首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor receptor 3 (FGFR3) mutations are frequently involved in human developmental disorders and cancer. Activation of FGFR3, through mutation or ligand stimulation, results in autophosphorylation of multiple tyrosine residues within the intracellular domain. To assess the importance of the six conserved tyrosine residues within the intracellular domain of FGFR3 for signaling, derivatives were constructed containing an N-terminal myristylation signal for plasma membrane localization and a point mutation (K650E) that confers constitutive kinase activation. A derivative containing all conserved tyrosine residues stimulates cellular transformation and activation of several FGFR3 signaling pathways. Substitution of all nonactivation loop tyrosine residues with phenylalanine rendered this FGFR3 construct inactive, despite the presence of the activating K650E mutation. Addition of a single tyrosine residue, Y724, restored its ability to stimulate cellular transformation, phosphatidylinositol 3-kinase activation, and phosphorylation of Shp2, MAPK, Stat1, and Stat3. These results demonstrate a critical role for Y724 in the activation of multiple signaling pathways by constitutively activated mutants of FGFR3.  相似文献   

2.
3.
Thrombopoietin (TPO), an essential factor for megakaryopoiesis and thrombopoiesis, works as a survival factor for megakaryocytic lineage cells. However, little is known about the molecular mechanism in detail. We show here that TPO supports the survival of TPO-dependent leukemia cell line UT-7/TPO and normal megakaryocytic progenitors via the induction of Bcl-xL, an anti-apoptotic member of the Bcl-2 family. We further analyzed the signal transduction pathways required for TPO-induced Bcl-xL gene expression. A reporter assay with various lengths of Bcl-x gene promoter revealed that both Stat- and nuclear factor kappa B-binding sites are prerequisites for TPO-induced promoter activity. Consistent with these results, TPO induced the binding of Stat5 and subunits of nuclear factor kappa B, p50, and c-Rel to the Bcl-x gene promoter. AG490, a specific inhibitor for Jak2, and LY294002, a specific inhibitor for phosphatidylinositol (PI) 3-kinase, reduced the protein level of Bcl-xL in UT-7/TPO cells, accompanied by an increase in the ratio of apoptotic cells. Interestingly, LY294002 enhanced the TPO-induced DNA binding activity of Stat5 without affecting the Jak2 activation and tyrosine phosphorylation of Stat5. Concomitantly, confocal microscopy revealed that LY294002 clearly inhibited the nuclear export of Stat5, suggesting that PI 3-kinase regulates the subcellular localization of Stat5. Taken together, our results suggest that both Jak-Stat and PI 3-kinase activation pathways regulate the TPO-induced survival of megakaryocytic cells via Bcl-xL gene expression. In addition, our data suggest possible cross-talk between these two signaling pathways.  相似文献   

4.
Interleukin-2 (IL-2) stimulates proliferation of T lymphocytes and is involved in the activation of both natural killer and lymphokine-activated killer precursor cells. The intracellular messengers which mediate IL-2-dependent events have not yet been identified. IL-2 receptor is not a protein-tyrosine kinase. Activation of a cellular protein-tyrosine kinase and direct association of a protein-tyrosine kinase activity with the IL-2 receptor occurs within minutes of IL-2 stimulation. We investigated the activation of phosphatidylinositol 3-kinase (PI 3-kinase) in IL-2-mediated signal transduction using the IL-2-dependent murine T-cell line, CTLL-2, and human phytohemagglutinin-stimulated peripheral blood lymphocytes (phytohemagglutinin blasts). Within a minute following stimulation of these cells with IL-2, PI 3-kinase activity could be detected in antiphosphotyrosine (anti-P-Tyr) antibody immunoprecipitates. IL-2 triggered a direct association of PI 3-kinase with the IL-2 receptor as detected in immunoprecipitates using anti-IL-2 receptor beta chain antibody. In vivo labeled CTLL-2 cells have a time-dependent increase in D-3-phosphorylated polyphosphoinositides following stimulation with IL-2. This is the first group of second messengers identified in IL-2-mediated signal transduction.  相似文献   

5.
Two different inhibitory domains, N-terminus and central domain, keep FOXM1c almost inactive despite its strong transactivation domain. Here, we demonstrate that cyclin E/Cdk2, cyclin A/Cdk2, and cyclin A/Cdk1 activate FOXM1c. Cyclin E/Cdk2 does not target its transactivation domain or its DNA-binding domain. Instead, its activating effect strictly depends on the presence of either the central domain or the N-terminus of FOXM1c and thus is completely lost if both inhibitory domains are deleted. Cyclin E/Cdk2 activates FOXM1c by releasing its transactivation domain from the repression by these two inhibitory domains. However, it does not directly increase the transactivation potential of the TAD. The DNA-binding is not affected by cyclin E/Cdk2, neither directly nor indirectly. These two activating effects of cyclin E/Cdk2 via central domain and N-terminus are additive. Cyclin A/Cdk2 and cyclin A/Cdk1 show similar characteristics. GSK-3alpha, another proliferation-associated kinase, represses FOXM1c.  相似文献   

6.
Conflicting results concerning the ability of the epidermal growth factor (EGF) receptor to associate with and/or activate phosphatidylinositol (PtdIns) 3-kinase have been published. Despite the ability of EGF to stimulate the production of PtdIns 3-kinase products and to cause the appearance of PtdIns 3-kinase activity in antiphosphotyrosine immunoprecipitates in several cell lines, we did not detect EGF-stimulated PtdIns 3-kinase activity in anti-EGF receptor immunoprecipitates. This result is consistent with the lack of a phosphorylated Tyr-X-X-Met motif, the p85 Src homology 2 (SH2) domain recognition sequence, in this receptor sequence. The EGF receptor homolog, ErbB2 protein, also lacks this motif. However, the ErbB3 protein has seven repeats of the Tyr-X-X-Met motif in the carboxy-terminal unique domain. Here we show that in A431 cells, which express both the EGF receptor and ErbB3, PtdIns 3-kinase coprecipitates with the ErbB3 protein (p180erbB3) in response to EGF. p180erbB3 is also shown to be tyrosine phosphorylated in response to EGF. In contrast, a different mechanism for the activation of PtdIns 3-kinase in response to EGF occurs in certain cells (PC12 and A549 cells). Thus, we show for the first time that ErbB3 can mediate EGF responses in cells expressing both ErbB3 and the EGF receptor.  相似文献   

7.
Anchorage-independent survival and growth are critical characteristics of malignant cells. We showed previously that the addition of exogenous hepatocyte growth factor (HGF) and the presence of fibronectin fibrils stimulate anchorage-independent colony growth of a murine mammary carcinoma, SP1, which expresses both HGF and HGF receptor (Met; R. Saulnier et al., Exp. Cell Res., 222: 360-369, 1996). We now show that tyrosine phosphorylation of Met in carcinoma cells is augmented by cell adhesion and spreading on fibronectin substratum. In contrast, detached serum-starved cells exhibit reduced tyrosine phosphorylation of Met and undergo apoptotic cell death within 18-24 h. Under these conditions, the addition of HGF stimulates tyrosine phosphorylation of Met and restores survival of carcinoma cells. Soluble fibronectin also stimulates cell survival and shows a cooperative survival response with HGF but does not affect tyrosine phosphorylation of Met; these results indicate that fibronectin acts via a pathway independent of Met in detached cells. We demonstrated previously that inhibition of phosphatidylinositol (PI) 3-kinase activity blocks HGF-induced DNA synthesis of carcinoma cells (N. Rahimi et al., J. Biol. Chem., 271: 24850-24855, 1996). We now show in detached cells a cooperative effect of HGF and FN in the activation of PI 3-kinase and on the phosphorylation of PKB/Akt at serine 473. PI 3-kinase activity is also required for the HGF- and fibronectin-induced survival responses, as well as anchorage-independent colony growth. However, c-Src kinase or MEK1/2 activities are not required for the cell survival effect. Together, these results demonstrate that the PI 3-kinase/Akt pathway is a key effector of the HGF- and fibronectin-induced survival response of breast carcinoma cells under detached conditions and corroborate an interaction between integrin and HGF/ Met signalling pathways in the development of invasive breast cancer.  相似文献   

8.
Autophosphorylation of the platelet-derived growth factor (PDGF) receptor triggers intracellular signaling cascades as a result of recruitment of Src homology 2 domain-containing enzymes, including phosphatidylinositol 3-kinase (PI3K), the GTPase-activating protein of Ras (GAP), the protein-tyrosine phosphatase SHP-2, and phospholipase C-gamma1 (PLC-gamma1), to specific phosphotyrosine residues. The roles of these various effectors in PDGF-induced generation of H(2)O(2) have now been investigated in HepG2 cells expressing various PDGF receptor mutants. These mutants included a kinase-deficient receptor and receptors in which various combinations of the tyrosine residues required for the binding of PI3K (Tyr(740) and Tyr(751)), GAP (Tyr(771)), SHP-2 (Tyr(1009)), or PLC-gamma1 (Tyr(1021)) were mutated to Phe. PDGF failed to increase H(2)O(2) production in cells expressing either the kinase-deficient mutant or a receptor in which the two Tyr residues required for the binding of PI3K were replaced by Phe. In contrast, PDGF-induced H(2)O(2) production in cells expressing a receptor in which the binding sites for GAP, SHP-2, and PLC-gamma1 were all mutated was slightly greater than that in cells expressing the wild-type receptor. Only the PI3K binding site was alone sufficient for PDGF-induced H(2)O(2) production. The effect of PDGF on H(2)O(2) generation was blocked by the PI3K inhibitors LY294002 and wortmannin or by overexpression of a dominant negative mutant of Rac1. These results suggest that a product of PI3K is required for PDGF-induced production of H(2)O(2) in nonphagocytic cells, and that Rac1 mediates signaling between the PI3K product and the putative NADPH oxidase.  相似文献   

9.
The generation of reactive oxygen species (ROS) in cells stimulated with growth factors requires the activation of phosphatidylinositol 3-kinase (PI3K) and the Rac protein. We report here that the COOH-terminal region of Nox1, a protein related to gp91(phox) (Nox2) of phagocytic cells, is constitutively associated with beta Pix, a guanine nucleotide exchange factor for Rac. Both growth factor-induced ROS production and Rac1 activation were completely blocked in cells depleted of beta Pix by RNA interference. Rac1 was also shown to bind to the COOH-terminal region of Nox1 in a growth factor-dependent manner. Moreover, the depletion of Nox1 by RNA interference inhibited growth factor-induced ROS generation. These results suggest that ROS production in growth factor-stimulated cells is mediated by the sequential activation of PI3K, beta Pix, and Rac1, which then binds to Nox1 to stimulate its NADPH oxidase activity.  相似文献   

10.
Previously, we reported that, in hepatocyte growth factor (HGF)-induced HepG2 cells, protein kinase C (PKC) decreased the duration of intensive Erk1/Erk2 MAP kinase activation. This study shows that the inhibition of PKC enhanced significantly the HGF-induced integrin expression. Beside the prolonged activation of Erk1/Erk2, the activity of phosphatidylinositol 3-kinase (PI 3K) was required for growth factor-induced integrin expression. PI 3-kinase was activated to a higher extent in response to HGF than to epidermal growth factor (EGF), though the activation was transient in both cases. In EGF-induced cells, PI 3K activation was terminated by the loss of phosphotyrosine docking sites for PI 3K. To the contrary, the decrease of PI 3K activation, which followed the HGF-induced increase was not accompanied by the loss of phosphotyrosine docking sites and was prevented by the inhibition of PKC. The negative modulator effects of PKC on integrin expression and PI 3-kinase activation correlated with its ability to limit the HGF-induced motogen response.  相似文献   

11.
12.
13.
Chinese hamster embryonic fibroblasts (IIC9 cells) express the Galpha subunits Galphas, Galphai2, Galphai3, Galphao, Galpha(q/11), and Galpha13. Consistent with reports in other cell types, alpha-thrombin stimulates a subset of the expressed G proteins in IIC9 cells, namely Gi2, G13, and Gq as measured by an in vitro membrane [35S]guanosine 5'-O-(3-thio)triphosphate binding assay. Using specific Galpha peptides, which block coupling of G-protein receptors to selective G proteins, as well as dominant negative xanthine nucleotide-binding Galpha mutants, we show that activation of the phosphatidylinositol 3-kinase/Akt pathway is dependent on Gq and Gi2. To examine the role of the two G proteins, we examined the events upstream of PI 3-kinase. The activation of the PI 3-kinase/Akt pathway by alpha-thrombin in IIC9 cells is blocked by the expression of dominant negative Ras and beta-arrestin1 (Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2000) J. Biol. Chem. 275, 18046-18053, and Goel, R., Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2002) J. Biol. Chem. 277, 18640-18648), indicating a role for Ras and beta-arrestin1. Interestingly, inhibition of Gi2 and Gq activation blocks Ras activation and beta-arrestin1 membrane translocation, respectively. Furthermore, expression of the Gbetagamma sequestrant, alpha-transducin, inhibits both Ras activation and membrane translocation of beta-arrestin1, suggesting that Gbetagamma dimers from Galphai2 and Galphaq activate different effectors to coordinately regulate the PI 3-kinase/Akt pathway.  相似文献   

14.
Intracellular signaling mediated by phosphatidylinositol 3-kinase (PI3K) is important for a number of cellular processes and is stimulated by a variety of hormones, including insulin and leptin. A histochemical method for assessment of PI3K signaling would be an important advance in identifying specific cells in histologically complex organs that are regulated by growth factors and peptide hormones. However, current methods for detecting PI3K activity require either homogenization of the tissue or cells or the ability to transfect probes that bind to phosphatidylinositol 3,4,5 trisphosphate (PIP3), the reaction product of PI3K catalysis. Here we report the validation of an immunocytochemical method to detect changes in PI3K activity, using a recently developed monoclonal antibody to PIP3, in paraformaldehyde-fixed bovine aortic endothelial cells (BAECs) in culture and in hepatocytes of intact rat liver. Treatment with either insulin or leptin increased BAEC PIP3 immunoreactivity, and these effects were blocked by pretreatment with PI3K inhibitors. Furthermore, infusion of insulin into the hepatic portal vein of fasted rats caused an increase of PIP3 immunostaining in hepatocytes that was associated with increased serine phosphorylation of the downstream signaling molecule protein kinase B/Akt (PKB/Akt). We conclude that immunocytochemical PIP3 staining can detect changes in PI3K activation induced by insulin and leptin in cell culture and intact liver.  相似文献   

15.
Wang P  DeFea KA 《Biochemistry》2006,45(31):9374-9385
Protease-activated receptor-2 (PAR-2) is a G-protein-coupled receptor (GPCR) activated upon proteolytic cleavage of its N-terminus by a number of serine proteases. We have previously reported that formation of a beta-arrestin-dependent signaling scaffold is required for PAR-2-stimulated activation of extracellular signal regulated kinases 1 and 2 and chemotaxis. beta-Arrestin-dependent pathways downstream of some GPCRs have been shown to function independently and sometimes in opposition to classic signaling through heterotrimeric G-proteins; however, this possibility has not been addressed with respect to PAR-2. Here we demonstrate that PAR-2 can increase PI3K activity through a Galphaq/Ca(2+)-dependent pathway involving PYK2 and a Src-family kinase, while inhibiting PI3K activity through a beta-arrestin-dependent mechanism, and that beta-arrestin-1 can directly associate with and inhibit the catalytic activity of p110alpha. Using size exclusion chromatography and co-immunoprecipitation, we demonstrate that the PI3K is recruited into a scaffolding complex containing PAR-2 and beta-arrestins. Inhibition of PI3K activity blocks PAR-2-stimulated chemotaxis, and beta-arrestin-1 colocalizes with p85 within the pseudopodia, suggesting that beta-arrestin-1 association with PI3K may spatially restrict its enzymatic activity and that this localized inhibition may be crucial for PAR-2-stimulated chemotaxis.  相似文献   

16.
NO produced by inducible NO synthase (iNOS) has been implicated in various pathophysiological processes including inflammation. Therefore, inhibitors of NO synthesis or iNOS gene expression have been considered as potential anti-inflammatory agents. We have previously demonstrated that heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) decreases proinflammatory cytokine IL-8 and NO production in cytokine-stimulated intestinal epithelial cells by interfering with the NF-kappaB signaling pathway. However, the upstream signaling mechanisms involved in these responses have not yet been defined. In this report, we show that in intestinal epithelial cells, HB-EGF triggered PI3K-dependent phosphorylation of Akt. Inhibition of PI3K reversed the ability of HB-EGF to block NF-kappaB activation, expression of iNOS, and NO production. Small interfering RNA of PI3K also reversed the inhibitory effect of HB-EGF on iNOS expression. Alternatively, transient expression of constitutively active PI3K decreased NO production by approximately 2-fold more than treatment with HB-EGF alone. This PI3K effect was HB-EGF dependent. Thus, activation of PI3K is essential but not sufficient for decreased NO synthesis. PI3K and HB-EGF act synergistically to decrease NO synthesis. Neither overexpression or inhibition of MEK, Ras, or Akt affected HB-EGF-mediated inhibition of NF-kappaB activation. These data demonstrate that HB-EGF decreases proinflammatory cytokine-stimulated NF-kappaB activation and NO production via activation of the PI3K signaling pathway. These results also suggest that inhibition of NF-kappaB and activation of the PI3K-dependent signaling cascade by HB-EGF may represent key signals responsible for the anti-inflammatory effects of HB-EGF.  相似文献   

17.
Zheng W  Gorre N  Shen Y  Noda T  Ogawa W  Lundin E  Liu K 《EMBO reports》2010,11(11):890-895
Maternal effect factors derived from oocytes are important for sustaining early embryonic development before the major wave of embryonic genome activation (EGA). In this study, we report a two-cell-stage arrest of embryos lacking maternal 3-phosphoinositide-dependent protein kinase 1 as a result of suppressed EGA. Concurrent deletion of maternal Pten completely rescued the suppressed EGA and embryonic progression through restored AKT signalling, which fully restored the fertility of double-mutant females. Our study identifies maternal phosphatidylinositol 3-kinase signalling as a new maternal effect factor that regulates EGA and preimplantation embryogenesis in mice.  相似文献   

18.
In accordance with our recent results obtained with cultured rat hepatocytes [Fujioka, T. & Ui, M. (2001) Eur. J. Biochem. 268, 25-34], epidermal growth factor (EGF) gave rise to transient tyrosine phosphorylation of insulin receptor substrates (IRS-1 and IRS-2), thereby activating the bound phosphatidylinositol 3-kinase in human epidermoid carcinoma A431 cells normally abundant in EGF receptors (EGFR) and Chinese hamster ovary (CHO) cells transfected with full-length EGFR. These actions of EGF, although much smaller in magnitude than those of insulin or IGF-I in the same cells, were accompanied by tyrosine phosphorylation of EGFR rather than insulin or IGF-I receptors, never observed in wild-type CHO cells expressing no EGFR, and totally inhibited by an inhibitor of EGFR kinase, AG1478, that was without effect on insulin or IGF-I actions. Recombinant IRS-1 was phosphorylated on tyrosines upon incubation with purified EGFR from A431 cells and 32P-labeled ATP. When CHO cells were transfected with C-terminal truncated EGFR lacking three NPXY motifs responsible for direct binding to phosphotyrosine-binding domains of IRSs, no effect of EGF could be observed. We suggest that tyrosine phosphorylation of IRS-1 or IRS-2 could mediate EGFR-induced activation of phosphatidylinositol 3-kinase in mammalian cells.  相似文献   

19.
Insulin-like growth factor-I (IGF-I) stimulates vascular smooth muscle cell proliferation and migration by activating both MAPK and phosphatidylinositol 3-kinase (PI3K). Vascular smooth muscle cells (VSMCs) maintained in 25 mm glucose sustain MAPK activation via increased Shc phosphorylation and Grb2 association resulting in an enhanced mitogenic response compared with cells grown in 5 mm glucose. PI3K plays a major role in IGF-I-stimulated VSMC migration, and hyperglycemia augments this response. In contrast to MAPK activation the role of Shc in modulating PI3K in response to IGF-I has not been determined. In this study we show that impaired Shc association with Grb2 results in decreased Grb2-p85 association, SHPS-1-p85 recruitment, and PI3K activation in response to IGF-I. Exposure of VSMCs to cell-permeable peptides, which contained polyproline sequences from p85 proposed to mediate Grb2 association, resulted in inhibition of Grb2-p85 binding and AKT phosphorylation. Transfected cells that expressed p85 mutant that had specific prolines mutated to alanines resulted in less Grb2-p85 association, and a Grb2 mutant (W36A/W193A) that attenuated p85 binding showed decreased association of p85 with SHPS-1, PI3K activation, AKT phosphorylation, cell proliferation, and migration in response to IGF-I. Cellular exposure to 25 mm glucose, which is required for Shc phosphorylation in response to IGF-I, resulted in enhanced Grb2 binding to p85, activation of PI3K activity, and increased AKT phosphorylation as compared with cells exposed to 5 mm glucose. We conclude that in VSMCs exposed to hyperglycemia, IGF-I stimulation of Shc facilitates the transfer of Grb2 to p85 resulting in enhanced PI3K activation and AKT phosphorylation leading to enhanced cell proliferation and migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号