首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spermatocytes from the mole, Talpa occidentalis, a species that includes both XX males and intersexes, were surface-spread and silver-stained to substage meiotic prophase from early zygonema through pachynema. In zygonema, only the Z2 and Z3 substages were found. This stage differed in comparison with such species as the Chinese hamster, laboratory mouse, and deer mouse, which belong to orders other than Insectivora. Pachynema, in which five substages were established (P1-P5), seems to be a more homogeneous stage, and remarkable differences with respect to the above-mentioned species were not found. Synaptic adjustment was demonstrated in X-Y pairing. Nonhomologous pairing was evident at the Y-centromeric region and considered likely in the proximal arm of this chromosome. In addition to sequencing the events taking place during zygonema and pachynema in males from a wild population in which some members show sex reversal, our finding represents the first attempt to substage zygonema and pachynema in an Insectivore species, thus contributing to current knowledge of the nature and degree of variability in the mammalian synaptic process.  相似文献   

2.
The pairing behavior of the sex chromosomes in male and female individuals representing seven species of Peromyscus was analyzed by electron microscopy of silver-stained zygotene and pachytene configurations. Six species possess submetacentric or metacentric X chromosomes with heterochromatic short arms. Sex-chromosome pairing in these species is initiated during early pachynema at an interstitial position on the X and Y axes. Homologous synapsis then progresses in a unidirectional fashion towards the telomeres of the X short arm and the corresponding arm of the heterochromatic Y chromosome. The distinctive pattern of synaptic initiation allowed a late-synapsing bivalent in fetal oocytes to be tentatively identified as that of the X chromosomes. In contrast to the other species, Peromyscus megalops possesses an acrocentric X chromosome and a very small Y chromosome. Sex-chromosome pairing in this species is initiated at the proximal telomeric region during late zygonema, and then proceeds interstitially towards the distal end of the Y chromosome. These observations suggest that the presence of X short-arm heterochromatin and corresponding Y heterochromatin interferes with late-zygotene alignment of the pairing initiation sites, thereby delaying XY synaptic initiation until early pachynema. The pairing initiation sites are conserved in the vicinity of the X and Y centromeres in Peromyscus, and consequently the addition of heterochromatin during sex-chromosome evolution essentially displaces these sites to an interstitial position.  相似文献   

3.
Surface-spread, silver-stained primary spermatocytes from individuals of the Sitka deer mouse (Peromyscus sitkensis) were analyzed by electron microscopy. Pairing of the X and Y chromosomes is initiated at early pachynema and is complete by mid pachynema. The pattern of sex chromosome pairing is unique in that it is initiated at an interstitial position, with subsequent synapsis proceeding in a unidirectional fashion towards the telomeres of the homologous segments. One-third the length of the X and two-thirds the length of the Y are involved in the synaptonemal complex of the sex bivalent. Various morphological complexities develop in the heteropycnotic (unpaired) segments as pachynema progresses, but desynapsis is not initiated until diplonema. Analysis of C-banded diakinetic nuclei indicated that sex chromosome pairing involves the heterochromatic short arm of the X and the long arm of the heterochromatic Y. An interstitial chiasma between the X and Y was observed in the majority of the diakinetic nuclei. The observation of a substantial pairing region and chiasma formation between the sex chromosomes of these deer mice is interpreted as indicating homology between the short arm of the X and the long arm of the Y.  相似文献   

4.
Chromosomal pairing and chiasma formation were studied two individuals of Peromyscus beatae heterozygous for the presence of a large block of interstitial heterochromatin. Although the modified chromosome was of medium size, analysis of C-banded diakinetic configurations revealed that it was the homolog of one of the smallest autosomes. Analysis of silver stained synaptonemal complexes indicated that synapsis was either unidirectional from initiation at one set of telomeres or was bidirectional from initiation at both sets of telomeres. Each pattern resulted in characteristic heteromorphic pairing configurations (interstitial asynapsis or terminally positioned unpaired segments) in early pachynema. These configurations underwent synaptic adjustment and, by mid-pachynema, the lateral elements of the polymorphic bivalent either appeared typical of homomorphic bivalents or exhibited regional heteropycnosis in one or both axes. Synaptonemal complex data for Peromyscus and many other mammalian species reflect an apparent need for fully paired, linear bivalents prior to the end of pachynema.  相似文献   

5.
The ultrastructure of whole X-Y pairs has been reconstructed by serial sectioning and model building. Seven X-Y pairs were completely reconstructed and the lengths of the cores of the sex chromosomes were measured. These X-Y pairs corresponded to zygonema, early, middle and late pachynema. Special regions of the X-Y pair were reconstructed from thinner sections. — It has been shown that two cores exist in the sex pair during the cited stages, and that their lengths and morphology are rather constant in specific stages. The long core averages 8.9 in length and the short core is 3.5 long. Both cores have a common end region in which a synaptonemal complex is formed from zygonema up to midpachynema. This synaptonemal complex shortens progressively up to mid-pachynema and at late pachynema becomes obliterated. Each core has a free end touching the nuclear membrane. During mid-pachynema an anomalous synaptonemal complex is developed on most of the length of the long core. This complex is asymmetric and disappears at late pachynema. The meaning of the cores and the complexes are discussed, and the existence of a homologous region in the X-Y pair of the mouse is interpreted to be proved.  相似文献   

6.
Antibodies against human Rad51 protein were used to examine the distribution of Rad51 on meiotic chromatin in mouse spermatocytes and oocytes as well as chicken oocytes during sequential stages of meiosis. We observed the following dynamic changes in distribution of Rad51 during meiosis: (1) in early leptotene nuclei there are multiple apparently randomly distributed, foci that by late leptonema become organized into tracks of foci. (2) These foci persist into zygonema, but most foci are now localized on Rad51-positive axes that correspond to lateral elements of the synaptonemal complex. As homologs synapse foci from homologous axes fuse. The distribution and involvement of Rad51 foci as contact points between homologs suggest that they may be components to early recombination nodules. (3) As pachynema progresses the number of foci drops dramatically; the temporal occurrence (mice) and physical and numerical distribution of foci on axes (chickens) suggest that they may be a component of late recombination nodules. (4) In early pachynema there are numerous Rad51 foci on the single axis of the X (mouse spermatocytes) or the Z (chiken oocytes) chromosomes that neither pair, nor recombine. (5) In late pachynema in mouse spermatocytes, but not oocytes, the Rad51 signal is preferentially enhanced at both ends of all the bivalents. As bivalents in spermatocytes, but not oocytes, begin to desynapse at diplonema they are often held together at these Rad51-positive termini. These observations parallel observations that recombination rates are exceptionally high near chromosome ends in male but not female eutherian mammals. (6) From diakinesis through metaphase I, Rad51 protein is detected as low-intensity fluorescent doublets that localize with CREST-specific antigens (kinetochores), suggesting that Rad51 participates, at least as a structural component of the materials involved, in sister kinetochore cohesiveness. Finally, the changes in Rad51 distribution during meiosis do not appear to be species specific, but intrinsic to the meiotic process.  相似文献   

7.
Two unusual structural polymorphisms in the largest chromosomal pair of the Israeli mole rat, Spalax ehrenbergi, were analyzed from surface-spread and silver-stained preparations of synaptonemal complexes. A C-band negative polymorphism for the length of the 1p arm was visible as axial length differences during late zygonema and early pachynema. This region underwent synaptic adjustment resulting in a fully paired, mid-pachytene synaptonemal complex with equalized axial lengths. The somatically variable and nonargentophilic secondary constriction in the 1q arm was evident as a distinct silver-stained thickening along the synaptonemal complex. Presence of this structure on the synaptonemal complex varied both among individuals and among cells within individuals. The intraindividual variation of this region is hypothesized to represent differential biochemical activity with its cellular visualization being regulated in a manner similar to that of nucleolus organizer regions.  相似文献   

8.
Alterations in nuclear topology associated with meiotic chromosome pairing were studied in premeiotic cells and spermatocytes I of adult bovine males. To this end, we performed FISH with chromosome, pericentromeric satellite-DNA and telomere-specific probes in combination with immunostaining of synaptonemal complex proteins (SCP3, SCP1) on testis tissue sections. Nuclei of premeiotic cells (spermatogonia) exhibited a scattered telomere distribution while pericentromeres formed a few intranuclear clusters. We observed that the chromosome pairing process in cattle prophase I is preceded by repositioning of centromeres and telomeres to the nuclear periphery during preleptotene. Clustering of chromosome ends (bouquet formation) was observed during the transition from leptonema to zygonema and coincided with pairing of a sub-centromeric marker of bovine chromosomes 7. Dissolution of bouquet topology during zygonema left perinuclear telomeres scattered over the nuclear periphery at pachynema. SCP3 staining in frozen tissue sections revealed the appearance of this axial element protein in intranuclear aggregates during preleptotene, followed by extensive axial element formation during leptotene. Synapsis as revealed by SCP1 staining initiated peripherally at earliest zygotene, at this stage nuclei still contained numerous SCP3 clusters. Our observations reveal prominent non-homologous satellite-DNA associations in spermatogonia and indicate the conservation of topological features of the meiotic chromosome pairing process among mammals. The comparison of telomere dynamics in mouse and cattle prophase I suggests that a larger number of chromosomes prolongs the duration of the bouquet stage.  相似文献   

9.
Differences in length of the heterochromatic short arms of the X and Y chromosomes in individuals ofPeromyscus beatae are hypothesized to result from unequal crossing over. To test this hypothesis, we examined patterns of synapsis, chiasma formation, and segregation for maleP. beatae which were either heterozygous or homozygous for the amount of short-arm sex heterochromatin. Synaptonemal complex analysis demonstrated that mitotic differences in heterochromatic shortarm lengths between the X and Y chromosomes were reflected in early pachynema as corresponding differences in axial element lengths within the pairing region of the sex bivalent. These length differences were subsequently eliminated by synaptic adjustment such that by late pachynema, the synaptonemal complex configurations of the XY bivalent of heterozygotes were not differentiable from those of homozygotes. Crossing over between the heterochromatic short arms of the XY bivalent was documented by the routine appearance of a single chiasma in this region during diakinesis/metaphase I. Sex heterochromatin heterozygotes were characterized by the presence of asymmetrical chiasma between the X and Y short arms at diakinesis/metaphase I and sex chromosomes with unequal chromatid lengths at metaphase II. These data corroborate our hypothesis on the role of unequal crossing over in the production and propagation of X and Y heterochromatin variation and suggest that, in some cases, crossing over can occur during the process of synaptic adjustment.  相似文献   

10.
K M Reed  J W Sites  I F Greenbaum 《Génome》1992,35(3):398-408
Meiosis in males of the F5 cytotype of Sceloporus grammicus was examined through the analysis of synaptonemal complexes (SCs), diakinetic (metaphase I) nuclei, and secondary spermatocytes (metaphase II configurations). These data allowed the establishment of criteria for substaging of zygonema and pachynema, morphological characterization of the SC complement, and comparison of the orientation and segregation of the autosomes and sex chromosomes. The analysis of nuclei from all stages of meiotic prophase I (leptonema through diakinesis) provided a useful means of partitioning the temporal sequence of early meiotic events. Three substages of zygonema (Z1-Z3) were established, based on the extent of synapsis of the microchromosomal and macrochromosomal elements. Synaptic initiation of the autosomes and sex chromosomes was synchronous. Two patterns of macrochromosomal synapsis were observed. Whereas synapsis of the biarmed elements was biterminal (i.e., progressing from both ends of the homologs), synapsis of the acrocentric elements was uniterminal involving only the distal (noncentromeric) ends of the homologs. Unique sex-chromosomal characteristics were not observed in S. grammicus and, therefore, the substaging of pachynema was based on subjective criteria. Examination of diakinesis--metaphase I and metaphase II configurations indicated low levels of diakinetic irregularities with balanced segregation of the autosomal bivalents and the sex-chromosomal trivalent.  相似文献   

11.
Electron microscopy of surface-spread spermatocytes from mice heterozygous for a tandem duplication shows the heteromorphic synaptonemal complex (SC) to comprise two lateral elements of unequal length, the longer of which is buckled out in a characteristic loop, representing the unsynapsed portion of the duplication. The loop is a regular feature of late zygotene-early pachytene nuclei; it is longest at these early stages, but, through equalization of the two axes as a consequence of synaptic adjustment, it is replaced by a normal appearing SC at late pachytene. Because equalization, as indicated by a decrease in the percent difference between axes, may begin shortly after completion of synapsis, estimates of duplication segment length are restricted to a sample selected for least adjustment. — Although the mean position of the loop is constant at various pachytene substages, individual positions vary widely from cell to cell, consistent with the behavior expected of a duplication, but not of a deletion or an inversion. The length of the segment that is duplicated is estimated to be 22% of the normal chromosome, the midpoint of the segment is mapped at 0.61 of the chromosome distal to the kinetochore, and the ends of the segment are mapped at 0.50 to 0.72. Measurements of G-banded mitotic chromosomes give comparable values: duplication length, 24%; midpoint, 0.60, and segment ends, 0.48 and 0.71. This agreement constitutes further validation of the SC/spreading method for detecting and analyzing chromosomal rearrangements at pachytene and substantiates the fidelity with which the axes and SCs represent the behavior of chromosomes in synapsis.  相似文献   

12.
T. Ashley 《Genetica》1987,72(2):81-84
It has been previously supposed that meiotic synapsis is restricted to homology during early, but not late pachynema. The synaptic begavior of an inverted X chromosome, In(X)1H as reflected in the synaptonemal complexes of the sex chromosomes has been examined in microspread spermatocytes by electron microscopy and evidence of extensive nonhomologus synapsis between the X and Y during early pachynema has been obtained.  相似文献   

13.
S M Stack  D Roelofs 《Génome》1996,39(4):770-783
Allium porrum L. (cultivated leek) (2n = 4x = 32) is a fertile tetraploid that forms bivalents with pericentric chiasmata at metaphase I. To investigate the basis of this unusual behavior for a tetraploid, we describe the karyotype, axial cores, synaptonemal complexes (SCs), and meiotic nodules of A. porrum. The karyotype appears to be autotetraploid. This conclusion is also supported by presynaptic alignment of axial cores in groups of four and partner trades between pairs of SCs. Numerous early nodules are distributed all along axial cores and SCs during zygonema, but they are lost by late zygonema - early pachynema. Late (recombination) nodules (RNs) are present on SCs near kinetochores throughout the remainder of pachynema. This pattern of RNs corresponds to the pattern of pericentric chiasmata. Pachytene quadrivalents usually are resolved into bivalents because partner trades between SC lateral elements rarely occur between RNs on the same segment of SC. Thus, the patterns of crossing-over and partner trades promote balanced disjunction and high fertility in autotetraploid A. porrum. Rare quadrivalents observed at metaphase I must be due to infrequent partner trades between RNs. Polycomplexes, unusual in their number and size, were observed during zygonema. Key words : synaptonemal complex, recombination nodules, localized chiasmata, polycomplex, Allium porrum.  相似文献   

14.
Evalaution of microsporocytes cultured during discrete periods of meiotic prophase in the presence of deoxyadenosine, an inhibitor of DNA synthesis, indicate that: (1) late leptonema or early zygonema DNA synthesis is required to initiate the formation of the synaptinemal complex; (2) DNA synthesized during late zygonema is necessary for the disjunction of the paired homologs at diplonema; and (3) DNA synthesis in pachynema is a requisite for normal anaphase II separation of sister chromatids.  相似文献   

15.
D W Hale  I F Greenbaum 《Génome》1988,30(1):44-47
The pattern of chromosomal pairing was analyzed in male deer mice (Peromyscus maniculatus and Peromyscus sitkensis) heterozygous for the presence of heterochromatic short arms. G- and C-banding of somatic metaphases indicated that the presence of heterochromatic short arms increased the length of chromosome 4 by 15% in P. sitkensis and that of chromosome 8 by 9% in P. maniculatus. Analysis of silver-stained late zygotene and early pachytene nuclei revealed a low frequency of unequal axial lengths in the synaptonemal complexes corresponding to the heteromorphic bivalents. All mid- and late pachytene nuclei, however, exhibited fully paired synaptonemal complexes with equalized axial lengths. These observations suggest the existence of an adjustment mechanism which functions to equalize the lengths of the two axes of the heteromorphic synaptonemal complex.  相似文献   

16.
David W. Hale 《Chromosoma》1986,94(6):425-432
The patterns of chromosomal pairing and chiasma distribution were analyzed in male Sitka deer mice (Peromyscus sitkensis) polymorphic for terminally positioned pericentric inversions of chromosomes 6 and 7. Gand C-banding of somatic metaphases indicated that the inversions involved 30% and 40% of chromosomes 6 and 7, respectively. Analysis of silver-stained synaptonemal complexes in surface-spread zygotene and pachytene nuclei from heterozygous individuals revealed that inversion loops were not formed. The inverted segments proceeded directly to heterosynapsis without an intervening homosynaptic phase, and the heteromorphic bivalents remained straight-paired throughout pachynema. C-banded pachytene nuclei corroborated the occurrence of heterosynapsis, as the heteromorphic bivalents exhibited nonaligned centromeres. Analysis of diplonema and diakinesis indicated that crossing over had not occurred within the heterosynapsed inverted segments. The observation of chiasma suppression within the inversions indicates that pericentric inversion heterozygosity does not lead to the production of unbalanced gametes. Heterosynapsis of the inverted segments during zygonema and pachynema and the resulting chiasma suppression therefore represent a meiotic mechanism for the maintenance of pericentric inversion polymorphisms in this population of P. sitkensis.  相似文献   

17.
家鸡联会复合体的亚显微结构分析   总被引:1,自引:0,他引:1  
刘冬梅  张传善 《动物学报》1990,36(4):360-365
本文以表面铺展——硝酸银染色技术,对家鸡的联会复合体(Syneptonemal Complex,SC)作亚显微结构分析。根据对10个精母细胞和10个卵母细胞SC的测量结果,绘制组型图。发现雌雄家鸡的常染色体的SC组型相同。在精母细胞中,性染色体(ZZ)的行为与常染色体相似。在卵母细胞中,性染色体ZW的长度不同,长轴为Z,短轴为W,两者之间只有部分配对,形成SC。从早粗线期到晚粗线期,由同源配对调整为非同源配对。另外,在一只雌鸡中,第一次观察到,有些细胞的常染色体能正常配对,而性染色体完全不配对的现象。  相似文献   

18.
The influence of X-autosome Robertsonian (Rb) translocation hemizygosity on meiotic chromosome behaviour was investigated in male mice. Two male fertile translocations [Rb(X.2)2Ad and Rb(X.9)6H] and a male sterile translocation [Rb(X.12)7H] were used. In males of all three Rb translocation types, the acrocentric homologue of the autosome involved in the rearrangement regularly failed at pachytene to pair completely with its partner in the Rb metacentric. The centric end of the acrocentric autosome was found regularly to associate either with the proximal end of the Y chromosome or with the ends of nonhomologous autosomal bivalents; the proportions of cells with such configurations varied between pachytene substages and genotypes. Various other categories of synaptic anomaly, such as nonhomologous synapsis, foldback pairing and interlocks, affected the sex chromosome multivalent in a substantial proportion of cells. In one of the Rb(X.12)7H males screened, an unusual, highly aneuploid spermatocyte that contained trivalent and bivalent configurations was found. Rb translocation hemizygosity did not appear to increase to a significant extent the incidence of X-Y pairing failure at pachytene, although the incidence was elevated at metaphase I in Rb(X.12)7H animals. Overall, a comparison of the frequencies and types of chromosome pairing anomalies did not suggest that these were important factors in the aetiology of infertility in males carrying the Rb(X.12)7H translocation.  相似文献   

19.
The pachytene behavior of chromosomes participating in quadrivalent formation in male mice heterozygous for T(X;4)7Rl or T(X;4)8Rl was analyzed in electron micrographs of microspread spermatocytes. In each population of nuclei from the translocation heterozygotes, the longest 4X axes were approximately the proportional length expected from the respective contributions of the 4 and the X estimated from breakpoint positions in mitotic chromosomes. However, the 4X axis of these translocation quadrivalents undergoes extensive shortening. In both R7 and R8 the shortest 4X axis observed in the population of nuclei was approximately the length of the normal 4 axis. This equalization of axial lengths suggests that there may be an interchromosomal interaction between synapsed chromosomes. In R8, axial shortening of the 4X occurs as pachynema progresses. In both translocations, shortening is accompanied by twisting of the 4X around the 4. Both axial shortening and twists are characteristics exhibited by chromosomal axes of unequal length as part of the meiotic phenomenon described as "synaptic adjustment" (Moses, 1977). Synaptic adjustment involves, in addition, nonhomologous synapsis, which is delayed until the latter part of pachynema. However, axial shortening in R7 and R8 is not accompanied by nonhomologous synapsis. In R7, nonhomologous synapsis does not occur; in R8, it is confined to quadrivalents in which the 4X axis is near its maximum length (i.e., early). This behavior suggests that axial shortening and nonhomologous synapsis during the progression of pachynema (previously considered collectively under the term "synaptic adjustment") are not necessarily coupled events.  相似文献   

20.
By using serial sectioning and a new hypotonic bursting technique on primary microsporocytes of tomato (Lycopersicon esculentum), relatively large numbers of recombination nodules (RNs) are observed on the synaptonemal complexes forming during zygonema. In pachynema most, but not all, of these RNs are lost. If RNs represent sites of potential crossing over during zygonema and sites of actual crossing over during late pachynema, the observed temporal and spatial distribution of RNs may provide answers for some classic cytogenetic questions such as: how is at least one crossover per bivalent assured? How are crossovers localized? What is the basis for positive chiasma interference?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号