首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
The pharmacodynamic potency of a therapeutic cytokine interacting with a cell-surface receptor can be attributed primarily to three central properties: [1] cytokine/receptor binding affinity, [2] cytokine/receptor endocytic trafficking dynamics, and [3] cytokine/receptor signaling. Thus, engineering novel or second-generation cytokines requires an understanding of the contribution of each of these to the overall cell response. We describe here an efficient method toward this goal in demonstrated application to the clinically important cytokine granulocyte colony-stimulating factor (GCSF) with a chemical analogue and a number of genetic mutants. Using a combination of simple receptor-binding and dose-response proliferation assays we construct an appropriately scaled plot of relative mitogenic potency versus ligand concentration normalized by binding affinity. Analysis of binding and proliferation data in this manner conveniently indicates which of the cytokine properties-binding, trafficking, and/or signaling-are contributing substantially to altered potency effects. For the GCSF analogues studied here, two point mutations as well as a poly(ethylene glycol) chemical conjugate were found to have increased potencies despite comparable or slightly lower affinities, and trafficking was predicted to be the responsible mechanism. A third point mutant exhibiting comparable binding affinity but reduced potency was predicted to have largely unchanged trafficking properties. Surprisingly, another mutant possessing an order-of-magnitude weaker binding affinity displayed enhanced potency, and increased ligand half-life was predicted to be responsible for this net beneficial effect. Each of these predictions was successfully demonstrated by subsequent measurements of depletion of these five analogues from cell culture medium. Thus, for the GCSF system we find that ligand trafficking dynamics can play a major role in regulating mitogenic potency. Our results demonstrate that cytokine analogues can exhibit pharmacodynamic behaviors across a diverse spectrum of "binding-potency space" and that our analysis through normalization can efficiently elucidate hypotheses for the underlying mechanisms for further dedicated testing. We have also extended the Black-Leff model of pharmacological agonism to include trafficking effects along with binding and signaling, and this model provides a framework for parsing the effects of these factors on pharmacodynamic potency.  相似文献   

3.
IL-15, a promising cytokine for treating cancer and viral diseases, is presented in trans by the IL-15 receptor (IL-15R) alpha-chain to the IL-15Rβγc complex displayed on the surface of T cells and natural killer (NK) cells. We previously reported that an asparagine to aspartic acid substitution at amino acid 72 (N72D) of IL-15 provides a 4-5-fold increase in biological activity compared to the native molecule. In this report, we describe Chinese hamster ovary (CHO) cell expression of a soluble complex (IL-15 N72D:IL-15RαSu/Fc) consisting of the IL-15 N72D superagonist and a dimeric IL-15Rα sushi domain-IgG1 Fc fusion protein. A simple but readily scalable affinity and ion exchange chromatography method was developed to highly purify the complex having both IL-15 binding sites fully occupied. The immunostimulatory effects of this complex were confirmed using cell proliferation assays. Treatment of mice with a single intravenous dose of IL-15N72D:IL-15RαSu/Fc resulted in a significant increase in CD8+ T cells and NK cells that was not observed following IL-15 treatment. Pharmacokinetic analysis indicated that the complex has a 25-h half-life in mice which is considerably longer than <40-min half-life of IL-15. Thus, the enhanced activity of the IL-15N72D:IL-15RαSu/Fc complex is likely the result of the increased binding activity of IL-15N72D to IL-15Rβγc, optimized cytokine trans-presentation by the IL-15RαSu domain, the dimeric nature of the cytokine domain and its increased in vivo half-life compared to IL-15. These findings indicate that this IL-15 superagonist complex could serve as a superior immunostimulatory therapeutic agent.  相似文献   

4.
Stimulation of T-cells by IL-2 has been exploited for treatment of metastatic renal carcinoma and melanoma. However, a narrow therapeutic window delimited by negligible stimulation of T-cells at low picomolar concentrations and undesirable stimulation of NK cells at nanomolar concentrations hampers IL-2-based therapies. We hypothesized that increasing the affinity of IL-2 for IL-2Ralpha may create a class of IL-2 mutants with increased biological potency as compared with wild-type IL-2. Towards this end, we have screened libraries of mutated IL-2 displayed on the surface of yeast and isolated mutants with a 15-30-fold improved affinity for the IL-2Ralpha subunit. These mutants do not exhibit appreciably altered bioactivity at 0.5-5 pM in steady-state bioassays, concentrations well below the IL-2Ralpha equilibrium binding constant for both the mutant and wild-type IL-2. A mutant was serendipitously identified that exhibited somewhat improved potency, perhaps via altered endocytic trafficking mechanisms described previously.  相似文献   

5.
Multisubunit cytokine receptors such as the heterotrimeric receptor for interleukin-2 (IL-2) are ubiquitous in hematopoeitic cell types of importance in biotechnology and are crucial regulators of cell proliferation and differentiation behavior. Dynamics of cytokine/receptor endocytic trafficking can significantly impact cell responses through effects of receptor down-regulation and ligand depletion, and in turn are governed by ligand/receptor binding properties. We describe here a computational model for trafficking dynamics of the IL-2 receptor (IL-2R) system, which is able to predict T cell proliferation responses to IL-2. This model comprises kinetic equations describing binding, internalization, and postendocytic sorting of IL-2 and IL-2R, including an experimentally derived dependence of cell proliferation rate on these properties. Computational results from this model predict that IL-2 depletion can be reduced by decreasing its binding affinity for the IL-2R betagamma subunit relative to the alpha subunit at endosomal pH, as a result of enhanced ligand sorting to recycling vis-à-vis degradation, and that an IL-2 analogue with such altered binding properties should exhibit increased potency for stimulating the T cell proliferation response. These results are in agreement with our recent experimental findings for the IL-2 analogue termed 2D1 [Fallon, E. M. et al. J. Biol. Chem. 2000, 275, 6790-6797]. Thus, this type of model may enable prediction of beneficial cytokine/receptor binding properties to aid development of molecular design criteria for improvements in applications such as in vivo cytokine therapies and in vitro hematopoietic cell bioreactors.  相似文献   

6.
Interleukin-18 (IL-18) is a pro-inflammatory cytokine, and IL-18-binding protein (IL-18BP) is a naturally occurring protein that binds IL-18 and neutralizes its biological activities. Computer modeling of human IL-18 identified two charged residues, Glu-42 and Lys-89, which interact with oppositely charged amino acid residues buried in a large hydrophobic pocket of IL-18BP. The cell surface IL-18 receptor alpha chain competes with IL-18BP for IL-18 binding, although the IL-18 receptor alpha chain does not share significant homology to IL-18BP. In the present study, Glu-42 was mutated to Lys and Lys-89 to Glu; Glu-42 and Lys-89 were also deleted separately. The deletion mutants (E42X and K89X) were devoid of biological activity, and the K89E mutant lost 95% of its activity. In contrast, compared with wild-type (WT) IL-18, the E42K mutant exhibited a 2-fold increase in biological activity and required a 4-fold greater concentration of IL-18BP for neutralization. The binding of WT IL-18 and its various mutants to human natural killer cells was evaluated by competition assays. The mutant E42K was more effective than WT IL-18 in inhibiting the binding of (125)I-IL-18 to natural killer cells, whereas the three inactive mutants E42X, K89E, and K89X were unable to compete with (125)I-IL-18 for binding. Similarly, WT IL-18 and the E42K mutant induced degradation of Ikappa-Balpha, whereas the three biologically inactive mutants did not induce degradation. The present study reveals that Glu-42 and Lys-89 are critical amino acid residues for the integrity of IL-18 structure and are important for binding to cell surface receptors, for signal transduction, and for neutralization by IL-18BP.  相似文献   

7.
Mutational analysis of determinants located in the C-terminal (C) tail of the high affinity leukotriene (LT) B(4) receptor, BLT1, was performed to assess their significance in BLT1 trafficking. When expressed in COS-7 cells, a BLT1 deletion mutant lacking the C-tail (G291stop) displayed higher numbers of binding sites and increased signal transduction compared with wild-type (WT) BLT1. Addition of the C-tail from either the platelet-activating factor receptor or the LTD(4) receptor, CysLT1, did not restore WT phenotype. Moreover, the number of LTB(4) binding sites was higher in the chimeras than in the WT BLT1, suggesting the requirement for specific structural determinants within the BLT1 C-tail. Elimination of a distal C-tail dileucine motif (Leu(304)-Leu(305)), but not the proximal (Leu(292)-Leu(293)) motif, altered BLT1 pharmacological characteristics and caused a moderate constitutive receptor activation. Surprisingly, all mutant receptors were efficiently delivered to the plasma membrane, but not to a greater extent than WT BLT1, as assessed by flow cytometry. Furthermore, substitution of Leu(304)-Leu(305) prevented LTB(4)-induced BLT1 internalization. Molecular modeling of BLT1 on the bovine rhodopsin receptor scaffold strongly suggested the involvement of the distal dileucine motif (Leu(304)-Leu(305)) in a hydrophobic core, including intrahelical interactions within alpha-helix VIII and interhelical interactions with residues of helix I. Disruption of this hydrophobic core is proposed to increase the population of receptors in the active form, to restrain their trafficking and to facilitate the activation of BLT1 as indicated by the increased maximal level of binding of the ligand and constitutive activation of the receptor.  相似文献   

8.
Kinetic analysis of the interleukin-13 receptor complex   总被引:15,自引:0,他引:15  
Interleukin (IL)-13 is a key cytokine associated with the asthmatic phenotype. It signals via its cognate receptor, a complex of IL-13 receptor alpha1 chain (IL-13Ralpha1) with IL-4Ralpha; however, a second protein, IL-13Ralpha2, also binds IL-13. To determine the binding contributions of the individual components of the IL-13 receptor to IL-13, we have employed surface plasmon resonance and equilibrium binding assays to investigate the ligand binding characteristics of shIL-13Ralpha1, shIL-13Ralpha2, and IL-4Ralpha. shIL-13Ralpha1 bound IL-13 with moderate affinity (K(D) = 37.8 +/- 1.8 nm, n = 10), whereas no binding was observed for hIL-4Ralpha. In contrast, shIL-13Ralpha2 produced a high affinity interaction with IL-13 (K(D) = 2.49 +/- 0.94 nm n = 10). IL-13Ralpha2 exhibited the binding characteristics of a negative regulator with a fast association rate and an exceptional slow dissociation rate. Although IL-13 interacted weakly with IL-4Ralpha on its own (K(D) > 50 microm), the presence of hIL-4Ralpha significantly increased the affinity of shIL-13Ralpha1 for IL-13 but had no effect on the binding affinity of IL-13Ralpha2. Detailed kinetic analyses of the binding properties of the heteromeric complexes suggested a sequential mechanism for the binding of IL-13 to its signaling receptor, in which IL-13 first binds to IL-13Ralpha1 and this then recruits IL-4Ralpha to stabilize a high affinity interaction.  相似文献   

9.
It is important to understand which molecules are relevant for linking innate and adaptive immune cells. In this study, we show that OX40 ligand is selectively induced on IL-2, IL-12, or IL-15-activated human NK cells following stimulation through NKG2D, the low affinity receptor for IgG (CD16) or killer cell Ig-like receptor 2DS2. CD16-activated NK cells costimulate TCR-induced proliferation, and IFN-gamma produced by autologous CD4+ T cells and this process is dependent upon expression of OX40 ligand and B7 by the activated NK cells. These findings suggest a novel and unexpected link between the natural and specific immune responses, providing direct evidence for cross-talk between human CD4+ T cells and NK receptor-activated NK cells.  相似文献   

10.
HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease.  相似文献   

11.
Zinc plays an important role in cell-mediated immune function. Altered cellular immune response resulting from zinc deficiency leads to frequent microbial infections, thymic atrophy, decreased natural killer activity, decreased thymic hormone activity, and altered cytokine production. In this study, we examined the effect of zinc deficiency on IL-2 and IFN-gamma in HUT-78 (Th0) and D1.1 (Th1) cell lines and TNF-alpha, IL-1 beta, and IL-8 in the HL-60 (monocyte-macrophage) cell line. The results demonstrate that zinc deficiency decreased the levels of IL-2 and IFN-gamma cytokines and mRNAs in HUT-78 after 6 h of PMA/p-phytohemagglutinin (PHA) stimulation and in D1.1 cells after 6 h of PHA/ionomycin stimulation compared with the zinc-sufficient cells. However, zinc deficiency increased the levels of TNF-alpha, IL-1 beta, and IL-8 cytokines and mRNAs in HL-60 cells after 6 h of PMA stimulation compared with zinc-sufficient cells. Actinomycin D study suggests that the changes in the levels of these cytokine mRNAs were not the result of the stability affected by zinc but might be the result of altered expression of these cytokine genes. These data demonstrate that zinc mediates positively the gene expression of IL-2 and IFN-gamma in the Th1 cell line and negatively TNF-alpha, IL-1 beta, and IL-8 in the monocyte-macrophage cell line. Our study shows that the effect of zinc on gene expression and production of cytokines is cell lineage specific.  相似文献   

12.
Inhibitory anti-cytokine mAbs are used to treat cytokine-mediated disorders. Recently, however, S4B6, an anti-IL-2 mAb that blocks IL-2 binding to IL-2Ralpha, a receptor component that enhances affinity but is not required for signaling, was shown to enhance IL-2 agonist effects in vivo. We evaluated how S4B6 enhances IL-2 effects and whether a similar mechanism allows mAbs to IL-4 to enhance IL-4 effects. Induction of T cell proliferation by IL-2/S4B6 complexes did not require complex dissociation and was IL-2Ralpha independent. S4B6 increased IL-2 agonist effects by increasing in vivo half-life, not by focusing IL-2 onto cells through Fc receptors. In contrast to IL-2/S4B6 complexes, anti-IL-4 mAb enhancement of in vivo IL-4 effects required IL-4/anti-IL-4 mAb complex dissociation. Thus, agonist effects observed with high doses of anti-IL-2 mAb are most likely only applicable for mAbs that maintain cytokine half-life without blocking binding to receptor signaling components.  相似文献   

13.
Bruton's tyrosine kinase (Btk) is a critical signaling mediator downstream of the B cell Ag receptor. X-linked agammaglobulinemia is caused by mutations in Btk resulting in multiple defects in B cell development and function, and recurrent bacterial infections. Recent evidence has also supported a role for Btk in TLR signaling. We demonstrate that Btk is activated by TLR4 in primary macrophages and is required for normal TLR-induced IL-10 production in multiple macrophage populations. Btk-deficient bone marrow-derived macrophages secrete decreased levels of IL-10 in response to multiple TLR ligands, compared with wild-type (WT) cells. Similarly, Btk-deficient peritoneal and splenic macrophages secrete decreased IL-10 levels compared with WT cultures. This phenotype correlates with Btk-dependent induction of NF-kappaB and AP-1 DNA binding activity, and altered commensal bacteria populations. Decreased IL-10 production may be responsible for increased IL-6 because blocking IL-10 in WT cultures increased IL-6 production, and supplementation of IL-10 to Btk-deficient cultures decreased IL-6 production. Similarly, injection of IL-10 in vivo with LPS decreases the elevated IL-6 serum levels during endotoxemia in Btk-deficient mice. These data further support a role for Btk in regulating TLR-induced cytokine production from APCs and provide downstream targets for analysis of Btk function.  相似文献   

14.
Hemagglutinin is the major surface glycoprotein of influenza viruses. It participates in the initial steps of viral infection through receptor binding and membrane fusion events. The influenza pandemic of 2009 provided a unique scenario to study virus evolution. We performed molecular dynamics simulations with four hemagglutinin variants that appeared throughout the 2009 influenza A (H1N1) pandemic. We found that variant 1 (S143G, S185T) likely arose to avoid immune recognition. Variant 2 (A134T), and variant 3 (D222E, P297S) had an increased binding affinity for the receptor. Finally, variant 4 (E374K) altered hemagglutinin stability in the vicinity of the fusion peptide. Variants 1 and 4 have become increasingly predominant, while variants 2 and 3 declined as the pandemic progressed. Our results show some of the different strategies that the influenza virus uses to adapt to the human host and provide an example of how selective pressure drives antigenic drift in viral proteins.  相似文献   

15.
We examined the ability of 1,25 (OH)(2) vitamin D(3) (Vit D) to stimulate osteoclast-like cell (OCL) formation in cocultures of spleen cells and primary calvarial osteoblasts from wild-type (WT) and IL-1R type 1-deficient (knockout; KO) mice. Vit D dose dependently increased OCL in cocultures containing WT osteoblasts. In contrast, there was a 90% reduction in OCL numbers in cocultures containing KO osteoblasts. In cocultures with either WT or KO osteoblasts, treatment with Vit D increased receptor activator of NF-kappaB ligand mRNA by 17-, 19-, or 3.5-fold, respectively. Vit D decreased osteoprotegerin mRNA to undetectable in all groups. Intracellular IL-1alpha protein increased after Vit D treatment in cocultures containing WT, but not KO osteoblasts. We also examined direct effects of Vit D, IL-1alpha, and their combination on gene expression in primary osteoblasts. In WT cells, Vit D and IL-1 stimulated receptor activator of NF-kappaB ligand mRNA expression by 3- and 4-fold, respectively, and their combination produced a 7-fold increase. Inhibition of osteoprotegerin mRNA in WT cells was partial with either agent alone and greatest with their combination. In KO cells, only Vit D stimulated a response. IL-1 alone increased IL-1alpha protein expression in WT osteoblasts. However, in combination with Vit D, there was a synergistic response (100-fold increase). In KO cultures, there were no effects of IL-1, Vit D, or their combination on IL-1alpha protein. These results demonstrate interactions between IL-1 and Vit D in primary osteoblasts that appear important in both regulation of IL-1alpha production and the ability of Vit D to support osteoclastogenesis.  相似文献   

16.
The high affinity interleukin-2 receptor is composed of three cell surface subunits, IL-2Ralpha, IL-2Rbeta, and IL-2Rgamma. Functional forms of the IL-2 receptor exist, however, that enlist only two of the three subunits. On activated T-cells, the alpha- and beta-subunits combine as a preformed heterodimer (the pseudo-high affinity receptor) that serves to capture IL-2. On a subpopulation of natural killer cells, the beta- and gamma-subunits interact in a ligand-dependent manner to form the intermediate affinity receptor site. Previously, we have demonstrated the feasibility of employing coiled-coil molecular recognition for the solution assembly of a heteromeric IL-2 receptor complex. In that study, although the receptor was functional, the coiled-coil complex was a trimer rather than the desired heterodimer. We have now redesigned the hydrophobic heptad sequences of the coiled-coils to generate soluble forms of both the pseudo-high affinity and the intermediate affinity heterodimeric IL-2 receptors. The properties of these complexes were examined and their relevance to the physiological IL-2 receptor mechanism is discussed.  相似文献   

17.
《MABS-AUSTIN》2013,5(7):1276-1288
ABSTRACT

The neonatal Fc receptor (FcRn) promotes antibody recycling through rescue from normal lysosomal degradation. The binding interaction is pH-dependent with high affinity at low pH, but not under physiological pH conditions. Here, we combined rational design and saturation mutagenesis to generate novel antibody variants with prolonged half-life and acceptable development profiles. First, a panel of saturation point mutations was created at 11 key FcRn-interacting sites on the Fc region of an antibody. Multiple variants with slower FcRn dissociation kinetics than the wildtype (WT) antibody at pH 6.0 were successfully identified. The mutations were further combined and characterized for pH-dependent FcRn binding properties, thermal stability and the FcγRIIIa and rheumatoid factor binding. The most promising variants, YD (M252Y/T256D), DQ (T256D/T307Q) and DW (T256D/T307W), exhibited significantly improved binding to FcRn at pH 6.0 and retained similar binding properties as WT at pH 7.4. The pharmacokinetics in human FcRn transgenic mice and cynomolgus monkeys demonstrated that these properties translated to significantly prolonged plasma elimination half-life compared to the WT control. The novel variants exhibited thermal stability and binding to FcγRIIIa in the range comparable to clinically validated YTE and LS variants, and showed no enhanced binding to rheumatoid factor compared to the WT control. These engineered Fc mutants are promising new variants that are widely applicable to therapeutic antibodies, to extend their circulation half-life with obvious benefits of increased efficacy, and reduced dose and administration frequency.  相似文献   

18.
Erythropoietin (Epo) is essential for the production of mature red blood cells, and recombinant Epo is commonly used to treat anemia, but how Epo is degraded and cleared from the body is not understood. Glycosylation of Epo is required for its in vivo bioactivity, although not for in vitro receptor binding or stimulation of Epo-dependent cell lines; Epo glycosylation actually reduces the affinity of Epo for the Epo receptor (EpoR). Interestingly, a hyperglycosylated analog of Epo, called novel erythropoiesis-stimulating protein (NESP), has a lower affinity than Epo for the EpoR but has greater in vivo activity and a longer serum half-life than Epo. We hypothesize that a major mechanism for degradation of Epo in the body occurs in cells expressing the Epo receptor, through receptor-mediated endocytosis of Epo followed by degradation in lysosomes, and therefore investigated the trafficking and degradation of Epo and NESP by EpoR-expressing cells. We show that Epo and NESP are degraded only by cultured cells that express the EpoR, and their receptor binding, dissociation, and trafficking properties determine their rates of intracellular degradation. Epo binds surface EpoR faster than NESP (k(on) = 5.0 x 10(8) m(-1) min(-1) versus 1.1 x 10(8) m(-1) min(-1)) but dissociates slower (k(off) = 0.029 min(-1) versus 0.042 min(-1)). Surface-bound Epo and NESP are internalized at the same rate (k(in) = 0.06 min(-1)), and after internalization 60% of each ligand is resecreted intact and 40% degraded. Our kinetic model of Epo and NESP receptor binding, intracellular trafficking, and degradation explains why Epo is degraded faster than NESP at the cellular level.  相似文献   

19.
We examined the effect of leukemia inhibitory factor (LIF) on the expression of interleukin 6 receptors (IL-6R) on mouse myelomonocytic leukemic M1 cells. Binding studies using 125I-labeled human and murine IL-6 revealed that LIF caused a decrease in IL-6 binding to M1 cells. The decrease became evident within 1 h, and the maximum decrease was observed at 3-6 h. Scatchard plot analysis revealed that M1 cells had a single class of high affinity receptors for IL-6 and that LIF-induced decrease in IL-6 binding was due to a decrease in the number of IL-6R on the cell surface and not to changes in their affinity. The affinity of IL-6R on M1 cells to human IL-6 (Kd = 2.25 nM) was about 10-fold lower than that to murine IL-6 (Kd = 200 pM). The amount of IL-6 secreted into culture media by M1 cells that were treated with LIF for up to 12 h was not enough to cause receptor down-regulation. Northern blot analysis demonstrated that IL-6R mRNA was down-regulated by LIF treatment, and similar regulation was also observed when the cells were treated with IL-6. The time course of the IL-6R mRNA level was similar to that of IL-6R expression on the cell surface, suggesting that the main mechanism responsible for the loss of high affinity IL-6R was the regulation of IL-6R mRNA. Although the half-life of IL-6R on the cell surface was about 30 min, the addition of LIF reduced it to 16 min, suggesting the existence of an additional mechanism responsible for the loss of high affinity IL-6R on the cell surface.  相似文献   

20.
Necrotizing enterocolitis (NEC) is an emergency of the newborn that often requires surgery. Growth factors from stem cells may aid in decreasing intestinal damage while also promoting restitution. We hypothesized that 1) TNF, LPS, or hypoxia would alter bone marrow mesenchymal stem cell (BMSC) TNF, IGF-1, IL-6, and VEGF production, and 2) TNF receptor type 1 (TNFR1) or type 2 (TNFR2) ablation would result in changes to the patterns of cytokines and growth factors produced. BMSCs were harvested from female wild-type (WT), TNFR1 knockout (KO), and TNFR2KO mice. Cells were stimulated with TNF, LPS, or hypoxia. After 24 h, cell supernatants were assayed via ELISA. Production of TNF and IGF-1 was decreased in both knockouts compared with WT regardless of the stimulus utilized, whereas IL-6 and VEGF levels appeared to be cooperatively regulated by both the activated TNF receptor and the initial stimulus. IL-6 was increased compared with WT in both knockouts following TNF stimulation but was significantly decreased with LPS. Compared with WT, hypoxia increased IL-6 in TNFR1KO but not TNFR2KO cells. TNF stimulation decreased VEGF in TNFR2KO cells, whereas TNFR1 ablation resulted in no change in VEGF compared with WT. TNFR1 ablation resulted in a decrease in VEGF following LPS stimulation compared with WT; no change was noted in TNFR2KO cells. With hypoxia, TNFR1KO cells expressed more VEGF compared with WT, whereas no difference was noted between WT and TNFR2KO cells. TNF receptor ablation modifies BMSC cytokine production. Identifying the proper stimulus and signaling cascades for the production of desired growth factors may be beneficial in maximizing the therapeutic potential of stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号