首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the anaerobic capacities of a temperate grassland soil, a Kansas prairie soil was incubated anaerobically as either soil-water (1:2) suspensions or as soil microcosms at 78% soil water-holding capacity. Prairie soil formed acetate and CO(inf2) as the two main initial carbonaceous products from the anaerobic turnover of endogenous organic matter. Metabolic capacities of soil suspensions and microcosms were similar. Rates of acetate formation from endogenous organic matter in soil-water suspensions incubated at 40, 30, and 15(deg)C approximated 3.3, 2.4, and 1.1 (mu)g of acetate per g (dry weight) of soil per h, respectively. Supplemental H(inf2) and CO(inf2) were subject to consumption with the apparent concomitant synthesis of acetate in both soil suspensions and soil microcosms. In soil microcosms, rates of H(inf2)-dependent acetogenesis at 30 and 55(deg)C were nearly equivalent. The uptake of supplemental H(inf2) was not coupled to methanogenesis under any condition examined. These anaerobic activities were relatively stable when soils were subjected to either aerobic drying or alternating periods of O(inf2) enrichment. On the basis of the formation of nitrogen (N(inf2)), denitrification was engaged during anaerobic incubation periods; nitrous oxide (N(inf2)O) was also formed under certain conditions. Although extended incubation of soil induced the delayed methanogenic turnover of acetate, acetate was subject to immediate turnover under either O(inf2)- or nitrate-enriched conditions. These studies support the following concepts: (i) obligately anaerobic bacteria such as acetogenic bacteria are stable to periods of aerobiosis and are active in the anaerobic microsites of oxic soils, and (ii) acetate synthesized in anaerobic microsites of oxic terrestrial soils constitutes a trophic link to both aerobic and anaerobic microbial communities.  相似文献   

2.
The capacity to form acetate from endogenous matter was a common property of diverse forest soils when incubated under anaerobic conditions. At 15 to 20(deg)C, acetate synthesis occurred without appreciable delay when forest soils were incubated as buffered suspensions or in microcosms at various percentages of their maximum water holding capacity. Rates for acetate formation with soil suspensions ranged from 35 to 220 (mu)g of acetate per g (dry weight) of soil per 24 h, and maximal acetate concentrations obtained in soil suspensions were two- to threefold greater than those obtained with soil microcosms at the average water holding capacity of the soil. Cellobiose degradation in soil suspensions yielded H(inf2) as a transient product. Under anaerobic conditions, supplemental H(inf2) and CO(inf2) were directed towards the acetogenic synthesis of acetate, and enrichments yielded a syringate-H(inf2)-consuming acetogenic consortium. At in situ temperatures, acetate was a relatively stable anaerobic end product; however, extended incubation periods induced acetoclastic methanogenesis and sulfate reduction. Higher mesophilic and thermophilic temperatures greatly enhanced the capacity of soils to form methane. Although methanogenic and sulfate-reducing activities under in situ-relevant conditions were negligible, these findings nonetheless demonstrated the occurrence of methanogens and sulfate-reducing bacteria in these aerated terrestrial soils. In contrast to the protracted stability of acetate under anaerobic conditions at 15 to 20(deg)C with unsupplemented soils, acetate formed by forest soils was rapidly consumed in the presence of oxygen and nitrate, and substrate-product stoichiometries indicated that acetate turnover was coupled to oxygen-dependent respiration and denitrification. The collective results suggest that acetate formed under anaerobic conditions might constitute a trophic link between anaerobic and aerobic processes in forest soils.  相似文献   

3.
Fecal suspensions from humans were incubated with 13CO2 and H2. The suspensions were from subjects who harbored 10(8) and 10(10) methanogens per g (dry weight) of feces, respectively, and from a subject who did not harbor methanogens. Quantitative nuclear magnetic resonance spectroscopy showed that acetate labeled in both the methyl and carboxyl groups was formed by suspensions from the subject without methanogens and the subject with the lower concentrations of methanogens. The amounts of labeled acetate formed were in agreement with the amounts expected based on measurements of H2 utilization. No labeled acetate was formed by suspensions from the subject with the higher concentrations of methanogens, and essentially all of the H2 used was accounted for by CH4 production. Suspensions from the subject with lower concentrations of methanogens produced both methane and acetate from H2 and CO2. The results indicate that reduction of CO2 to acetate may be a major pathway for microbial production of acetate in the human colon except when very high concentrations of methanogens (ca. 10(10) per g [dry weight] of feces) are present. Double-labeled acetate was also formed from H2 and 13CO2 by fecal suspensions from nonmethanogenic and moderately methanogenic rats.  相似文献   

4.
Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect rather than by specific inhibition by NH(inf4)(sup+).  相似文献   

5.
Fecal suspensions from humans were incubated with 13CO2 and H2. The suspensions were from subjects who harbored 10(8) and 10(10) methanogens per g (dry weight) of feces, respectively, and from a subject who did not harbor methanogens. Quantitative nuclear magnetic resonance spectroscopy showed that acetate labeled in both the methyl and carboxyl groups was formed by suspensions from the subject without methanogens and the subject with the lower concentrations of methanogens. The amounts of labeled acetate formed were in agreement with the amounts expected based on measurements of H2 utilization. No labeled acetate was formed by suspensions from the subject with the higher concentrations of methanogens, and essentially all of the H2 used was accounted for by CH4 production. Suspensions from the subject with lower concentrations of methanogens produced both methane and acetate from H2 and CO2. The results indicate that reduction of CO2 to acetate may be a major pathway for microbial production of acetate in the human colon except when very high concentrations of methanogens (ca. 10(10) per g [dry weight] of feces) are present. Double-labeled acetate was also formed from H2 and 13CO2 by fecal suspensions from nonmethanogenic and moderately methanogenic rats.  相似文献   

6.
This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots.  相似文献   

7.
Bioconversion of cellulose to acetate was accomplished with cocultures of two organisms. One was the cellulolytic species Ruminococcus albus. It ferments crystalline cellulose (Avicel) to acetate, ethanol, CO(inf2), and H(inf2). The other organism (HA) obtains energy for growth by using H(inf2) to reduce CO(inf2) to acetate. HA is a gram-negative coccobacillus that was isolated from horse feces. Coculture of R. albus with HA in batch or continuous culture alters the fermentation products formed from crystalline cellulose by the ruminococcus via interspecies H(inf2) transfer. The major product of the fermentation by R. albus and HA coculture is acetate. High concentrations of acetate (333 mM) were obtained when batch cocultures grown on 5% cellulose were neutralized with Ca(OH)(inf2). Continuous cocultures grown at retention times of 2 and 3.1 days produced 109 and 102 mM acetate, respectively, when fed 1% cellulose with utilization of 84% of the substrate.  相似文献   

8.
Growth energetics of the acetic acid bacterium Acetobacter pasteurianus were studied with aerobic, ethanol-limited chemostat cultures. In these cultures, production of acetate was negligible. Carbon limitation and energy limitation were also evident from the observation that biomass concentrations in the cultures were proportional to the concentration of ethanol in the reservoir media. Nevertheless, low concentrations of a few organic metabolites (glycolate, citrate, and mannitol) were detected in culture supernatants. From a series of chemostat cultures grown at different dilution rates, the maintenance energy requirements for ethanol and oxygen were estimated at 4.1 mmol of ethanol (middot) g of biomass(sup-1) (middot) h(sup-1) and 11.7 mmol of O(inf2) (middot) g of biomass(sup-1) (middot) h(sup-1), respectively. When biomass yields were corrected for these maintenance requirements, the Y(infmax) values on ethanol and oxygen were 13.1 g of biomass (middot) mol of ethanol(sup-1) and 5.6 g of biomass (middot) mol of O(inf2)(sup-1), respectively. These biomass yields are very low in comparison with those of other microorganisms grown under comparable conditions. To investigate whether the low growth efficiency of A. pasteurianus might be due to a low gain of metabolic energy from respiratory dissimilation, (symbl)H(sup+)/O stoichiometries were estimated during acetate oxidation by cell suspensions. These experiments indicated an (symbl)H(sup+)/O stoichiometry for acetate oxidation of 1.9 (plusmn) 0.1 mol of H(sup+)/mol of O. Theoretical calculations of growth energetics showed that this low (symbl)H(sup+)/O ratio adequately explained the low biomass yield of A. pasteurianus in ethanol-limited cultures.  相似文献   

9.
Understanding the fate of complex electron-donor materials is important for developing efficient biostimulation strategies to treat ground water contamination by chlorinated ethenes (CEs). The fermentation product distributions and H2 production of common permeable reactive barrier (PRB) carbon substrates (dairy whey, sodium lactate syrup, and Hydrogen Release Compound [HRC]) were monitored as measures of substrate efficiency in aquifer microcosms spiked with trichloroethene (TCE). In long-term experiments, the fermentation of PRB substrates to slow-degrading organic acids maintained low H2 partial pressures (≤ 10?3.5) that, as previous studies suggest, may give competitive advantage to dechlorinators over hydrogenotrophic methanogens. Whey-amended and lactate-amended microcosms exhibited faster complete dechlorination and, according to organic acid carbon flow, higher rates of fermentation to acetate. In HRC-amended microcosms, propionate appeared to serve as a carbon sink that prolonged dechlorination. Upon complete dechlorination, whey microcosms contained the highest percentage of organic acid carbon. Native Dehalococcoides populations increased by 3 orders of magnitude (per g sediment) in whey-amended microcosms. Whey's efficiency improved in microcosms prepared with aquifer sediment and water from within a downgradient whey PRB. Results suggested whey loading values of 0.2 kg/m3 may be appropriate under sufficiently reducing conditions to efficiently stimulate hydrogenotrophic and potentially actetotrophic dechlorinating populations. Renewal of whey PRBs may, however, be required. Implications for further long-term study of cost-efficiencies are discussed.  相似文献   

10.
T. L. Miller  X. Chen  B. Yan    S. Bank 《Applied microbiology》1995,61(4):1180-1186
We found that general pathways for amino acid synthesis of Methanosphaera stadtmanae, a methanogen that forms CH(inf4) from H(inf2) and methanol, resembled those of methanogens that form CH(inf4) from CO(inf2) or from the methyl group of acetate. We determined the incorporation of (sup14)C-labeled CO(inf2), formate, methanol, methionine, serine, and acetate into cell macromolecules. Labeling of amino acid carbons was determined by solution nuclear magnetic resonance spectroscopy after growth with (sup13)C-labeled acetate, CO(inf2), serine, and methanol. The (alpha) and (beta) carbons of serine and alanine were formed from carboxyl and methyl carbons of acetate, respectively, and the amino acid carboxyl groups were formed from CO(inf2). This indicates that pyruvate was formed by reductive carboxylation of acetate. Labeling of the methyl carbon of methionine indicated that the major route of synthesis was from the hydroxymethyl carbon of serine that arises from the methyl carbon of acetate. Methanol was a minor source of the methyl of methionine. Unambiguous assignment was made of the sources of all carbons of histidine. Labeling of the histidine 7 position ((epsilon) carbon) was consistent with formation from the C-2 of the purine ring of ATP and the origin of the C-2 from a formyl unit derived from the hydroxymethyl carbon of serine.  相似文献   

11.
We have previously demonstrated that the intraspecific diversity of leaf litter can influence ecosystem functioning during litter decomposition in the field. It is unknown whether the effects of phenotypic diversity persist when litter from an additional species is present. We used laboratory microcosms to determine whether the intraspecific diversity effects of turkey oak leaf litter on nutrient dynamics are confounded by the presence of naturally co-occurring longleaf pine litter. We varied the phenotypic diversity of oak litter (1, 3, and 6 phenotype combinations) in the presence and absence of pine litter and measured fluxes of carbon and nitrogen over a 42-week period. The average soil C:N ratio peaked at intermediate levels of oak phenotypic diversity and the total amount of dissolved organic carbon leached from microcosms decreased (marginally) with increasing oak phenotypic diversity. The soil carbon content, and the total amount of ammonium, nitrate, and dissolved organic carbon leached from microcosms were all influenced by initial litter chemistry. Our results suggest that the effects of phenotypic diversity can persist in the presence of another species, however specific litter chemistries (condensed and hydrolysable tannins, simple phenolics, C:N ratios) are more important than phenotypic litter diversity to most nutrient fluxes during litter decomposition.  相似文献   

12.
Many studies have estimated relationships between biodiversity and ecosystem functioning, and observed generally positive effects. Because detritus is a major food resource in stream ecosystems, decomposition of leaf litter is an important ecosystem process and many studies report the full range of positive, negative and no effects of diversity on decomposition. However, the mechanisms underlying decomposition processes in fresh water remain poorly understood. Organism body stoichiometry relates to consumption rates and tendencies, and decomposition processes of litter may therefore be affected by diversity in detritivore body stoichiometry. We predicted that the stoichiometric diversity of detritivores (differences in C: nutrient ratios among species) would increase the litter processing efficiency (litter mass loss per total capita metabolic capacity) in fresh water through complementation regarding different nutrient requirements. To test this prediction, we conducted a microcosm experiment wherein we manipulated the stoichiometric diversity of detritivores and quantified mass loss of leaf litter mixtures. We compared litter processing efficiency among litter species in each microcosm with single species detritivores, and observed detritivores with nutrient‐rich bodies tended to prefer litter with lower C: nutrient ratios over litter with higher C: nutrient ratios. Furthermore, litter processing efficiencies were significantly higher in the microcosms containing species of detritivores with both nutrient‐rich and ‐poor bodies than microcosms containing species of detritivores including only nutrient‐rich or ‐poor bodies. This might mean a higher stoichiometric diversity of detritivores increased litter processing efficiency. Our results suggest that ecological stoichiometry may improve understanding of links between biodiversity and ecosystem function in freshwater ecosystems.  相似文献   

13.
Near-infrared reflectance spectroscopy (NIRS) has been widely applied as a holistic tool to investigate decomposition processes in terrestrial ecosystems. The objectives of this research were to determine the potential of NIRS to predict (1) the halophytic litter chemistry (i.e., carbon and nitrogen content) during decomposition, and (2) the stage of decomposition of halophytic litter. Decomposition experiments were conducted in the laboratory with microcosms placed under a wide range of physical characteristics and in the field with litterbags located along the elevation gradient (i.e., low to upper marsh). Microcosm experiments were used to calibrate the predictive equations. These calibration equations were then applied to the field data to test their capacity to predict %C, %N, and litter mass loss (LML). NIRS can be successfully applied to predict chemical composition of halophyte litter during decomposition processes. We hypothesized that the use of litterbags in the field might lead to a 20–40% overestimation of the decay rate as fine organic debris are lost through the meshes of the litterbags. NIRS can be used as a fast and nondestructive method to more accurately predict decay rates, and thus microbial consumption in aquatic environments.  相似文献   

14.
Vilisics F  Szekeres S  Hornung E 《ZooKeys》2012,(176):247-259
A series of experiments were applied to test how leaf orientation within microcosms affect consumption rates (Experiment 1), and to discover intra-specific differences in leaf litter consumption (Experiment 2) of the common isopod species Porcellio scaber and Porcellionides pruinosus. A standardised microcosm setup was developed for feeding experiments to maintain standard conditions. A constant amount of freshly fallen black poplar litter was provided to three distinct size class (small, medium, large) of woodlice. We measured litter consumption after a fortnight. We maintained appr. constant isopod biomass for all treatments, and equal densities within each size class. We hypothesized that different size classes differ in their litter consumption, therefore such differences should occur even within populations of the species. We also hypothesized a marked difference in consumption rates for different leaf orientation within microcosms. Our results showed size-specific consumption patterns for Porcellio scaber: small adults showed the highest consumption rates (i.e. litter mass loss / isopod biomass) in high density microcosms, while medium-sized adults of lower densities ate the most litter in containers. Leaf orientation posed no significant effect on litter consumption.  相似文献   

15.
We describe a simple, precise, and sensitive experimental protocol for direct measurement of N(inf2) fixation using the conversion of (sup15)N(inf2) to organic N. Our protocol greatly reduces the limit of detection for N(inf2) fixation by taking advantage of the high sensitivity of a modern, multiple-collector isotope ratio mass spectrometer. This instrument allowed measurement of N(inf2) fixation by natural assemblages of plankton in incubations lasting several hours in the presence of relatively low-level (ca. 10 atom%) tracer additions of (sup15)N(inf2) to the ambient pool of N(inf2). The sensitivity and precision of this tracer method are comparable to or better than those associated with the C(inf2)H(inf2) reduction assay. Data obtained in a series of experiments in the Gotland Basin of the Baltic Sea showed excellent agreement between (sup15)N(inf2) tracer and C(inf2)H(inf2) reduction measurements, with the largest discrepancies between the methods occurring at very low fixation rates. The ratio of C(inf2)H(inf2) reduced to N(inf2) fixed was 4.68 (plusmn) 0.11 (mean (plusmn) standard error, n = 39). In these experiments, the rate of C(inf2)H(inf2) reduction was relatively insensitive to assay volume. Our results, the first for planktonic diazotroph populations of the Baltic, confirm the validity of the C(inf2)H(inf2) reduction method as a quantitative measure of N(inf2) fixation in this system. Our (sup15)N(inf2) protocols are comparable to standard C(inf2)H(inf2) reduction procedures, which should promote use of direct (sup15)N(inf2) fixation measurements in other systems.  相似文献   

16.
The ongoing increase in atmospheric CO2 concentration ([CO2]) can potentially alter litter decomposition rates by changing: (i) the litter quality of individual species, (ii) allocation patterns of individual species, (iii) the species composition of ecosystems (which could alter ecosystem‐level litter quality and allocation), (iv) patterns of soil moisture, and (v) the composition and size of microbial communities. To determine the relative importance of these mechanisms in a California annual grassland, we created four mixtures of litter that differed in species composition (the annual legume Lotus wrangelianus Fischer & C. Meyer comprised either 10% or 40% of the initial mass) and atmospheric [CO2] during growth (ambient or double‐ambient). These mixtures decomposed for 33 weeks at three positions (above, on, and below the soil surface) in four types of grassland microcosms (fertilized and unfertilized microcosms exposed to elevated or ambient [CO2]) and at a common field site. Initially, legume‐rich litter mixtures had higher nitrogen concentrations ([N]) than legume‐poor mixtures. In most positions and environments, the different litter mixtures decomposed at approximately the same rate. Fertilization and CO2 enrichment of microcosms had no effect on mass loss of litter within them. However, mass loss was strongly related to litter position in both microcosms and the field. Nitrogen dynamics of litter were significantly related to the initial [N] of litter on the soil surface, but not in other positions. We conclude that changes in allocation patterns and species composition are likely to be the dominant mechanisms through which ecosystem‐level decomposition rates respond to increasing atmospheric [CO2].  相似文献   

17.
Methyl fluoride (fluoromethane [CH(inf3)F]) has been used as a selective inhibitor of CH(inf4) oxidation by aerobic methanotrophic bacteria in studies of CH(inf4) emission from natural systems. In such studies, CH(inf3)F also diffuses into the anaerobic zones where CH(inf4) is produced. The effects of CH(inf3)F on pure and defined mixed cultures of anaerobic microorganisms were investigated. About 1 kPa of CH(inf3)F, similar to the amounts used in inhibition experiments, inhibited growth of and CH(inf4) production by pure cultures of aceticlastic methanogens (Methanosaeta spp. and Methanosarcina spp.) and by a methanogenic mixed culture of anaerobic microorganisms in which acetate was produced as an intermediate. With greater quantities of CH(inf3)F, hydrogenotrophic methanogens were also inhibited. At a partial pressure of CH(inf3)F of 1 kPa, homoacetogenic, sulfate-reducing, and fermentative bacteria and a methanogenic mixed culture of anaerobic microorganisms based on hydrogen syntrophy were not inhibited. The inhibition by CH(inf3)F of the growth and CH(inf4) production of Methanosarcina mazei growing on acetate was reversible. CH(inf3)F inhibited only acetate utilization by Methanosarcina barkeri, which is able to use acetate and hydrogen simultaneously, when both acetate and hydrogen were present. These findings suggest that the use of CH(inf3)F as a selective inhibitor of aerobic CH(inf4) oxidation in undefined systems must be interpreted with great care. However, by a careful choice of concentrations, CH(inf3)F may be useful for the rapid determination of the role of acetate as a CH(inf4) precursor.  相似文献   

18.
1. The effects of solar radiation on bacterial and fungal growth on aquatic macrophyte detritus were studied in a microcosm experiment. Senescent leaves of Phragmites australis were incubated for 63 days in shallow water in the shade under photosynthetically active radiation (PAR) together with ultraviolet radiation, or under filters removing either ultraviolet B (UVB) or both UVB and ultraviolet A (UVA). 2. Bacterial abundance and bacterial 3H-leucine incorporation in the water were measured, together with α- and β-D-glucosidase activity. In addition, bacterial abundance and fungal biomass associated with the litter were measured. 3. The results indicate that both PAR and UVA affect the micro-organisms involved in the decomposition of leaf litter. The α/β-D-glucosidase activity ratio was less than one in irradiated and more than one in shaded microcosms, suggesting a change in the substrate dissolved organic matter composition towards more β- than α-glycosidic linkages as a result of solar radiation. 4. Microcosms receiving UVB displayed a significantly higher β-D-glucosidase activity than shaded microcosms, and those exposed to PAR or PAR + UVA, demonstrating the potential importance of UVB radiation. 5. The free-living bacteria tended to be dominated by filamentous forms in microcosms subject to solar radiation, especially PAR, and attached microbial communities showed a greater tendency to be dominated by bacteria in irradiated microcosms than in shaded microcosms.  相似文献   

19.
The mat-building cyanobacterium Microcoleus chthonoplastes carried out a mixed-acid fermentation when incubated under anoxic conditions in the dark. Endogenous storage carbohydrate was fermented to acetate, ethanol, formate, lactate, H(inf2), and CO(inf2). Cells with a low glycogen content (about 0.3 (mu)mol of glucose per mg of protein) produced acetate and ethanol in equimolar amounts. In addition to glycogen, part of the osmoprotectant, glucosyl-glycerol, was degraded. The glucose component of glucosyl-glycerol was fermented, whereas glycerol was released into the medium. Cells with a high content of glycogen (about 2 (mu)mol of glucose per mg of protein) did not utilize glucosyl-glycerol. These cells produced more acetate than ethanol. M. chthonoplastes was also capable of using elemental sulfur as the electron acceptor during fermentation, resulting in the production of sulfide. With sulfur present, acetate production increased whereas ethanol production decreased. Also, less formate was produced and the evolution of hydrogen ceased completely. In general, the carbon recoveries were satisfactory but the oxidation-reduction balances were too high. The latter could be explained by assuming the reduction of ferric iron, which is associated with the cells, mediated by the oxidation of formate. The switch from photoautotrophic to fermentative metabolism did not require de novo protein synthesis, and fermentation started immediately upon transfer to dark anoxic conditions. From the molar ratios of the fermentation products and from measurement of enzyme activities in cell extracts, we concluded that glucose derived from glycogen and glucosyl-glycerol is degraded via the Embden-Meyerhof-Parnas pathway.  相似文献   

20.
Pseudomonas acidophila is a bacterial strain producing a poly(3-hydroxyalkanoic acid) (PHA) copolymer from low-molecular-weight organic compounds such as formate and acetate. The genes responsible for PHA production were cloned in cosmid pIK7 containing a 14.8-kb HindIII fragment of P. acidophila DNA. With the aim of developing a means of producing a PHA copolymer from CO(inf2), cosmid pIK7 was introduced into a polymer-negative mutant of the chemolithoautotrophic bacterium Alcaligenes eutrophus PHB(sup-)4. However, the recombinant strain produced a homopolymer of 3-hydroxybutyric acid (polyhydroxybutyric acid) from CO(inf2). Since it was thought that the composition of the accumulated polymer might depend not on the PHA biosynthetic genes but on the metabolism of the host strain, a recombinant plasmid, pFUS, containing the genes for chemolithoautotrophic growth of the hydrogen-oxidizing bacterium A. hydrogenophilus was introduced into P. acidophila by conjugation. The recombinant plasmid pFUS was stably maintained in P. acidophila in the absence of chemolithoautotrophic or antibiotic selection. This pFUS-harboring strain possessed the ability to grow under a gas mixture of H(inf2), O(inf2), and CO(inf2) in a mineral salts medium, and PHA copolymer accumulation was confirmed by nuclear magnetic resonance spectral analysis. A gas chromatogram obtained by gas chromatography-mass spectrometry showed the composition of the polymer to be 52.8% 3-hydroxybutyrate, 41.1% 3-hydroxyoctanoate, and 6.1% 3-hydroxydecanoate. This is the first report of the production of a PHA copolymer from CO(inf2) as sole carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号