首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present evidence that donor-reactive CD4(+) T cells present in mice tolerant to donor alloantigens are phenotypically and functionally heterogeneous. CD4(+) T cells contained within the CD45RB(high) fraction remained capable of mediating graft rejection when transferred to donor alloantigen-grafted T cell-depleted mice. In contrast, the CD45RB(low) CD4(+) and CD25(+)CD4(+) populations failed to induce rejection, but rather, were able to inhibit rejection initiated by naive CD45RB(high) CD4(+) T cells. Analysis of the mechanism of immunoregulation transferred by CD45RB(low) CD4(+) T cells in vivo revealed that it was donor Ag specific and could be inhibited by neutralizing Abs reactive with IL-10, but not IL-4. CD45RB(low) CD4(+) T cells from tolerant mice were also immune suppressive in vitro, as coculture of these cells with naive CD45RB(high) CD4(+) T cells inhibited proliferation and Th1 cytokine production in response to donor alloantigens presented via the indirect pathway. These results demonstrate that alloantigen-specific regulatory T cells contained within the CD45RB(low) CD4(+) T cell population are responsible for the maintenance of tolerance to donor alloantigens in vivo and require IL-10 for functional activity.  相似文献   

2.
CD4(+) T regulatory type 1 (Tr1) cells suppress Ag-specific immune responses in vitro and in vivo. Although IL-10 is critical for the differentiation of Tr1 cells, the effects of other cytokines on differentiation of naive T cells into Tr1 cells have not been investigated. Here we demonstrate that endogenous or exogenous IL-10 in combination with IFN-alpha, but not TGF-beta, induces naive CD4(+) T cells derived from cord blood to differentiate into Tr1 cells: IL-10(+)IFN-gamma(+)IL-2(-/low)IL-4(-). Naive CD4(+) T cells derived from peripheral blood require both exogenous IL-10 and IFN-alpha for Tr1 cell differentiation. The proliferative responses of the Tr1-containing lymphocyte populations, following activation with anti-CD3 and anti-CD28 mAbs, were reduced. Similarly, cultures containing Tr1 cells displayed reduced responses to alloantigens via a mechanism that was partially mediated by IL-10 and TGF-beta. More importantly, Tr1-containing populations strongly suppressed responses of naive T cells to alloantigens. Collectively, these results show that IFN-alpha strongly enhances IL-10-induced differentiation of functional Tr1 cells, which represents a first major step in establishing specific culture conditions to generate T regulatory cells for biological and biochemical analysis, and for cellular therapy to induce peripheral tolerance in humans.  相似文献   

3.
IL-2, regulatory T cells, and tolerance   总被引:33,自引:0,他引:33  
IL-2 is a potent T cell growth factor that for many years was assumed to amplify lymphocyte responses in vivo. Accordingly, IL-2 has been used clinically to enhance T cell immunity in patients with AIDS or cancer, and blocking Abs to the IL-2R are used to inhibit T cell responses against transplanted tissues. It was later shown in mice that, unexpectedly, disruption of the IL-2 pathway results in lymphoid hyperplasia and autoimmunity rather than immune deficiency, indicating that the major physiological function of IL-2 is to limit rather than enhance T cell responses. This apparent paradox has recently been resolved with the discovery that IL-2 is critical for the development and peripheral expansion of CD4(+)CD25(+) regulatory T cells, which promote self-tolerance by suppressing T cell responses in vivo. Our new understanding of IL-2 biology prompts a re-evaluation of how best to clinically manipulate this important immunoregulatory pathway.  相似文献   

4.
The initiation of graft-vs-host disease (GVHD) after stem cell transplantation is dependent on direct Ag presentation by host APCs, whereas the effect of donor APC populations is unclear. We studied the role of indirect Ag presentation in allogenic T cell responses by adding populations of cytokine-expanded donor APC to hemopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 ligand molecule) and G-CSF expanded myeloid dendritic cells (DC), plasmacytoid DC, and a novel granulocyte-monocyte precursor population (GM) that differentiate into class II+,CD80/CD86+,CD40- APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells promoted transplant tolerance by MHC class II-restricted generation of IL-10-secreting, Ag-specific regulatory T cells. Importantly, although GM cells abrogated GVHD, graft-vs-leukemia effects were preserved. Thus, a population of cytokine-expanded GM precursors function as regulatory APCs, suggesting that G-CSF derivatives may have application in disorders characterized by a loss of self-tolerance.  相似文献   

5.
Both mast cells (MCs) and regulatory T cells (Tregs) have gained attention as immunosuppressive cell populations. To investigate a possible interaction, we used the Th1- and Th17-dependent model of nephrotoxic serum nephritis (NTS), in which both MCs and Tregs have been shown to play a protective role. Transfer of wild-type (wt) Tregs into wt recipients almost completely prevents development of NTS and leads to a profound increase of MCs in the renal draining lymph nodes (LNs). By contrast, transfer of wt Tregs into animals deficient in MCs, which are characterized by an exaggerated susceptibility to NTS, no longer exhibited protective effects. Blocking the pleiotropic cytokine IL-9, known to be involved in MC recruitment and proliferation, by means of a mAb in mice receiving Tregs abrogated protection from NTS. Moreover, transfer of IL-9-deficient Tregs also failed to protect from NTS. In the absence of Treg-derived IL-9, MCs fail to accumulate in the LNs, despite the fact that IL-9 deficiency does not alter the general suppressive activity of Tregs. In summary, to our knowledge, we provide the first direct in vivo evidence that the nephroprotective, anti-inflammatory effects of Tregs critically depend on IL-9-mediated attraction of MCs into kidney-draining LNs.  相似文献   

6.
TGF-beta is a pluripotent cytokine that is capable of inducing the expression of Foxp3 in naive T lymphocytes. TGF-beta-induced cells are phenotypically similar to thymic-derived regulatory T cells in that they are anergic and suppressive. We have examined the cytokine and costimulatory molecule requirements for TGF-beta-mediated induction and maintenance of Foxp3 by CD4(+)Foxp3(-) cells. IL-2 plays a non-redundant role in TGF-beta-induced Foxp3 expression. Other common gamma-chain-utilizing cytokines were unable to induce Foxp3 expression in IL-2-deficient T cells. The role of CD28 in the induction of Foxp3 was solely related to its capacity to enhance the endogenous production of IL-2. Foxp3 expression was stable in vitro and in vivo in the absence of IL-2. As TGF-beta-induced T regulatory cells can be easily grown in vitro, they may prove useful for the treatment of autoimmune diseases, for the prevention of graft rejection, and graft versus host disease.  相似文献   

7.
Recent studies have emphasized the importance of T cells with regulatory/suppressor properties in controlling autoimmune diseases. A number of different types of regulatory T cells have been described with the best characterized being the CD25(+) population. In addition, it has been shown that regulatory T cells can be induced by specific Ag administration. In this study, we investigate the relationship between peptide-induced, CD4(+) regulatory T cells and naturally occurring CD4(+)CD25(+) cells derived from the Tg4 TCR-transgenic mouse. Peptide-induced cells were FoxP3(-) and responded to Ag by secreting IL-10, whereas CD25(+) cells failed to secrete this cytokine. Both cell types were able to suppress the proliferation of naive lymphocytes in vitro although with distinct activation sensitivities. Depletion of CD25(+) cells did not affect the suppressive properties of peptide-induced regulators. Furthermore, peptide-induced regulatory/suppressor T cells could be generated in RAG(-/-), TCR-transgenic mice that do not spontaneously generate CD25(+) regulatory cells. These results demonstrate that these natural and induced regulatory cells fall into distinct subsets.  相似文献   

8.
CD4+ CD25+ regulatory T cells (T(Reg)) play a critical role in the control of autoimmunity. However, little is known about how T(Reg) suppress self-reactive T cells in vivo, thus limiting the development of T(Reg)-based therapy for treating autoimmune diseases. This is in large part due to the dependency on a state of lymphopenia to demonstrate T(Reg)-mediated suppression in vivo and the unknown Ag specificity of T(Reg) in most experimental models. Using a nonlymphopenic model of autoimmune pneumonitis and T(Reg) with known Ag specificity, in this study we demonstrated that these T(Reg) can actively suppress activation of self-reactive T cells and protect mice from fatal autoimmune pneumonitis. The protection required T(Reg) with the same Ag specificity as the self-reactive T cells and depended on IL-10 and TGF-beta. These results suggest that suppression of autoimmunity by T(Reg) in vivo consists of multiple layers of regulation and advocate for a strategy involving Ag-specific T(Reg) for treating organ-specific autoimmunity, because they do not cause generalized immune suppression.  相似文献   

9.
Dendritic cells (DCs) are professional APCs that have a unique capacity to initiate primary immune responses, including tolerogenic responses. We have genetically engineered bone marrow-derived DCs to express the immunosuppressive cytokine IL-10 and tested the ability of these cells to control experimental asthma. A single intratracheal injection of OVA-pulsed IL-10-transduced DCs (OVA-IL-10-DCs) to naive mice before OVA sensitization and challenge prevented all of the cardinal features of airway allergy, namely, eosinophilic airway inflammation, airway hyperreactivity, and production of mucus, Ag-specific Igs, and IL-4. OVA-IL-10-DCs also reversed established experimental asthma and had long-lasting and Ag-specific effects. We furthermore showed, by using IL-10-deficient mice, that host IL-10 is required for mediating the immunomodulatory effects of OVA-IL-10-DCs and demonstrated a significant increase in the percentage of OVA-specific CD4(+)CD25(+)Foxp3(+)IL-10(+) regulatory T cells in the mediastinal lymph nodes of OVA-IL-10-DC-injected mice. Finally, adoptive transfer of CD4(+) mediastinal lymph node T cells from mice injected with OVA-IL-10-DCs protected OVA-sensitized recipients from airway eosinophilia upon OVA provocation. Our study describes a promising strategy to induce long-lasting Ag-specific tolerance in airway allergy.  相似文献   

10.
Deficient T cell regulation can be mechanistically associated with development of chronic autoimmune diseases. Therefore, combining the regulatory properties of IL-10 and the specificity of autoreactive CD4(+) T cells through adoptive cellular gene transfer of IL-10 via autoantigen-specific CD4(+) T cells seems an attractive approach to correct such deficient T cell regulation that avoids the risks of nonspecific immunosuppressive drugs. In this study, we studied how cartilage proteoglycan-specific CD4(+) T cells transduced with an active IL-10 gene (T(IL-10)) may contribute to the amelioration of chronic and progressive proteoglycan-induced arthritis in BALB/c mice. TCR-transgenic proteoglycan-specific T(IL-10) cells ameliorated arthritis, whereas T(IL-10) cells with specificity for OVA had no effect, showing the impact of Ag-specific targeting of inflammation. Furthermore, proteoglycan-specific T(IL-10) cells suppressed autoreactive proinflammatory T and B cells, as T(IL-10) cells caused a reduced expression of IL-2, TNF-alpha, and IL-17 and a diminished proteoglycan-specific IgG2a Ab response. Moreover, proteoglycan-specific T(IL-10) cells promoted IL-10 expression in recipients but did not ameliorate arthritis in IL-10-deficient mice, indicating that T(IL-10) cells suppress inflammation by propagating the endogenous regulatory IL-10 response in treated recipients. This is the first demonstration that such targeted suppression of proinflammatory lymphocyte responses in chronic autoimmunity by IL-10-transduced T cells specific for a natural Ag can occur via the endogenous regulatory IL-10 response.  相似文献   

11.
Thymic stromal lymphopoietin (TSLP) is an essential cytokine for the initiation and development of allergic inflammation. In this study, we have investigated the role of TSLP in the breakdown of immune tolerance and generation of inducible regulatory T cells (iTregs). Our results demonstrated that TSLP diverted airway tolerance against OVA to Th2 sensitization and inhibited the generation of OVA-specific iTregs. TSLP exerted a direct inhibitory effect on both human and mouse iTreg development in vitro. Low doses of TSLP were capable of inhibiting iTreg induction without significantly promoting Th2 development, indicating that these two functions of TSLP are separable. Moreover, the TSLP-mediated inhibition of iTreg generation was only partially dependent on IL-4 and Stat6, and was effective when TSLP was present for the first 24 h of T cell activation. These results define a novel role for TSLP in regulating the balance of airway tolerance and allergic inflammation.  相似文献   

12.
Periodontal disease is a chronic inflammatory disease in the oral cavity, which culminates in alveolar bone loss. Porphyromonas gingivalis is a consensus periodontal pathogen that has been implicated in adult forms of periodontitis. We previously demonstrated that IL-10-deficient mice exhibit a hyperinflammatory phenotype and are highly susceptible to P. gingivalis-induced periodontitis, indicating an important anti-inflammatory effect of IL-10 in suppressing bone loss. In this study, we analyzed the pathway(s) by which IL-10 deficiency leads to severe P. gingivalis-induced periodontitis. Because Stat3 is essential in IL-10 signaling, immune cell-specific Stat3-deficient mice were subjected to P. gingivalis infection to identify the key IL-10-responsive cells in preventing periodontitis. Myeloid cell-specific Stat3-deficient mice exhibited increased periodontal bone loss (p < 0.001), whereas T cell- and B cell-specific Stat3 mice were resistant, suggesting that macrophages (MP) and/or polymorphonuclear leukocytes are the key target cells normally suppressed by IL-10. Myeloid cell-specific Stat3-deficient mice exhibited elevated gingival CD40L gene expression in vivo compared with wild-type controls (p < 0.01), and Stat3-deficient MPs exhibited vigorous P. gingivalis-stimulated IL-12 production in vitro and induced elevated Ag-specific T cell proliferation compared with wild-type MPs (p < 0.01). Of importance, both IL-12p40/IL-10 and T cell/IL-10 double-deficient mice were resistant to P. gingivalis-induced periodontitis, demonstrating roles for both IL-12p40 and T cells in pathogenesis in a hyperinflammatory model of disease. These data demonstrate that P. gingivalis-induced periodontitis in IL-10-deficient mice is dependent upon IL-12p40-mediated proinflammatory T cell responses.  相似文献   

13.
Regulatory CD4(+) T cells were induced in the Tg4 TCR transgenic mouse specific for the N-terminal peptide (Ac1-9) of myelin basic protein by intranasal administration of a high-affinity MHC-binding analog (Ac1-9[4Y]). Peptide-induced tolerant cells (PItol) were anergic, failed to produce IL-2, but responded to Ag by secretion of IL-10. PItol cells were predominantly CD25(-) and CTLA-4(+) and their anergic state was reversed by addition of IL-2 in vitro. PItol cells suppressed the response of naive Tg4 cells both in vitro and in vivo. The in vitro suppression mediated by these cells was not reversed by cytokine neutralization and was cell-cell contact-dependent. However, suppression of proliferation and IL-2 production by PItol cells in vivo was abrogated by neutralization of IL-10. These results emphasize an important role for IL-10 in the function of peptide-induced regulatory T cells in vivo and highlight the caution required in extrapolating mechanisms of T regulatory cell function from in vitro studies.  相似文献   

14.
STAT5 molecules are key components of the IL-2 signaling pathway, the deficiency of which often results in autoimmune pathology due to a reduced number of CD4(+)CD25(+) naturally occurring regulatory T (Treg) cells. One of the consequences of the IL-2-STAT5 signaling axis is up-regulation of FOXP3, a master control gene for naturally occurring Treg cells. However, the roles of STAT5 in other Treg subsets have not yet been elucidated. We recently demonstrated that IL-2 enhanced IL-10 production through STAT5 activation. This occurred in two types of human Treg cells: a novel type of umbilical cord blood-derived Treg cell, termed HOZOT, and Tr1-like Treg cells, IL-10-Treg. In this study, we examined the regulatory mechanisms of IL-10 production in these Treg cells, focusing specifically on the roles of STAT5. By performing bioinformatic analysis on the IL-10 locus, we identified one STAT-responsive element within intron 4, designated I-SRE-4, as an interspecies-conserved sequence. We found that I-SRE-4 acted as an enhancer element, and clustered CpGs around the I-SRE-4 were hypomethylated in IL-10-producing Treg cells, but not in other T cells. A gel-shift analysis using a nuclear extract from IL-2-stimulated HOZOT confirmed that CpG DNA methylation around I-SRE-4 reduced STAT5 binding to the element. Chromatin immunoprecipitation analysis revealed the in situ binding of IL-2-activated STAT5 to I-SRE-4. Thus, we provide molecular evidence for the involvement of an IL-2-STAT5 signaling axis in the expression of IL-10 by human Treg cells, an axis that is regulated by the intronic enhancer, I-SRE-4, and epigenetic modification of this element.  相似文献   

15.
The induction of peripheral tolerance via immune privileged sites such as the eye requires splenic colocalization of NKT cells and CD1d(+) tolerogenic F4/80(+) APCs, both of which are needed for the generation of CD8(+)-regulatory T (Tr) cells. Whereas tolerogenic APCs secrete the chemokine macrophage-inflammatory protein-2 for the purpose of recruiting NKT cells, the signals responsible for recruiting potential Tr cells and additional APCs to the spleen are not known. Here we examined the ability of CD1d-stimulated NKT cells to produce chemokines that can recruit other cells needed for tolerance. Our results show that NKT cells stimulated by either CD1d-transfected fibroblasts in vitro or CD1d(+) tolerogenic APCs both in vivo and ex vivo produced RANTES in a CD1d-dependent manner. The requirement for RANTES in tolerance was demonstrated by studies in which RANTES blockade in vivo prevented not only APC accumulation in the spleen but also the generation of CD8(+) Tr cells that suppress Th1 immunity. Thus, CD1d-restricted NKT cells provide critical signals for orchestrating the accumulation of cells needed for tolerance induction. These data expand our current knowledge of RANTES beyond its role in Th1 immune responses to show its importance in tolerance induction and add a novel aspect to our understanding of the role of NKT cells in tolerance. Understanding the precise mechanisms involved in tolerance induction may lead to more effective therapeutic strategies for autoimmunity and graft rejection.  相似文献   

16.
As sensors of infection, innate immune cells are able to recognize pathogen-associated molecular patterns by receptors such as TLRs. NK cells present in many tissues contribute to inflammatory processes, particularly through the production of IFN-γ. They may display a protective role during infection but also a detrimental role during sterile or infectious systemic inflammatory response syndrome. Nevertheless, the exact status of NK cells during bacterial sepsis and their capacity directly to respond to TLR agonists remain unclear. The expression of TLRs in NK cells has been widely studied by analyzing the mRNA of these receptors. The aim of this study was to gain insight into TLR2/TLR4/TLR9 expression on/in murine NK cells at the protein level and determine if their agonists were able to induce cytokine production. We show, by flow cytometry, a strong intracellular expression of TLR2 and a low of TLR4 in freshly isolated murine spleen NK cells, similar to that of TLR9. In vitro, purified NK cells respond to TLR2, TLR4, and TLR9 agonists, in synergy with activating cytokines (IL-2, IL-15, and/or IL-18), and produce proinflammatory cytokines (IFN-γ and GM-CSF). Finally, we explored the possible tolerance of NK cells to TLR agonists after a polymicrobial sepsis (experimental peritonitis). For the first time, to our knowledge, NK cells are shown to become tolerant in terms of proinflammatory cytokines production after sepsis. We show that this tolerance is associated with a reduction of the CD27(+)CD11b(-) subset in the spleen related to the presence of regulatory T cells and mainly mediated by TGF-β.  相似文献   

17.
IL-10 reduces immunopathology in many persistent infections, yet the contribution of IL-10 from distinct cellular sources remains poorly defined. We generated IL-10/recombination-activating gene (RAG)2-deficient mice and dissected the role of T cell- and non-T cell-derived IL-10 in schistosomiasis by performing adoptive transfers. In this study, we show that IL-10 is generated by both the innate and adaptive immune response following infection, with both sources regulating the development of type-2 immunity, immune-mediated pathology, and survival of the infected host. Importantly, most of the CD4(+) T cell-produced IL-10 was confined to a subset of T cells expressing CD25. These cells were isolated from egg-induced granulomas and exhibited potent suppressive activity in vitro. Nevertheless, when naive, naturally occurring CD4(+)CD25(+) cells were depleted in adoptive transfers, recipient IL-10/RAG2-deficient animals were more susceptible than RAG2-deficient mice, confirming an additional host-protective role for non-T cell-derived IL-10. Thus, innate effectors and regulatory T cells producing IL-10 cooperate to reduce morbidity and prolong survival in schistosomiasis.  相似文献   

18.
An important prerequisite in using regulatory T cells for immunotherapy is their ex vivo expansion without loss of suppressor function. Human anergic regulatory T cells are expandable by Ag-specific stimulation in the presence of IL-2. IL-15, like IL-2, is a T cell growth factor that, in contrast to IL-2, stimulates survival of T cells. In this study, we examined whether IL-15 could be exploited as a superior growth factor of human CD4(+) anergic regulatory T cells that were generated by costimulation blockade. Next, IL-15, as compared with IL-2, was investigated with respect to expansion and function of these regulatory T cells. Optimal expansion required cognate allogeneic stimulation in the presence of exogenous IL-15. IL-15 resulted in enhanced survival that was paralleled by an increased number of Bcl-2-expressing cells. Moreover, IL-15 induced a distinct type of anergy characterized by hyperreactivity to IL-15, resulting in improved expansion. This is likely attributed to increased propensity of these cells to up-regulate both alpha- and gamma-chains of the IL-2 and IL-15 receptor. Notably, IL-15-expanded regulatory CD4(+) T cells suppressed both naive and memory T cells in a superior way. Immunosuppression required alloantigen-specific stimulation and appeared gamma-irradiation resistant and independent of IL-10, TGFbeta, or CTLA-4 interactions. These regulatory T cells were stable suppressors, mediating bystander suppression upon TCR stimulation, but leaving recall responses unaffected in the absence of cognate Ag. Finally, human naturally occurring regulatory CD4(+)CD25(+) T cells appeared important in generating regulatory T cells by costimulation blockade. In conclusion, IL-15-expanded, de novo-induced human anergic regulatory CD4(+) T cells are of interest in Ag-specific immunotherapy.  相似文献   

19.
Targeting of the CD45RB isoform by mAb (anti-CD45RB) effectively induces donor-specific tolerance to allografts. The immunological mechanisms underlying the tolerant state remain unclear although some studies have suggested the involvement of regulatory T cells (T-regs). Although their generative pathway remains undefined, tolerance promoting T-regs induced by systemic anti-CD45RB treatment have been assumed to originate in the peripheral immune system. We demonstrate herein that separable effects on the peripheral and central immune compartments mediate graft survival induced by anti-CD45RB administration. In the absence of the thymus, anti-CD45RB therapy is not tolerogenic though it retains peripheral immunosuppressive activity. The thymus is required for anti-CD45RB to produce indefinite graft survival and donor-specific tolerance, and this effect is accomplished through thymic production of donor-specific T-regs. These data reveal for the first time an Ab-based tolerance regimen that relies on the central tolerance pathway.  相似文献   

20.
Signaling through Toll-like receptors (TLR) activates dendritic cell (DC) maturation and IL-12 production, which directs the induction of Th1 cells. We found that the production of IL-10, in addition to inflammatory cytokines and chemokines, was significantly reduced in DCs from TLR4-defective C3H/HeJ mice in response to Bordetella pertussis. TLR4 was also required for B. pertussis LPS-induced maturation of DCs, but other B. pertussis components stimulated DC maturation independently of TLR4. The course of B. pertussis infection was more severe in C3H/HeJ than in C3H/HeN mice. Surprisingly, Ab- and Ag-specific IFN-gamma responses were enhanced at the peak of infection, whereas Ag-specific IL-10-producing T cells were significantly reduced in C3H/HeJ mice. This was associated with enhanced inflammatory cytokine production, cellular infiltration, and severe pathological changes in the lungs of TLR4-defective mice. Our findings suggest that TLR-4 signaling activates innate IL-10 production in response to B. pertussis, which both directly, and by promoting the induction of IL-10-secreting type 1 regulatory T cells, may inhibit Th1 responses and limit inflammatory pathology in the lungs during infection with B. pertussis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号