首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fate of transgenes in the forest tree genome   总被引:1,自引:0,他引:1  
During the last two decades, genetic engineering (GE) has been progressing at a steady pace in the forest trees. Transgenic trees carrying a variety of different transgenes have been produced, and are undergoing confined field trials in the world. However, there are questions regarding stability of transgene expression, and transgene escape that need to be addressed in the long-lived forest trees. Although relatively stable transgene expression has been reported for several target traits, including herbicide resistance, insect resistance, and lignin reduction in the vegetative propagules of several forest tree species, there were still unintended unstable events in transgenic plants. Long-term stability of transgene expression involved in these traits and others affecting yield (impacting growth) would be desirable in the vegetative propagules, and also in the generative progeny of the forest trees. Transgene escape through pollen, seed, and vegetative propagules from GE trees to native forest populations, although inevitable, remains an important regulatory issue. However, it may be possible to manage/minimize the risk of transgene spread via isolation in confined areas, and use of incompatible genotypes of feral tree populations in the vicinity of transgenic forest trees. Therefore, it is desirable to produce genetically stable transgenic trees, and have biocontainment measures in place for testing and deployment of the GE forest trees. Toward these goals (transgene stability and containment), innovative biotech strategies are being actively pursued, with reasonable success, in forest trees.  相似文献   

3.
Transgene integration and inheritance have been investigated in a number of crop plants and few tree species. Transgene integration is predominantly a random process, whether mediated by Agrobacterium or particle bombardment. Depending on the genomic position of the integrated transgene and structure of the integration site as well as copy number of the transgene in the genome, its expression may be stable or variable. Therefore, integration patterns would affect the mode of transgene inheritance in plants, regardless of the method of gene transfer. So far, both Mendelian and non-Mendelian inheritance of transgenes has been reported across several generations (T1–T3) of crop plants. In few tree species (apple, poplar, plum, and American chestnut), mostly Mendelian inheritance of the transgenes has been observed in the T1 or BC1 generations. However, detailed studies in the transgenic papaya trees showed Mendelian segregation of the transgene in the T1 generation but non-Mendelian inheritance in the T2 generation. Variation in transgene inheritance was also detected in transgenic apple and plum trees. Long generation cycles in many economically important tree species preclude investigation of inheritance of transgenes in the tree progeny. Production of early flowering trees, either by genetic modification or by environmental modulation, would facilitate the study of transgene inheritance across generations of transgenic trees. In order to overcome problems of randomness of transgene integration, targeted transgene insertions by homologous or site-specific recombination or by designer recombinases or nucleases offer prospects for stable integration of transgenes in predetermined locations in the plant genome. And perhaps, that might provide a platform for stable expression and Mendelian inheritance of transgenes in plants.  相似文献   

4.
5.
Forest trees in general are out-crossing, long-lived, and at early stages of domestication. Molecular evolution at neutral sites is very slow because of the long generation times. Transferring information between closely related conifer species is facilitated by high sequence similarity. At the nucleotide level, trees have at most intermediate levels of variation relative to other plants. Importantly, in many species linkage disequilibrium within genes declines within less than 1000 bp. In contrast to the slow rate of neutral evolution, large tree populations respond rapidly to natural selection. Detecting traces of selection may be easier in tree populations than in many other species. Association studies between genotypes and phenotypes are proving to be useful tools for functional genomics.  相似文献   

6.
Ozone and forest trees   总被引:3,自引:1,他引:2  
  相似文献   

7.
8.
Decelerating growth in tropical forest trees   总被引:1,自引:0,他引:1  
The impacts of global change on tropical forests remain poorly understood. We examined changes in tree growth rates over the past two decades for all species occurring in large (50-ha) forest dynamics plots in Panama and Malaysia. Stem growth rates declined significantly at both forests regardless of initial size or organizational level (species, community or stand). Decreasing growth rates were widespread, occurring in 24–71% of species at Barro Colorado Island, Panama (BCI) and in 58–95% of species at Pasoh, Malaysia (depending on the sizes of stems included). Changes in growth were not consistently associated with initial growth rate, adult stature, or wood density. Changes in growth were significantly associated with regional climate changes: at both sites growth was negatively correlated with annual mean daily minimum temperatures, and at BCI growth was positively correlated with annual precipitation and number of rainfree days (a measure of relative insolation). While the underlying cause(s) of decelerating growth is still unresolved, these patterns strongly contradict the hypothesized pantropical increase in tree growth rates caused by carbon fertilization. Decelerating tree growth will have important economic and environmental implications.  相似文献   

9.
The economic and ecological importance of forest trees, as well as their unique biological features, has recently raised the level of interest in studies on their genomes, including sequencing of the entire poplar genome. However, cytogenetic studies have not moved in parallel with developments in genomics. This is especially true for hardwood species characterized by small genomes and relatively high numbers of small chromosomes. Molecular cytogenetic studies have mainly been focused on coniferous species, owing to the larger size of their chromosomes, and have been applied exclusively for chromosome identification and comparative karyotyping in an attempt to understand genome evolution and phylogenetic relationships. In this context, rRNA genes physical mapped by FISH reveal particularly useful chromosomal landmarks with variable distribution patterns between species. Here we present a contribution of DNA markers used for chromosome analysis, which already allowed a deeper characterization and understanding of the processes underlying genome diversity of forest trees. The use of advanced cytogenetic techniques and other potential important methods for genome analysis of forest trees is also discussed.  相似文献   

10.
11.
Transgenics from several forest tree species, carrying a number of commercially important recombinant genes, have been produced, and are undergoing confined field trials in a number of countries. However, there are questions and issues regarding stability of transgene expression and transgene dispersal that need to be addressed in long-lived forest trees. Variation in transgene expression is not uncommon in the primary transformants in plants, and is undesirable as it requires screening a large number of transformants in order to select transgenic lines with acceptable levels of transgene expression. Therefore, the current focus of plant transformation is toward fine tuning of transgene expression and stability in the transgenic forest trees. Although a number of studies have reported a relatively stable transgene expression for several target traits, including herbicide resistance, insect resistance, and lignin modification, there was also some unintended transgene instability in the genetically modified (GM) forest trees. Transgene dispersal from GM trees to feral forest populations and their containment remain important biological and regulatory issues facing commercial release of GM trees. Containment of transgenes must be in place to effectively prevent escape of transgenic pollen, seed, and vegetative propagules in economically important GM forest trees before their commercialization. Therefore, it is important to devise innovative technologies in genetic engineering that lead to genetically stable transgenic trees not only for qualitative traits (herbicide resistance, insect resistance), but also for quantitative traits (accelerated growth, increased height, increased wood density), and also prevent escape of transgenes in the forest trees.  相似文献   

12.
Summary Juvenile-mature correlation has played an important role in indirect selection for size traits in forest trees. The juvenile size of a tree is a part of the mature size, and the juvenile-mature correlation is an example of a part-whole type of correlation. As is the case with any other part-whole type of correlation, the juvenile-mature correlation can be subdivided into two components; one is a function of variance only, and the other a function of variance and covariance. In this paper the components of the juvenile-mature correlation is described, the basic properties and the dynamics of its components analyzed, and the role of these components in explaining the gain from indirect juvenile selection discussed. Six forest tree populations were used to review the various properties of the model. The most important applied conclusions were: (1) even if two populations have the same juvenile-mature correlations, different selection strategies can be used depending on the nature of correlation components. (2) Choosing the proper mature age is as important as choosing juvenile age. (3) Understanding the growth curves of mean and variance is essential to developing selection strategies Annotation: Describes a new way of interpreting juvenile-mature correlation in forest tree species.  相似文献   

13.
14.
Non-structural carbon compounds in temperate forest trees   总被引:21,自引:3,他引:18  
The current carbon supply status of temperate forest trees was assessed by analysing the seasonal variation of non‐structural carbohydrate (NSC) concentrations in leaves, branch wood and stem sapwood of 10 tree species (six deciduous broad‐leafed, one deciduous conifer and three evergreen conifer trees) in a temperate forest that is approximately 100 years old. In addition, all woody tissue was analysed for lipids (acylglycerols). The major NSC fractions were starch, sucrose, glucose and fructose, with other carbohydrates (e.g. raffinose and stachyose) and sugar alcohols (cyclitols and sorbitol) playing only a minor quantitative role. The radial distribution of NSC within entire stem cores, assessed here for the first time in a direct interspecific comparison, revealed large differences in the size of the active sapwood fraction among the species, reflecting the specific wood anatomy (ring‐porous versus diffuse‐porous xylem). The mean minimum NSC concentrations in branch wood during the growing season was 55% of maximum, and even high NSC concentrations were maintained during times of extensive fruit production in masting Fagus sylvestris. The NSC in stem sapwood varied very little throughout the season (cross species mean never below 67% of maximum), and the small reductions observed were not significant for any of the investigated species. Although some species contained substantial quantities of lipids in woody tissues (‘fat trees’; Tilia, Pinus, Picea, Larix), the lipid pools did not vary significantly across the growing season in any species. On average, the carbon stores of deciduous trees would permit to replace the whole leave canopy four times. These data imply that there is not a lot of leeway for a further stimulation of growth by ongoing atmospheric CO2 enrichment. The classical view that deciduous trees rely more on C‐reserves than evergreen trees, seems unwarranted or has lost its justification due to the greater than 30% increase in atmospheric CO2 concentrations over the last 150 years.  相似文献   

15.
An inventory was made of 50 ha of primary lowland rain forest in Peninsular Malaysia, in which ca. 340,000 trees 1 cm dbh or larger were measured and identified to species. Out of a total plot tree flora of 820 species, 76 species are known to bear edible fruit. Especially diverse were the wild species of mango (Mangifera, Anacardiaceae, 12 spp.), mangosteen (Garcinia, Clusiaceae, 13 spp.), breadfruit (Artocarpus, Moraceae, 10 spp.) and rambutan (Nephelium, Sapindaceae, 5 spp.). Median population size for all species of fruit trees was 3.0 trees per ha and 0.2 adult trees per ha. Direct economic value of wild fruit trees was small; only one species has been very much collected and sold, Parkia speciosa (Fabaceae), amounting to less than US$20 per ha per year. The potential value of the species as genetic resources is very large: 24 species are cultivated, 38 edible species are congeneric with cultivated crops and at least 10 other species bear inedible fruit but are related to cultivated crops. We conclude that the Peninsular Malaysian rain forest is exceedingly rich in wild fruit trees, that these normally live at low densities, and that their principal economic value is as genetic resources.  相似文献   

16.
研究了11种固氮和非固氮树种凋落物分解及可利用态N的释放.结果表明,固氮树木凋落物中N的生物分解系数、落叶分解过程中干重的损失率及有效态氮的释放分别比非固氮树种高出1.3、1.5和8.2倍.  相似文献   

17.
Qualitative and quantitative estimates of gene flow were obtained for fourteen gymnosperm and seven angiosperm forest tree species. High levels of gene flow were prevalent among gymnosperms while these levels varied from high to low among angiosperms. In both groups, species with greater pollen dispersal abilities appear to maintain high levels of gene flow. A detailed analysis of population structure in relation to gene flow was carried out on a gymnosperm species (Pinus rigida) and two angiosperm subspecies (Eucalyptus caesia ssp. caesia and ssp. magna). The results suggested that populations of many species may be concatenated systems bound by gene flow, and the overall levels of gene flow may be influenced by either single or clusters of populations. Different levels of gene flow was found between two closely related species of E. caesia growing under similar ecological conditions, suggesting a plausible link between pollinator behaviour and pollen flow.  相似文献   

18.
19.
In a recent paper (Mitchard et al. 2014, Global Ecology and Biogeography, 23 , 935–946) a new map of forest biomass based on a geostatistical model of field data for the Amazon (and surrounding forests) was presented and contrasted with two earlier maps based on remote‐sensing data Saatchi et al. (2011; RS1) and Baccini et al. (2012; RS2). Mitchard et al. concluded that both the earlier remote‐sensing based maps were incorrect because they did not conform to Mitchard et al. interpretation of the field‐based results. In making their case, however, they misrepresented the fundamental nature of primary field and remote‐sensing data and committed critical errors in their assumptions about the accuracy of research plots, the interpolation methodology and the statistical analysis. By ignoring the large uncertainty associated with ground estimates of biomass and the significant under‐sampling and spatial bias of research plots, Mitchard et al. reported erroneous trends and artificial patterns of biomass over Amazonia. Because of these misrepresentations and methodological flaws, we find their critique of the satellite‐derived maps to be invalid.  相似文献   

20.
High-throughput DNA extraction from forest trees   总被引:2,自引:1,他引:1  
It is difficult to extract pure high-quality DNA from trees, which may not be amenable to advances in extraction methods suitable for other plants. A new commercial high-throughput DNA extraction system, using a silica binding matrix for purification and a multisample mixer mill for tissue disruption, was evaluated for its suitability withEucalyptus spp.,Pinus spp., andAraucaria cunninghamii (hoop pine). DNA suitable for a range of molecular biology applications was successfully extracted from all genera. The method was highly reliable when tested in more than 500 preparations and could be adapted to different tree species with relatively minor modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号