首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent acceptance of frozen semen as a method to produce registered foals by two of the worlds largest breed associations, the American Quarter Horse and American Paint Horse, has stimulated new interest in frozen semen technology. This review will: (a) attempt to identify the major impediments to the development of the frozen semen industry, (b) suggest alternative methods for marketing and application of frozen semen, and (c) present the results of a recent study in our laboratory. The objective of which was to compare pregnancy rates of insemination with cooled and frozen semen. Major impediments to the development of the frozen semen industry include 1. Lower fertility with frozen semen as compared to cooled semen for many stallions. 2. Increased costs associated with management of mares for AI with frozen semen using current insemination protocols. 3. Unfavorable marketing practices for frozen semen. Reports of fertility with cooled transported semen in commercial breeding programs indicate seasonal pregnancy rates ranging from 60 to 90%. We compiled data from three commercial transported cooled semen programs in which semen from 16 stallions was used for insemination of 850 mares throughout North America by local veterinarians. During the 1999 and 2000 breeding seasons, first cycle and seasonal pregnancy rates of 59.4 and 74.7% were obtained. During that same period, first cycle and seasonal pregnancy rates of 51.3 and 75.6% were obtained following insemination of 876 mares with frozen semen from 106 different stallions processed by our laboratory and distributed through our commercial distribution program. First cycle and seasonal pregnancy rates were higher for mares bred outside of North America than for mares bred within North America (53.5 and 81.9 versus 49.4 and 65.6%, respectively). Seasonal pregnancy rates were higher presumably because of the better mare management employed for mares bred with exported semen and the fact that some of the domestic mares were switched to cooled semen insemination after a failed first cycle attempt with frozen semen. These data support the position that comparable seasonal pregnancy rates may be obtained using frozen and liquid cooled semen in a commercial setting.  相似文献   

2.
The lambing rate obtained following cervical artificial insemination (AI) with frozen semen in sheep is low mainly due to the inability of frozen-thawed sperm to traverse the tortuous nature of the cervical canal. Although acceptable fertility has been attained by circumventing the cervical barrier through laparoscope aided intrauterine AI, the emphasis is currently given on the development of alternate non-invasive transcervical AI procedures. The complex anatomy of the cervix does not facilitate easy transcervical passage for an insemination catheter. The aim of the present study was: (i) to examine the gross anatomy of the cervix in slaughtered ewe lambs and adult ewes of the native Malpura and Kheri breeds raised under semi-arid tropical environment; and (ii) to cast silicone moulds of the reproductive tracts for measuring the dimensions of the cervix. Eighty reproductive tracts were excised immediately from carcass of Malpura and Kheri ewes and the external os of each one was classified depending on their appearance as duckbill, spiral, rosette or flap. The cervical canal of each tract was filled with a silicone sealant for casting the mould. Fifty complete silicone moulds were obtained representing 25 from ewe lambs and 25 from adult ewes. The mean lengths of the cervical mould of ewe lambs and adult ewes were 3.8+/-0.12 and 5.3+/-0.15 cm, respectively. The average number of funnel shaped folds in the cervical mould of ewe lambs and adult ewes were 3.2+/-0.19 and 3.4+/-0.22. However, the second and third-folds from the os were observed to be accentric in both ewe lambs and adult ewes. The information generated in this study would be useful for increasing the success rate of penetration in ewes exhibiting estrus in order to improve the lambing rate of tropical ewes following transcervical AI.  相似文献   

3.
In order to improve the genetic management of bird species within the European Endangered Programs (EEP), a research project on artificial insemination and cryopreservation of Galliformes semen has been developed. The aim of the program is to create a sperm cryobank for threatened bird species. During this study, semen was collected from 17 pheasant species and specific characteristics of ejaculates were analyzed (volume, sperm concentration, motility, pH). Artificial insemination with fresh semen was performed in nine species and with frozen semen in eight species. Inseminations with frozen and thawed semen were made in 17 species. Viability of fresh and frozen semen was assessed in vitro using double stains, eosin and nigrosin. The effect of pH (7-8.5) on viability of fresh and frozen/thawed spermatozoa was also studied. Chicks hatched in eight and three species after insemination with fresh and frozen/thawed semen, respectively. Species varied widely in semen viability: 1-30% of spermatozoa survived freezing and thawing. There was a negative correlation between the viability of frozen spermatozoa and semen pH. In our experimental conditions, the pH of diluents had no effect on semen viability. However, semen with the highest pH had the lowest quality after freezing and thawing. These experiments demonstrated the feasibility of using a very simple and inexpensive method to achieve artificial insemination and cryopreservation of semen in endangered pheasant species.  相似文献   

4.
This review brings together research findings on cervical relaxation in the ewe and its pharmacological stimulation for enhancement of the penetration needed for transcervical insemination and embryo transfer. On the basis that the success of artificial insemination is the percentage of ewes lambing, a review is made of recent research aimed at understanding and minimising the sub-lethal effects of freezing and thawing on the viability of spermatozoa, their membrane integrity and their ability to migrate through cervical mucus, as these characteristics have a major influence on fertility, particularly when semen is deposited, artificially, in the os cervix. Milestones of achievement are given for transcervical intrauterine insemination, embryo recovery and transfer and the birth of lambs of pre-determined sex, firstly following intracytoplasmic sperm injection, then laparoscopic intrauterine insemination using highly diluted flow-cytometrically sorted fresh semen and subsequently by os cervix insemination using sexed semen that had been frozen and thawed. Diversity of research endeavour (applied, cellular, molecular), research discipline (anatomy, histology, immunology, endocrinology) and research focus (cell, tissue, organ, whole animal) is embraced within the review as each has significant contributions to make in advancing recent scientific findings from the laboratory into robust on-farm transcervical insemination and embryo transfer techniques.  相似文献   

5.
A breeding trial was conducted to evaluate the effect of insemination timing on the fertility of mares bred with frozen/thawed equine semen. One stallion and 60 reproductively sound, estrous-synchronized mares were included in the study. Mares were assigned to one of three groups (n = 20): 1) insemination with fresh semen every other day during estrus from detection of a 35-mm follicle until ovulation, 2) insemination with frozen/thawed semen every day during estrus from detection of a 35-mm follicle until ovulation or 3) insemination with frozen/thawed semen once, within 6 h after ovulation. Single-cycle 18-d pregnancy rates resulting from insemination with fresh semen (70%), preovulation insemination with frozen/thawed semen (60%) and postovulation insemination with frozen/thawed semen (55%) were not different (P > 0.05). Possibly, equivalent pregnancy rates could be achieved with frozen/thawed semen using either daily inseminations until ovulation occurs or frequent ovarian palpations with a single post-ovulation insemination. Further studies regarding the effect of insemination timing on stallion fertility are needed since the present investigation included only one stallion and a small number of mares.  相似文献   

6.
Tsutsui T 《Theriogenology》2006,66(1):122-125
Artificial insemination (AI) in cats represents an important technique for increasing the contribution of genetically valuable individuals in specific populations, whether they be highly pedigreed purebred cats, medically important laboratory cats or endangered non-domestic cats. Semen is collected using electrical stimulation, with an artificial vagina or from intact or excised cauda epididymis. Sperm samples can be used for AI immediately after collection, after temporary storage above 0 degrees C or after cryopreservation. There have been three and five reports on intravaginal and intrauterine insemination, respectively, and one report on tubal insemination with fresh semen. In studies using fresh semen, it was reported that conception rates of 50% or higher were obtained by intravaginal insemination with 10-50x10(6) spermatozoa, while, in another report, the conception rate was 78% after AI with 80x10(6) spermatozoa. After intrauterine insemination, conception rates following deposition of 6.2x10(6) and 8x10(6) spermatozoa were reported to be 50 and 80%, respectively. With tubal insemination, the conception rate was 43% when 4x10(6) spermatozoa were used, showing that the number of spermatozoa required to obtain a satisfactory conception rate was similar to that of cats inseminated directly into the uterus. When frozen semen was used for intravaginal insemination the conception rate was rather low, but intrauterine insemination with 50x10(6) frozen/thawed spermatozoa resulted in a conception rate of 57%. Furthermore, in one report, conception was obtained by intrauterine insemination of frozen epididymal spermatozoa. Overall, there have been few reports on artificial insemination in cats. The results obtained to date show considerable variation, both within and among laboratories depending upon the type and number of spermatozoa used and the site of sperm deposition. Undoubtedly, future studies will identify the major factors required to consistently obtain reliable conception rates, so that AI can become a practical technique for enhancing the production of desirable genotypes, both for laboratory and conservation purposes.  相似文献   

7.
哺乳动物精子冷冻的抗氧化研究进展   总被引:1,自引:0,他引:1  
人工授精是迄今为止应用最广泛并最有成效的辅助生殖技术,而高品质的精液是提高人工授精受胎率的关键。近年来在家畜精液冷冻保存技术中应用抗氧化剂的研究受到广泛关注,通过添加抗氧化剂降低了精子在冷冻保存过程中所遭受的氧化损伤,提高了冷冻精液质量和母畜的受胎率。可添加的抗氧化剂种类很多,通常有维生素类和酶类抗氧化剂等。针对目前抗氧化剂在大熊猫精液上应用研究甚少的现状,该文对哺乳动物精子的氧化损伤机制和常用的抗氧化剂进行综述,期望对大熊猫的相关研究提供理论依据和参考。  相似文献   

8.
An overview of the present status of the use of artificial insemination (AI) in South American camelids and wild equids is offered. Technical aspects of semen collection, dilution and cryopreservation have limited the development and use of AI in camelid and equid species. To-date, efficiency is low but progress has been made and viable offspring have been produced through the use of AI in domestic South American camelids using both fresh and frozen semen. The origin, composition, and function of the viscous component of camelid seminal plasma remain a mystery and an obvious area for future research. A better understanding of the normal constituents of seminal plasma will enable the rational design of semen extenders suitable for camelids. Post-thaw sperm viability is very low, and studies are needed to address questions of optimal freezing and thawing procedures as well as the insemination dose. The basis for differences in reported pregnancy rates with sexed and frozen semen in domestic equids, and the ultimate success of AI in wild equids will require continued research into the "stallion effect", extenders and cryoprotectants, optimal volume and number of spermatozoa, temperatures during handling, processing an transport, and insemination techniques. In both camelids and equids, research on domestic species under controlled conditions provides and excellent opportunity to develop effective semen handling techniques for application in wild and endangered species of the respective families.  相似文献   

9.
This study was conducted at Belen de Escobar, Argentina, in March and April 1987. Experimental work on synchronization of estrus, deep-freeze conservation of ram semen and small fertility trials involving cervical and intrauterine (i.u.) insemination methods was undertaken. A total of 80 Corriedale ewes were used in seven insemination trials. Insemination trials were grouped into two experimental groups for comparison of 1) frozen semen diluted with an experimental extender and a control diluent inseminated cervically or i.u. in synchronized/superovulated ewes and 2) cervical insemination of fresh diluted or frozen semen in ewes inseminated at natural estrus or in ewes that were synchronized/superovulated. An overall ovulation rate of 8.7 +/- 0.5 was obtained by using a superovulatory regimen consisting of 3 mg Norgestomet implants and a total dose of 18 mg follicle stimulating hormone-pituitary (FSH-P). Numbers of ova recovered per ewe following superovulation ranged from 4.3 to 5.4. In experimental Group I, fertilization rates improved when laparoscopic intrauterine AI was used compared with cervical insemination (P<0.05). Fertility rates of i.u. and cervical insemination of frozen semen diluted with the experimental extender showed satisfactory fertilizing capacity. In experimental Group II, a lower number of fertilized ova were recovered from ewes inseminated with frozen semen (P<0.02), irrespective of their estrus manipulation.  相似文献   

10.
A technique of boar semen deep-freezing and frozen semen use was tested in practice. 338 sows and 43 gilts belonging to small herds with less than 10 females each were inseminated without oestrus detection by a teaser boar. About 58 % of the inseminated females produced 9.3 piglets per litter. But there were differences between parities. The sows had the highest fertility rate, whereas the gilts showed a significantly lower farrowing rate (59.8% vs 41.9%; P < 0.05). The standing reaction of the female to the back pressure test made by the inseminator and the behaviour of the female during insemination had an effect on the farrowing rate. The best result was obtained after a standing reaction and a behaviour score of 1 (64.5% and 9.6 piglets for farrowing rate and litters size respectively). Farrowing rate for inseminators ranged from 44.3% to 62.4% among inseminators. Farrowing rate for females inseminated with frozen semen from Large-White, Landrace, Pietrain boars was not different, but there were significant differences between the boars. Results showed that insemination with deep-frozen boar semen could be used under practical conditions as an additional technique to the use of fresh semen.  相似文献   

11.
Artificial insemination (AI) in sheep is currently limited by the poor fertility obtained following non-surgical intracervical insemination of frozen-thawed semen. An exception to this general finding is the non-return rate of around 58% reported for large scale on-farm AI in Norway. The objective of the present study was to determine if similar results could be obtained under Irish conditions. Comparisons were made between semen collected, and frozen, from rams in Norway (NOR) and Ireland (IRL). The effects of synchronisation and inseminator were also examined. Parous ewes (n=297) of various breed types were inseminated to a natural (N) or synchronised (S) oestrus with either fresh (from Irish rams) or frozen-thawed (IRL and NOR) semen. Ewes were randomly assigned, within breed, to the following treatment groups: (i) Fresh-N: n=28, (ii) Fresh-S: n=30, (iii) IRL-N: n=62, (iv) IRL-S: n=50, (v) NOR-N: n=68, (vi) NOR-S: n=59. Within each group, ewes were inseminated by an experienced Norwegian or by an Irish inseminator. Pregnancy rate did not differ significantly between ewes inseminated to a natural or synchronised oestrus nor between Norwegian and Irish frozen semen. The proportion of ewes pregnant after insemination with fresh semen was 0.82 and 0.70 (treatments i and ii) compared with 0.40, 0.52, 0.34 and 0.37 (treatments (iii)-(vi)) for frozen semen (P<0.001). Corresponding litter sizes (+/-S.E.), adjusted for ovulation rate, were 2.9+/-0.22, 3.3+/-0.23, 2.2+/-0.21, 1.7+/-0.21, 2.2+/-0.21 and 2.1+/-0.21 (fresh versus frozen; P<0.001). There was an interaction between semen type (fresh or frozen) and oestrus type (N or S) for litter size due to an increased adverse effect of frozen semen on litter size in synchronised ewes (P<0.05). Pregnancy rate was significantly influenced by breed of ewe (P<0.01) and inseminator (P<0.05). These results suggest that ewe breed may be a critical determinant of the potential for the exploitation of cervical insemination of frozen-thawed semen in sheep breeding programmes.  相似文献   

12.
Ram spermatozoa are most susceptible to damage during freezing between the temperatures of -10 degrees C and -25 degrees C. The objectives of the present study were to examine how freezing rate through this critical temperature zone affected the fertility of spermatozoa as assessed in vivo and in vitro. Semen from six adult rams was frozen at two different rates ("fast": 5 degrees C/min from +5 to -25 degrees C; "slow": 0.5 degrees C/min from +5 to -25 degrees C). In Experiment 1, semen from the fast and slow treatments was used to fertilize ovine oocytes that had been matured in vitro. Semen from the fast treatment yielded a higher cleavage rate (57% vs. 26%; P<0.001) and more blastocysts per oocyte (28% vs. 13%, P<0. 001) than slow-frozen. No correlation was found between fertilizing ability and viability as assessed by fluorescent probes. Experiment 2 was designed to establish the conception rates following both cervical and intrauterine insemination of frozen-thawed semen from the same bank of semen as used in Experiment 1. Ewes were superovulated with FSH and inseminated by laparoscopy with frozen semen. A significant difference was found in the number of fertilized ova following embryo recovery (81.4% vs. 39.3%; P<0.001). In a further study, 119 mature cull ewes were inseminated following a 12-day synchronization treatment with frozen semen by either intrauterine (laparoscopic) or cervical insemination. Insemination with fast-frozen semen resulted in a significantly higher pregnancy rate (P<0.05) irrespective of method of insemination. The data show that freezing rate affects the proportion of spermatozoa that retain their fertilizing ability post-thawing. However, once fertilization has occurred, development to the blastocyst stage is independent of freezing rate.  相似文献   

13.
Intrauterine insemination by laparoscopy is required to achieve acceptable lambing rates in ewes when using frozen semen but the procedure has evoked welfare concerns. Oxytocin has been used to dilate the cervix as a means of accessing the uterus during conventional cervical insemination, but its effect on fertility is not well documented. Three hundred crossbred ewes were synchronised in estrus and randomly allocated to one of three insemination procedures using frozen/thawed semen containing 400 x 10(6)/ml progressively motile sperm: single cervical (0.2 ml), multiple cervical (4 x 0.05 ml) or laparoscopic (0.05 ml per uterine horn). The effects of each insemination procedure on lambing rate (percentage of treated ewes lambing) and litter size (lambs per ewe lambing) were tested with and without oxytocin (10 IU given i.m.) prior to fixed-time insemination. Oxytocin did not permit complete cervical penetration in any ewes and neither lambing rate nor litter size was influenced by the number of inseminations. Lambing percentages were 69 and 42 (P < 0.01) for the laparoscopic and cervical insemination methods, respectively, and oxytocin reduced these to 58 (NS) and 10 (P < 0.001) percent, respectively. Corresponding litter sizes for ewes not receiving oxytocin were 1.91 and 1.51 and for those receiving oxytocin, 1.83 and 1.41 (laparoscopic versus cervical, P < 0.02). Thus, in the absence of complete cervical penetration at insemination, 10 IU oxytocin decreased the number of ewes lambing but had no effect on their litter size.  相似文献   

14.
Superovulated ewes were inseminated with fresh or frozen semen in a factorial experiment which compared two techniques of artificial insemination; i.e. conventional cervical deposition and intrauterine deposition at laparoscopy. Similar fertilization rates resulted from insemination with fresh semen at cervical (81% of ova from 11/11 ewes) and intrauterine (83% of ova from 10/12 ewes) sites. These results approached those observed in a naturally-mated group (95% of ova from 5/5 ewes). In ewes inseminated with frozen semen, fertilization rate was markedly reduced (P less than 0.05) after cervical insemination (11% of ova from 3/11 ewes) and partly restored (P less than 0.05) after intrauterine insemination (50% of ova from 8/11 ewes).  相似文献   

15.
Economics of selecting for sex: the most important genetic trait   总被引:9,自引:0,他引:9  
Seidel GE 《Theriogenology》2003,59(2):585-598
Over 20,000 calves have resulted from artificial insemination (AI) of cattle with sexed, frozen/thawed sperm in the course of experimentation in several countries, and from commercial sales in the United Kingdom. This technology likely will become commercially available in many countries within a few years. Accuracy of the process is about 90% for either sex, and resulting calves appear to be no different from non-sexed controls in birthweight, mortality, rate of gain, and incidence of abnormalities. The main determinants of the extent of use of sexed sperm will be pregnancy rate and cost. Fertility of low doses (1.5 x 10(6)-2 x 10(6)) of sexed, frozen sperm for AI of heifers usually has been in the range of 70-80% of unsexed sperm at normal doses (10 x 10(6)-20 x 10(6) sperm) in well managed herds; it has been lower in poorly managed herds, and likely will be lower with lactating dairy cows. It is expected that fertility of sexed sperm will increase significantly due to very recent improvements in the hydrodynamics of the sexing process and potential improvements in cryopreservation procedures. It is unclear how sexed sperm will be priced; the cost of sexed sperm for cattle will likely be more than double the cost of unsexed sperm in most markets. The economic benefit of using sexed sperm also will depend on the baseline fertility of the herd since at lower fertility, it takes more doses of semen per calf produced. It is noted that for a small percentage of elite cattle, the economics of using sexed sperm do not depend primarily on increased production or efficiency of producing meat or milk, but rather on factors such as scarcity, tradition, cattle show winnings, and biosecurity during herd expansion. Until sorting efficiencies improve and costs decline, sales likely will be limited primarily to these niche markets. With near normal fertility and a premium for sexing in the range of US$ 10 per insemination dose, sexed sperm likely would become economically and environmentally beneficial for many, if not most populations of cattle being bred by AI.  相似文献   

16.
Some reports indicate that sperm from different males differ in capacitation time, and other reports suggest that freezing sperm may affect their capacitation time. These two variables were specifically studied in rabbits in a fertility trial with 96 does inseminated with approximately 1.6 million motile fresh or frozen sperm from three different bucks at 15, 10, 5, and 0 h before expected ovulation. Fresh semen averaged 84% live (unstained) sperm and 88% had normal acrosomes; corresponding values for frozen sperm were 44% and 54%. On the basis of does that became pregnant, average litter size with fresh semen was 5.5 and with frozen semen was 4.8 (p greater than 0.05), but overall, does bred with frozen semen produced fewer young (p less than 0.05). On the basis of total does and total semen, average litter size from insemination at 15, 10, 5, and 0 h was 2.8, 4.2, 3.8, and 1.7, and average litter size for the three bucks was 4.0, 1.8, and 3.6. There was no interaction of type of semen (fresh or frozen) with the other variables in the model (p greater than 0.05). Bucks and time of insemination affected both the proportion of does that were pregnant and litter size (p less than 0.01). A major interaction between buck and time of insemination (p less than 0.01) was due apparently to both differential sperm survival and probable capacitation time among bucks. This major interaction should be considered in designing in vitro and in vivo fertility studies, and for selecting males for use in artificial insemination.  相似文献   

17.
The objective of this study was to investigate the inflammatory reaction induced in the equine uterus by insemination with fresh and frozen semen. Eleven groups (6 to 8 mares per group) were studied during 2 breeding seasons. The mares were inseminated using raw semen, frozen semen, extended fresh and frozen semen, concentrated fresh semen, seminal plasma and seminal extenders only. One group was bred naturally. Six hours after insemination, the uteri were flushed with 50 ml of phosphate-buffered saline (PBS). Seventeen out of 104 samples (16%) exhibited slight bacterial growth. Neutrophil concentrations were significantly (P < 0.05) higher in all treated mares than in the controls. Mares infused with PBS, seminal extenders or the supernatant from centrifuged frozen-thawed semen exhibited only a mild neutrophil response. Insemination with frozen semen resulted in higher neutrophil concentrations than insemination with extended fresh semen (means of 59 vs 5 million neutrophils/ml; P < 0.05). Highest neutrophil counts were found after insemination with frozen semen or concentrated fresh semen. Bacterial contamination of uteri was insignificant 6 hours after breeding. Neutrophilia seems to be induced by spermatozoa rather than bacteria. The intensity of the neutrophil reaction seems to depend on concentration and/or volume of inseminate.  相似文献   

18.
Artificial insemination has changed the small ruminant industry and has allowed increased genetic improvement, better control of reproduction and sexually transmitted diseases, dissemination of valuable genetics and preservation of the genetics of endangered breeds. Recent developments in this technology have focused on preserving the vitality/fertilizing capability of fresh and frozen spermatozoa by improving the composition of extenders, and by changing cooling/freezing protocols. The other main issue is the development of minimal invasive techniques for proper deposition of fresh or frozen semen. The paper discusses state of the art in methodology and technology currently used in small ruminant artificial insemination, as well as future perspectives after their wide application in these animal species.  相似文献   

19.
There has and will continue to be reproductive techniques available that have a positive impact upon the equine breeding industry. This review focuses on semen technologies that have been developed or are in the process of being developed. The use of fluorescent dyes and flow cytometry has provided the researcher and clinician with powerful tools to evaluate several sperm attributes. These procedures have been utilized to evaluate sperm viability, acrosome status, mitochondrial status, DNA integrity and stages of capacitation. Flow cytometry allows several sperm attributes to be evaluated on thousands of spermatozoa in a matter of seconds. Development of procedures for insemination of mares with relatively small numbers of spermatozoa has the potential to change how stallions and their semen are managed. This review discusses the use of insemination of fresh, frozen and sex-sorted spermatozoa in relatively small numbers compared with conventional insemination technologies. The recent acceptance of frozen-thawed semen by many of the major breed registries has stimulated an increase in research on frozen semen. Many of the studies have focused on identifying damage during the freezing and thawing process. Numerous studies also have been conducted to modify freezing extenders so that the sperm are protected during the freezing and thawing process. The production of in vitro-produced embryos is extremely limited in the horse due to the failure of in vitro fertilization. However, intracytoplasmic sperm injection (ICSI) has been used for the production of foals from stallions that have less than typical sperm numbers or from stallions that have died and a limited quantity of frozen semen is available. This technique has been used by several laboratories to produce embryos in vitro. The breeder and veterinarian now have access to techniques that allow assessment of semen quality, improvement of procedures for freezing and thawing and insemination of mares with fewer numbers of spermatozoa. It is likely that the next decade will also produce tremendous advances in semen technologies that can be utilized in the horse industry.  相似文献   

20.
Mares are generally inseminated with 500 million progressively motile fresh sperm and approximately 1 billion total sperms that have been cooled or frozen. Development of techniques for low dose insemination would allow one to increase the number of mares that could be bred, utilize stallions with poor semen quality, extend the use of frozen semen, breed mares with sexed semen and perhaps reduce the incidence of post-breeding endometritis. Three low dose insemination techniques that have been reported include: surgical oviductal insemination, deep uterine insemination and hysteroscopic insemination.Insemination techniques: McCue et al. [J. Reprod. Fert. 56 (Suppl.) (2000) 499] reported a 21% pregnancy rate for mares inseminated with 50,000 sperms into the fimbria of the oviduct.Two methods have been reported for deep uterine insemination. In the study of Buchanan et al. [Theriogenology 53 (2000) 1333], a flexible catheter was inserted into the uterine horn ipsilateral to the corpus luteum. The position of the catheter was verified by ultrasound. Insemination of 25 million or 5 million spermatozoa resulted in pregnancy rates of 53 and 35%, respectively. Rigby et al. [Proceedings of 3rd International Symposium on Stallion Reproduction (2001) 49] reported a pregnancy rate of 50% with deep uterine insemination. In their experiment, the flexible catheter was guided into position by rectal manipulation.More studies have reported the results of using hysteroscopic insemination. With this technique, a low number of spermatozoa are placed into or on the uterotubal junction. Manning et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 84] reported a 22% pregnancy rate when 1 million spermatozoa were inserted into the oviduct via the uterotubal junction. Vazquez et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 82] reported a 33% pregnancy rate when 3.8 million spermatozoa were placed on the uterotubal junction. Recently, Morris et al. [J. Reprod. Fert. 188 (2000) 95] utilized the hysteroscopic insemination technique to deposit various numbers of spermatozoa on the uterotubal junction. They reported pregnancy rates of 29, 64, 75 and 60% when 0.5, 1, 5 and 10 million spermatozoa, respectively, were placed on the uterotubal junction.Insemination of sex-sorted spermatozoa: One of the major reasons for low dose insemination is insemination of X- or Y-chromosome-bearing sperm. Through the use of flow cytometry, spermatozoa can be accurately separated into X- or Y-bearing chromosomes. Unfortunately, only 15 million sperms can be sorted per hour. At that rate, it would take several days to sort an insemination dose containing 800 million to 1 billion spermatozoa. Thus, low dose insemination is essential for utilization of sexed sperm. Lindsey [Hysteroscopic insemination with low numbers of fresh and cryopreserved flow-sorted stallion spermatozoa, M.S. Thesis, Colorado State University, Fort Collins, CO, USA, 2000] utilized either deep uterine insemination or hysteroscopic insemination to compare pregnancy rates of mares inseminated with sorted, fresh stallion sperm to those inseminated with non-sorted, fresh stallion sperm. Hysteroscopic insemination resulted in more pregnancies than ultrasound-guided deep uterine insemination. Pregnancy rate was similar for mares bred with either non-sorted or sex-sorted spermatozoa.In a subsequent study, Lindsey et al. [Proceedings of 5th International Symposium on Equine Embryo Transfer (2000) 13] determined if insemination of flow-sorted spermatozoa adversely affected pregnancy rates and whether freezing sex-sorted spermatozoa would result in pregnancies. Mares were assigned to one of four groups: group 1 was inseminated with 5 million non-sorted sperms using hysteroscopic insemination; group 2 was inseminated with 5 million sex-sorted sperms using hysteroscopic insemination; group 3 was inseminated with non-sorted, frozen-thawed sperm; and group 4 was inseminated with sex-sorted frozen sperm. Pregnancy rates were similar for mares inseminated with non-sorted fresh sperm, sex-sorted fresh sperm and non-sorted frozen sperm (40, 37.5 and 37.5%, respectively). Pregnancy rates were reduced dramatically for those inseminated with sex-sorted, frozen-thawed sperm (2 out of 15, 13%). These studies demonstrated that hysteroscopic insemination is a practical and useful technique for obtaining pregnancies with low numbers of fresh spermatozoa or low numbers of frozen-thawed spermatozoa. Further studies are needed to determine if this technique can be used to obtain pregnancies from stallions with poor semen quality. In addition, further studies are needed to develop techniques of freezing sex-sorted spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号