography and by NMR spectroscopy. One series contains the sequence L-Pro-D-Phe in the geometry of the classical type II beta turn, while the second group has the sequence D-Phe-L-Pro in the closely related geometry of the gramicidin S turn. CD data on the hydrogenated peptides show that in neither series do Cotton effects due to the aromatic phenylalanyl chromophore make a significant contribution to the spectra in the 195--240-nm region. In spite of the close geometric similarity of the beta turns of these two groups of peptides, their CD spectra are quite distinct. Furthermore, comparison of our data with the CD spectra of published models for beta-turn structures suggests that it may not be possible to characterize the contribution of all beta turns to the CD spectra of proteins by a single model curve. the CD spectra of model beta turns will be more useful in characterizing the folding of oligopeptides and sequence polypeptides, where a single type of turn is present.  相似文献   

4.
Prediction of tight turns and their types in proteins   总被引:6,自引:0,他引:6  
A tight turn in protein structure is defined as a site where (i) a polypeptide chain reverses its overall direction, i.e., leads the chain to fold back on itself by nearly 180 degrees, and (ii) the amino acid residues directly involved in forming the turn are no more than six. Tight turns are generally categorized as delta-turn, gamma-turn, beta-turn, alpha-turn, and pi-turn, which are formed by two-, three-, four-, five-, and six-amino-acid residues, respectively. According to the folding mode, each of such tight turns can be further classified into several different types. Tight turns play an important role in globular proteins from both the structural and functional points of view. In view of this, various efforts have been made to predict tight turns and their types. This Review summarizes the development in this area, with an emphasis focused on the most recent work concerned that is featured by the sequence-coupled model. Meanwhile, the future challenge in this area has also been briefly addressed.  相似文献   

5.
Beta-turns are sites at which proteins change their overall chain direction, and they occur with high frequency in globular proteins. The Protein Data Bank has many instances of conformations that resemble beta-turns but lack the characteristic N-H(i) --> O=C(i - 3) hydrogen bond of an authentic beta-turn. Here, we identify potential hydrogen-bonded beta-turns in the coil library, a Web-accessible database utility comprised of all residues not in repetitive secondary structure, neither alpha-helix nor beta-sheet (http://www.roselab.jhu.edu/coil). In particular, candidate turns were identified as four-residue segments satisfying highly relaxed geometric criteria but lacking a strictly defined hydrogen bond. Such candidates were then subjected to a minimization protocol to determine whether slight changes in torsion angles are sufficient to shift the conformation into reference-quality geometry without deviating significantly from the original structure. This approach of applying constrained minimization to known structures reveals a substantial population of previously unidentified, stringently defined, hydrogen-bonded beta-turns. In particular, 33% of coil library residues were classified as beta-turns prior to minimization. After minimization, 45% of such residues could be classified as beta-turns, with another 8% in 3(10) helixes (which closely resemble type III beta-turns). Of the remaining coil library residues, 37% have backbone dihedral angles in left-handed polyproline II structure.  相似文献   

6.
Free-flight body dynamics and wing kinematics were collected from recordings of continuous, low-speed, multi-wingbeat yaw turns in hawkmoths (Manduca sexta) using stereo videography. These data were used to examine the effects of rotational damping arising from interactions between the body rotation and flapping motion (flapping counter-torque, FCT) on continuous turning. The moths were found to accelerate during downstroke, then decelerate during upstroke by an amount consistent with FCT damping. Wing kinematics related to turning were then analysed in a simulation of hawkmoth flight; results were consistent with the observed acceleration–deceleration pattern. However, an alternative wing kinematic which produced more continuous and less damped accelerations was found in the simulation. These findings demonstrate that (i) FCT damping is detectable in the dynamics of continuously turning animals and (ii) FCT-reducing kinematics do exist but were not employed by turning moths, possibly because within-wingbeat damping simplifies control of turning by allowing control systems to target angular velocity rather than acceleration.  相似文献   

7.
A yeast two-hybrid approach was used to discern possible new effectors for the betagamma subunit of heterotrimeric G proteins. Three of the clones isolated are structurally similar to Gbeta, each exhibiting the WD40 repeat motif. Two of these proteins, the receptor for activated C kinase 1 (RACK1) and the dynein intermediate chain, co-immunoprecipitate with Gbetagamma using an anti-Gbeta antibody. The third protein, AAH20044, has no known function; however, sequence analysis indicates that it is a WD40 repeat protein. Further investigation with RACK1 shows that it not only interacts with Gbeta(1)gamma(1) but also unexpectedly with the transducin heterotrimer Galpha(t)beta(1)gamma(1). Galpha(t) alone does not interact, but it must contribute to the interaction because the apparent EC(50) value of RACK1 for Galpha(t)beta(1)gamma(1) is 3-fold greater than that for Gbeta(1)gamma(1) (0.1 versus 0.3 microm). RACK1 is a scaffold that interacts with several proteins, among which are activated betaIIPKC and dynamin-1 (1). betaIIPKC and dynamin-1 compete with Gbeta(1)gamma(1) and Galpha(t)beta(1)gamma(1) for interaction with RACK1. These findings have several implications: 1) that WD40 repeat proteins may interact with each other; 2) that Gbetagamma interacts differently with RACK1 than with its other known effectors; and/or 3) that the G protein-RACK1 complex may constitute a signaling scaffold important for intracellular responses.  相似文献   

8.
Kuhn M  Meiler J  Baker D 《Proteins》2004,54(2):282-288
Beta-sheet proteins have been particularly challenging for de novo structure prediction methods, which tend to pair adjacent beta-strands into beta-hairpins and produce overly local topologies. To remedy this problem and facilitate de novo prediction of beta-sheet protein structures, we have developed a neural network that classifies strand-loop-strand motifs by local hairpins and nonlocal diverging turns by using the amino acid sequence as input. The neural network is trained with a representative subset of the Protein Data Bank and achieves a prediction accuracy of 75.9 +/- 4.4% compared to a baseline prediction rate of 59.1%. Hairpins are predicted with an accuracy of 77.3 +/- 6.1%, diverging turns with an accuracy of 73.9 +/- 6.0%. Incorporation of the beta-hairpin/diverging turn classification into the ROSETTA de novo structure prediction method led to higher contact order models and somewhat improved tertiary structure predictions for a test set of 11 all-beta-proteins and 3 alphabeta-proteins. The beta-hairpin/diverging turn classification from amino acid sequences is available online for academic use (Meiler and Kuhn, 2003; www.jens-meiler.de/turnpred.html).  相似文献   

9.
The interaction in vitro between adenoviral histone-like proteins and DNA in the presence of chromatin assembly factors was investigated. Viral core protein VII or its precursor pVII was incubated with DNA in the presence of an extract of HeLa cell chromatin, which mediates nucleosome assembly from histones and DNA. We have demonstrated that either protein can introduce superhelical turns into relaxed closed-circular DNA and that the presence of chromatin extract is necessary for the supertwisting effect. A greater density of superhelical turns was produced by pVII than by VII, but neither protein-DNA interaction resulted in the "physiological" amount of supertwisting produced by histones. The inhibition of histone-induced supercoiling by both proteins and the protection of turns in supertwisted starting material are also described. The nucleosome assembly factor, nucleoplasmin, fails to mediate the introduction of superhelical turns by VII or pVII.  相似文献   

10.
Although the analysis and design of turns that connect the strands in antiparallel beta-hairpins has reached an advanced state, much less is known concerning turns between antiparallel helices in helical hairpins. We have conducted an analysis of the structures and sequence preferences of two types of interhelical turns, each of which connects the two helices by a two-residue linker in an alphaL-beta conformation. Based on this analysis, it became apparent that the turn introduced into a designed four-helix bundle protein, DF1, did not occur within an optimal structural context. DF1 is a dimeric model for the diiron class of proteins. A longer loop with a beta-alphaR-beta conformation was inserted between two helices in the protein, and a sequence was chosen to stabilize its conformation. X-ray crystallography and NMR analysis of the protein showed the structure to be in excellent agreement with design.  相似文献   

11.
1. The residue pair is considered as the fundamental unit which differentiates alpha-helix, beta-pleated sheet and the various turns and kink structures of the protein backbone. 2. The HPLG alphabet (Robson & Pain, 1974) is used to group pairs of residues, giving 16 possible conformational pairs, all of which are found with differing frequencies in the nine proteins examined. 3. The frequencies of occurrence of the 16 different types of turn or kink are analysed in relation to the constituent amino acids. Those containing the L or G conformation are of low frequency and are grouped for purposes of this analysis. 4. The distribution of amino acids within all the conformational pairs is non-random, with distinct preferences shown by certain residues. 5. All pairs containing an L or G conformation require the presence of a glycine or a proton-donor side chain. 6. The results are discussed in terms of the determination of these ;random' structures by local interactions.  相似文献   

12.
The mating pathway of Saccharomyces cerevisiae is widely used as a model system for G protein-coupled receptor-mediated signal transduction. Following receptor activation by the binding of mating pheromones, G protein betagamma subunits transmit the signal to a MAP kinase cascade, which involves interaction of Gbeta (Ste4p) with the MAP kinase scaffold protein Ste5p. Here, we identify residues in Ste4p required for the interaction with Ste5p. These residues define a new signaling interface close to the Ste20p binding site within the Gbetagamma coiled-coil. Ste4p mutants defective in the Ste5p interaction interact efficiently with Gpa1p (Galpha) and Ste18p (Ggamma) but cannot function in signal transduction because cells expressing these mutants are sterile. Ste4 L65S is temperature-sensitive for its interaction with Ste5p, and also for signaling. We have identified a Ste5p mutant (L196A) that displays a synthetic interaction defect with Ste4 L65S, providing strong evidence that Ste4p and Ste5p interact directly in vivo through an interface that involves hydrophobic residues. The correlation between disruption of the Ste4p-Ste5p interaction and sterility confirms the importance of this interaction in signal transduction. Identification of the Gbetagamma coiled-coil in Ste5p binding may set a precedent for Gbetagamma-effector interactions in more complex organisms.  相似文献   

13.
14.
G proteins (Galphabetagamma) are essential signaling molecules, which dissociate into Galpha and Gbetagamma upon activation by heptahelical membrane receptors. We have identified the betagamma subunit complex of the photoreceptor-specific G protein, transducin (T), as a target of the ubiquitin-proteasome pathway. Ubiquitylated species of the transducin gamma-subunit (Tgamma) but not the alpha- or beta-subunits were assembled de novo in bovine photoreceptor preparations. In addition, Tgamma was exclusively ubiquitylated when Tbetagamma was dissociated from Talpha. Ubiquitylation of Tbetagamma on Tgamma was selectively catalyzed by human ubiquitin-conjugating enzymes UbcH5 and UbcH7 and was coincident with degradation of the entire Tbetagamma subunit complex in vitro by a mechanism requiring ATP and the proteasome. We also show that Tbetagamma association with phosducin, a photoreceptor-specific protein of unknown physiological function, blocks Tbetagamma ubiquitylation and subsequent degradation. Phosphorylation of phosducin by Ca(2+)/calmodulin-dependent protein kinase II, which inhibits phosducin-Tbetagamma complex formation, completely restored Tbetagamma ubiquitylation and degradation. We conclude that Tbetagamma is a substrate of the ubiquitin-proteasome pathway and suggest that phosducin serves to protect Tbetagamma following the light-dependent dissociation of Talphabetagamma.  相似文献   

15.
A study is made of the relationships between electronic structures and carcinogenic activities of a series of molecules of which the parent is tricycloquinazoline. The carcinogens amongst these molecules do not belong to any of the better known classes of carcinogens and small variations between the members of the series produce marked differences in carcinogenic activity. Using semi.empiriW methods of pi-molecular orbital theory calculations have been carried out on the electronic structures of a number of the tricycloquinazdline series and the effect of substituents on the charge distribution is examined through the calculation of atom atom polarizabilities. The relation of these results to the carcinogenic behaviour of the tricycloquinazolines add the form of the variation of carcinogenic activity amongst the series of molecules under study is examined critically and the hypothesis that the specificity of tricycloquinazoline carcinogenesis could be due to electrostatic interactions between DNA base-pairs and tricycloqumazoline molecules intercalated into the DNA helix is formulated. Theoretical calculations to test this hypothesis are presented. Although the magnitudes of the electrostatic interactions are large enough to be significant, no general correlation in support of the hypothesis is found. Ionization potentials of tricycloquinazolines are also calculated and these support the view that there is no correlation between ionization potential and carcinogenic activity.  相似文献   

16.

Background

The application of peptide based diagnostics and therapeutics mimicking part of protein antigen is experiencing renewed interest. So far selection and design rationale for such peptides is usually driven by T-cell epitope prediction, available experimental and modelled 3D structure, B-cell epitope predictions such as hydrophilicity plots or experience. If no structure is available the rational selection of peptides for the production of functionally altering or neutralizing antibodies is practically impossible. Specifically if many alternative antigens are available the reduction of required synthesized peptides until one successful candidate is found is of central technical interest. We have investigated the integration of B-cell epitope prediction with the variability of antigen and the conservation of patterns for post-translational modification (PTM) prediction to improve over state of the art in the field. In particular the application of machine-learning methods shows promising results.

Results

We find that protein regions leading to the production of functionally altering antibodies are often characterized by a distinct increase in the cumulative sum of three presented parameters. Furthermore the concept to maximize antigenicity, minimize variability and minimize the likelihood of post-translational modification for the identification of relevant sites leads to biologically interesting observations. Primarily, for about 50% of antigen the approach works well with individual area under the ROC curve (AROC) values of at least 0.65. On the other hand a significant portion reveals equivalently low AROC values of < = 0.35 indicating an overall non-Gaussian distribution. While about a third of 57 antigens are seemingly intangible by our approach our results suggest the existence of at least two distinct classes of bioinformatically detectable epitopes which should be predicted separately. As a side effect of our study we present a hand curated dataset for the validation of protectivity classification. Based on this dataset machine-learning methods further improve predictive power to a class separation in an equilibrated dataset of up to 83%.

Conclusion

We present a computational method to automatically select and rank peptides for the stimulation of potentially protective or otherwise functionally altering antibodies. It can be shown that integration of variability, post-translational modification pattern conservation and B-cell antigenicity improve rational selection over random guessing. Probably more important, we find that for about 50% of antigen the approach works substantially better than for the overall dataset of 57 proteins. Essentially as a side effect our method optimizes for presumably best applicable peptides as they tend to be likely unmodified and as invariable as possible which is answering needs in diagnosis and treatment of pathogen infection. In addition we show the potential for further improvement by the application of machine-learning methods, in particular Random Forests.  相似文献   

17.
The frequencies of occurrence of the side chains in proteins in the first, second, third, and fourth positions of a reverse turn in a set of 26 nonredundant protein chains are shown in a table that lists cysteine and cystine side chains separately. This table was used to predict the reverse turns in poplar plastocyanin whose crystal structure is known (75% of the turn residues are correctly predicted but the overall accuracy of the predictions is only 66% in a turn-not-turn two-state model), and in three blue copper proteins whose crystal structures are being determined (cucumber plastocyanin and cucumber basic protein) or contemplated (Rhus vernificera stellacyanin). The copper cores proposed for cucumber basic protein and stellacyanin are discussed.  相似文献   

18.
The analysis of a continuous, aerobic, fixed-film bioreactor is performed by simulating the behavior of penicillin production in a three-phase fluidized bed. Rigorous mathematical models are developed for a fluidized-bed fermentor in which bioparticles are fluidized by the liquid medium and air. The steady-state performance of the fluidized-bed reactor is appraised in terms of penicillin productivity and outlet concentration by considering the two extremes in contacting patterns, complete back-mix and plug flow, in the absence of a growing biofilm. The results show that the complete back-mix contacting pattern is preferred over that of plug flow due to the nature of the penicillin kinetic relationships. It is also shown that for the dual-nutrient (glucose and oxygen) penicillin reaction system the optimum biofilm thickness does not equal the penetration depth of a limiting nutrient, but depends upon the total reactor configuration.  相似文献   

19.
The dynamic analysis of a continuous, aerobic, fixed-film bioreactor has been performed. Rigorous mathematical models have been developed for a fluidized-bed fermentor with biofilm growth. The transient performance of the reactor is appraised in terms of outlet penicillin concentration for constant, as well as variable carbon substrate feed rates. The effect of the reactor oxygen transfer capacity is elucidated for those cases employing substrate feeding strategies. The results show that penicillin production in a continuous, fixed-film bioreactor reaches a maximum with processing time, but subsequently decreases as cell mass accumulates and substrate deficiencies occur. The maximum production level can be maintained for increased operating times if the substrate supply is continuously increased. The duration of this prolonged production is a direct function of the rate of increase and the operating time at which the increase is initiated. The oxygen transfer capacity of the reactor was found to be important to the effectiveness of a feeding strategy.  相似文献   

20.
One of the approaches to protein structure prediction is to obtain energy functions which can recognize the native conformation of a given sequence among a zoo of conformations. The discriminations can be done by assigning the lowest energy to the native conformation, with the guarantee that the native is in the zoo. Well-adjusted functions, then, can be used in the search for other (near-) natives. Here the aim is the discrimination at relatively high resolution (RMSD difference between the native and the closest nonnative is around 1 A) by pairwise energy potentials. The potential is trained using the experimentally determined native conformation of only one protein, instead of the usual large survey over many proteins. The novel feature is that the native structure is compared to a vastly wider and more challenging array of nonnative structures found not only by the usual threading procedure, but by wide-ranging local minimization of the potential. Because of this extremely demanding search, the native is very close to the apparent global minimum of the potential function. The global minimum property holds up for one other protein having 60% sequence identity, but its performance on completely dissimilar proteins is of course much weaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号