首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bistranded clustered DNA damages involving oxidized bases, abasic sites, and strand breaks are produced by ionizing radiation and radiomimetic drugs, but it was not known whether they can be formed by other agents, e.g., nonionizing radiation. UV radiation produces clusters of cyclobutyl pyrimidine dimers, photoproducts that occur individually in high yield. Since long-wavelength UV (290-400 nm) radiation induces oxidized bases, abasic sites, and strand breaks at low yields, we tested whether it also produces clusters containing these lesions. We exposed supercoiled pUC18 DNA to UV radiation with wavelengths of >290 nm (UVB plus UVA radiation), and assessed the induction of bistranded clustered oxidized purine and abasic clusters, as recognized by Escherichia coli Fpg protein and E. coli Nfo protein (endonuclease IV), respectively, as well as double-strand breaks. These three classes of bistranded clusters were detected, albeit at very low yields (37 Fpg-OxyPurine clusters Gbp(-1) kJ(-1) m(2), 8.1 double-strand breaks Gbp(-1) kJ(-1) m(2), and 3.4 Nfo-abasic clusters Gbp(-1) kJ(-1) m(2)). Thus, these bistranded OxyPurine clusters, abasic clusters, and double-strand breaks are not uniquely induced by ionizing radiation and radiomimetic drugs, but their level of production by UVB and UVA radiation is negligible compared to the levels of frequent photoproducts such as pyrimidine dimers.  相似文献   

2.
Although DNA DSBs are known to be important in producing the damaging effects of ionizing radiation in cells, bistranded clustered DNA damages-two or more oxidized bases, abasic sites or strand breaks on opposing DNA strands within a few helical turns-are postulated to be difficult to repair and thus to be critical radiation-induced lesions. Gamma rays can induce clustered damages in DNA in solution, and high-energy iron ions produce DSBs and oxidized pyrimidine clusters in human cells, but it was not known whether sparsely ionizing radiation can produce clustered damages in mammalian cells. We show here that X rays induce abasic clusters, oxidized pyrimidine clusters, and oxidized purine clusters in DNA in human cells. Non-DSB clustered damages comprise about 70% of the complex lesions produced in cells. The relative levels of specific cluster classes depend on the environment of the DNA.  相似文献   

3.
Space and cosmic radiation is characterized by energetic heavy ions of high linear energy transfer (LET). Although both low- and high-LET radiations can create oxidative clustered DNA lesions and double-strand breaks (DSBs), the local complexity of oxidative clustered DNA lesions tends to increase with increasing LET. We irradiated 28SC human monocytes with doses from 0-10 Gy of (56)Fe ions (1.046 GeV/ nucleon, LET = 148 keV/microm) and determined the induction and processing of prompt DSBs and oxidative clustered DNA lesions using pulsed-field gel electrophoresis (PFGE) and Number Average Length Analysis (NALA). The (56)Fe ions produced decreased yields of DSBs (10.9 DSB Gy(-1) Gbp(-1)) and clusters (1 DSB: approximately 0.8 Fpg clusters: approximately 0.7 Endo III clusters: approximately 0.5 Endo IV clusters) compared to previous results with (137)Cs gamma rays. The difference in the relative biological effectiveness (RBE) of the measured and predicted DSB yields may be due to the formation of spatially correlated DSBs (regionally multiply damaged sites) which result in small DNA fragments that are difficult to detect with the PFGE assay. The processing data suggest enhanced difficulty compared with gamma rays in the processing of DSBs but not clusters. At the same time, apoptosis is increased compared to that seen with gamma rays. The enhanced levels of apoptosis observed after exposure to (56)Fe ions may be due to the elimination of cells carrying high levels of persistent DNA clusters that are removed only by cell death and/or "splitting" during DNA replication.  相似文献   

4.
Clustered DNA damages—two or more lesions on opposing strands and within one or two helical turns—are formed in cells by ionizing radiation or radiomimetic antitumor drugs. They are hypothesized to be difficult to repair, and thus are critical biological damages. Since individual abasic sites can be cytotoxic or mutagenic, abasic DNA clusters are likely to have significant cellular impact. Using a novel approach for distinguishing abasic clusters that are very closely spaced (putrescine cleavage) or less closely spaced (Nfo protein cleavage), we measured induction and processing of abasic clusters in 28SC human monocytes that were exposed to ionizing radiation. γ-rays induced ~1 double-strand break: 1.3 putrescine-detected abasic clusters: 0.8 Nfo-detected abasic clusters. After irradiation, the 28SC cells rejoined double-strand breaks efficiently within 24 h. In contrast, in these cells, the levels of abasic clusters decreased very slowly over 14 days to background levels. In vitro repair experiments that used 28SC cell extracts further support the idea of slow processing of specific, closely spaced abasic clusters. Although some clusters were removed by active cellular repair, a substantial number was apparently decreased by ‘splitting’ during DNA replication and subsequent cell division. The existence of abasic clusters in 28SC monocytes, several days after irradiation suggests that they constitute persistent damages that could lead to mutation or cell killing.  相似文献   

5.
Abstract

Detrimental effects of ionizing radiation (IR) are correlated to the varying efficiency of IR to induce complex DNA damage. A double strand break (DSB) can be considered the simpler form of complex DNA damage. These types of damage can consist of DSBs, single strand breaks (SSBs) and/or non-DSB lesions such as base damages and apurinic/apyrimidinic (AP; abasic) sites in different combinations. Enthralling theoretical (Monte Carlo simulations) and experimental evidence suggests an increase in the complexity of DNA damage and therefore repair resistance with linear energy transfer (LET). In this study, we have measured the induction and processing of DSB and non-DSB oxidative clusters using adaptations of immunofluorescence. Specifically, we applied foci colocalization approaches as the most current methodologies for the in situ detection of clustered DNA lesions in a variety of human normal (FEP18-11-T1) and cancerous cell lines of varying repair efficiency (MCF7, HepG2, A549, MO59K/J) and radiation qualities of increasing LET, that is γ-, X-rays 0.3–1?keV/μm, α-particles 116?keV/μm and 36Ar ions 270?keV/μm. Using γ-H2AX or 53BP1 foci staining as DSB probes, we calculated a DSB apparent rate of 5–16 DSBs/cell/Gy decreasing with LET. A similar trend was measured for non-DSB oxidized base lesions detected using antibodies against the human repair enzymes 8-oxoguanine-DNA glycosylase (OGG1) or AP endonuclease (APE1), that is damage foci as probes for oxidized purines or abasic sites, respectively. In addition, using colocalization parameters previously introduced by our groups, we detected an increasing clustering of damage for DSBs and non-DSBs. We also make correlations of damage complexity with the repair efficiency of each cell line and we discuss the biological importance of these new findings with regard to the severity of IR due to the complex nature of its DNA damage.  相似文献   

6.
Ionizing radiation induces both isolated DNA lesions and clustered damages-multiple closely spaced lesions (strand breaks, oxidized purines, oxidized pyrimidines, or abasic sites within a few helical turns). Such clusters are postulated to be difficult to repair and thus potentially lethal or mutagenic lesions. Using highly purified enzymes that cleave DNA at specific classes of damage and electrophoretic assays developed for quantifying isolated and clustered damages in high molecular length genomic DNAs, we determined the relative frequencies of total lesions and of clustered damages involving both strands, and the composition and origin of such clusters. The relative frequency of isolated vs clustered damages depends on the identity of the lesion, with approximately 15-18% of oxidized purines, pyrimidines, or abasic sites in clusters recognized by Fpg, Nth, or Nfo proteins, respectively, but only about half that level of frank single strand breaks in double strand breaks. Oxidized base clusters and abasic site clusters constitute about 80% of complex damages, while double strand breaks comprise only approximately 20% of the total. The data also show that each cluster results from a single radiation (track) event, and thus clusters will be formed at low as well as high radiation doses.  相似文献   

7.
The radiation-induced process of strand breaks on pBR322 plasmid DNA in aqueous solution for different energy electrons was studied by Monte Carlo simulation. Assumptions of induction mechanisms of single- and double-strand breaks (SSBs and DSBs) used in the simulation are that SSB is induced by OH or H reaction with DNA and that DSB is induced by two SSBs on the opposite strands within 10 bp. Dose-response relationships of SSBs and DSBs were demonstrated for monoenergetic electrons of 100 eV, 10 keV, 1 keV and 1 MeV, and the yields of SSB and DSB were calculated. The dose-response relationships of SSBs and DSBs can be fitted by linear and linear-quadratic functions, respectively. The ratio of quadratic to linear components of DSB induction changes due to the electron energy. A high contribution of the linear component is observed for 1 keV electrons in the dose range below 160 Gy. The yields of SSBs and DSBs for all examined electron energies lie well within the experimental data when the probability of strand-break induction by OH and H is assumed to be around 0.1-0.2. The yield of SSBs has a minimum at 1 keV, while the yield of DSBs has a maximum at 1 keV in the examined energies. The strand breaks are formed most densely for 1 keV electrons.  相似文献   

8.
Clustered damage in DNA includes two or more closely spaced oxidized bases, strand breaks or abasic sites that are induced by high- or low-linear-energy-transfer (LET) radiation, and these have been found to be repair-resistant and potentially mutagenic. In the present study we found that abasic clustered damages are also induced in primary human fibroblast cells by low-LET X-rays even at very low doses. In response to the induction of the abasic sites, primary fibroblasts irradiated by low doses of X-rays in the range 10–100 cGy showed dose-dependent up-regulation of the DNA repair enzyme, ApeI. We found that the abasic clusters in primary fibroblasts were more lethal to cells when hApeI enzyme expression was down-regulated by transfecting primary fibroblasts with hApeI siRNA as determined by clonogenic survival assay. Endonuclease activity of hApeI was found to be directly proportional to hApeI gene-silencing efficiency. The DNA repair profile showed that processing of abasic clusters was delayed in hApeI-siRNA-silenced fibroblasts, which challenges the survival of the cells even at very low doses of X-rays. Thus, the present study is the first to attempt to understand the induction of cluster DNA damage at very low doses of low-LET radiation in primary human fibroblasts and their processing by DNA repair enzyme ApeI and their relation with the survival of the cells.  相似文献   

9.
Radiation quality and cellular oxygen concentration have a substantial impact on DNA damage, reproductive cell death and, ultimately, the potential efficacy of radiation therapy for the treatment of cancer. To better understand and quantify the effects of radiation quality and oxygen on the induction of clustered DNA lesions, we have now extended the Monte Carlo Damage Simulation (MCDS) to account for reductions in the initial lesion yield arising from enhanced chemical repair of DNA radicals under hypoxic conditions. The kinetic energy range and types of particles considered in the MCDS have also been expanded to include charged particles up to and including (56)Fe ions. The induction of individual and clustered DNA lesions for arbitrary mixtures of different types of radiation can now be directly simulated. For low-linear energy transfer (LET) radiations, cells irradiated under normoxic conditions sustain about 2.9 times as many double-strand breaks (DSBs) as cells irradiated under anoxic conditions. New experiments performed by us demonstrate similar trends in the yields of non-DSB (Fpg and Endo III) clusters in HeLa cells irradiated by γ rays under aerobic and hypoxic conditions. The good agreement among measured and predicted DSBs, Fpg and Endo III cluster yields suggests that, for the first time, it may be possible to determine nucleotide-level maps of the multitude of different types of clustered DNA lesions formed in cells under reduced oxygen conditions. As particle LET increases, the MCDS predicts that the ratio of DSBs formed under normoxic to hypoxic conditions by the same type of radiation decreases monotonically toward unity. However, the relative biological effectiveness (RBE) of higher-LET radiations compared to (60)Co γ rays (0.24 keV/μm) tends to increase with decreasing oxygen concentration. The predicted RBE of a 1 MeV proton (26.9 keV/μm) relative to (60)Co γ rays for DSB induction increases from 1.9 to 2.3 as oxygen concentration decreases from 100% to 0%. For a 12 MeV (12)C ion (681 keV/μm), the 'predicted RBE for DSB induction increases from 3.4 (100% O(2)) to 9.8 (0% O(2)). Estimates of linear-quadratic (LQ) cell survival model parameters (α and β) are closely correlated to the Monte Carlo-predicted trends in DSB induction for a wide range of particle types, energies and oxygen concentrations. The analysis suggests α is, as a first approximation, proportional to the initial number of DSBs per cell, and β is proportional to the square of the initial number of DSBs per cell. Although the reported studies provide some evidence supporting the hypothesis that DSBs are a biologically critical form of clustered DNA lesion, the induction of Fpg and Endo III clusters in HeLa cells irradiated by γ rays exhibits similar trends with oxygen concentration. Other types of non-DSB cluster may still play an important role in reproductive cell death. The MCDS captures many of the essential trends in the formation of clustered DNA lesions by ionizing radiation and provides useful information to probe the multiscale effects and interactions of ionizing radiation in cells and tissues. Information from Monte Carlo simulations of cluster induction may also prove useful for efforts to better exploit radiation quality and reduce the impact of tumor hypoxia in proton and carbon-ion radiation therapy.  相似文献   

10.
11.
DNA fragmentation was studied in the fragment size range 0.023-5.7 Mbp after irradiation of human fibroblasts with iron-ion beams of four different energies, i.e., 200 MeV/nucleon, 500 MeV/nucleon, 1 GeV/nucleon and 5 GeV/nucleon, with gamma rays used as the reference radiation. The double-strand break (DSB) yield (and thus the RBE for DNA DSB induction) of the four iron-ion beams, which have LETs ranging from 135 to 442 keV/mum, does not vary greatly as a function of LET. As a consequence, the variation of the cross section for DSB induction mainly reflects the variation in LET. However, when the fragmentation spectra were analyzed with a simple theoretical tool that we recently introduced, the results showed that spatially correlated DSBs, which are absent after gamma irradiation, increased markedly with LET for the iron-ion beams. This occurred because iron ions produce DNA fragments smaller than 0.75 Mbp with a higher probability than gamma rays (a probability that increases with LET). These sizes include those expected from fragmentation of the chromatin loops with Mbp dimensions. This result does not exclude a correlation at distances smaller than the lower size analyzed here, i.e. 23 kbp. Moreover, the DSB correlation is dependent on dose, decreasing when dose increases; this can be explained with the argument that at increasing dose there is an increasing fraction of fragments produced by DSBs caused by separate, uncorrelated tracks.  相似文献   

12.
Chromosomes of budding yeast Saccharomyces pastorianus were used to determine the extent of DNA double-strand breaks (DSBs) induced by x-rays (30-50 keV) and 14 MeV neutrons. The yeast chromosomes were separated by pulsed-field gel electrophoresis (PFGE) and the proportion of unbroken molecules corresponding to the largest chromosome no. IV (1500 kbp) was used to calculate the DSB frequency assuming a random distribution of hits. To determine the protective contribution of the cell environment, chromosomes embedded in agarose plugs as well as intact yeast cells, were irradiated under conditions completely inhibiting DNA repair. Following irradiation, the intact cells were also embedded in agarose plugs and the chromosomes isolated to perform PFGE. All radiation experiments resulted in a linear dose-effect curve for DSBs. For both radiation qualities, the yield of DSBs for exposed isolated chromosomes exceeded that for intact yeast cells by a factor of 13. The relative biological effectiveness (RBE) of 14 MeV neutrons in the induction of DNA DSBs was about 2.5. This figure was found to be identical for the in vivo and in vitro exposure of yeast chromosomes (neutrons 36.7 and 2.8, x-rays 14.5 and 1.1 x 10(-8) DSB x Bp-1 Gy-1 for isolated DNA and intact cells, respectively).  相似文献   

13.
Clustered DNA damages-multiple oxidized bases, abasic sites, or strand breaks within a few helical turns-are potentially mutagenic and lethal alterations induced by ionizing radiation. Endogenous clusters are found at low frequencies in unirradiated normal human cells and tissues. Radiation-sensitive hematopoietic cells with low glycosylase levels (TK6 and WI-L2-NS) accumulate oxidized base clusters but not abasic clusters, indicating that cellular repair genotype affects endogenous cluster levels. We asked whether other factors, i.e., in the cellular microenvironment, affect endogenous cluster levels and composition in hematopoietic cells. TK6 and WI-L2-NS cells were grown in standard medium (RPMI 1640) alone or supplemented with folate and/or selenium; oxidized base cluster levels were highest in RPMI 1640 and reduced in selenium-supplemented medium. Abasic clusters were low under all conditions. In primary hematopoietic stem and progenitor cells from four non-tobacco-using donors, cluster levels were low. However, in cells from tobacco users, we observed high oxidized base clusters and also abasic clusters, previously observed only in irradiated cells. Protein levels and activity of the abasic endonuclease Ape1 were similar in the tobacco users and nonusers. These data suggest that in highly damaging environments, even normal DNA repair capacity can be overwhelmed, leaving highly repair-resistant clustered damages.  相似文献   

14.
Ionizing radiation induces bistranded DNA damage clusters-two or more oxidized bases, abasic, sites or strand breaks on opposing strands within a few helical turns-but it is not known if clusters are also formed in unirradiated DNA in solution or in unirradiated cultured human cells. The frequencies of endogenous oxidized purine clusters (recognized by Escherichia coli Fpg protein), oxidized pyrimidine clusters (recognized by Nth protein), and abasic clusters (cleavage by Nfo protein) were determined using quantitative gel electrophoresis, electronic imaging, and number average length analysis. Methods of DNA isolation and storage were found to affect cluster levels significantly. In bacteriophage T7 DNA prepared using stringent conditions, the frequencies of these clusters were <1/Mbp. In DNA from unirradiated human 28SC monocytes, the levels of such clusters were, at most, a few per gigabase pair.  相似文献   

15.
The purpose of this study was to determine the yield of DNA base damages, deoxyribose damage, and clustered lesions due to the direct effects of ionizing radiation and to compare these with the yield of DNA trapped radicals measured previously in the same pUC18 plasmid. The plasmids were prepared as films hydrated in the range 2.5 < Gamma < 22.5 mol water/mol nucleotide. Single-strand breaks (SSBs) and double-strand breaks (DSBs) were detected by agarose gel electrophoresis. Specific types of base lesions were converted into SSBs and DSBs using the base-excision repair enzymes endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). The yield of base damage detected by this method displayed a strikingly different dependence on the level of hydration (Gamma) compared with that for the yield of DNA trapped radicals; the former decreased by 3.2 times as Gamma was varied from 2.5 to 22.5 and the later increased by 2.4 times over the same range. To explain this divergence, we propose that SSB yields produced in plasmid DNA by the direct effect cannot be analyzed properly with a Poisson process that assumes an average of one strand break per plasmid and neglects the possibility of a single track producing multiple SSBs within a plasmid. The yields of DSBs, on the other hand, are consistent with changes in free radical trapping as a function of hydration. Consequently, the composition of these clusters could be quantified. Deoxyribose damage on each of the two opposing strands occurs with a yield of 3.5 +/- 0.5 nmol/J for fully hydrated pUC18, comparable to the yield of 4.1 +/- 0.9 nmol/J for DSBs derived from opposed damages in which at least one of the sites is a damaged base.  相似文献   

16.
Characteristic of damage introduced in DNA by ionizing radiation is the induction of a wide range of lesions. Single-strand breaks (SSBs) and base damages outnumber double-strand breaks (DSBs). If unrepaired, these lesions can lead to DSBs and increased mutagenesis. XRCC1 and DNA polymerase beta (polbeta) are thought to be critical elements in the repair of these SSBs and base damages. XRCC1-deficient cells display a radiosensitive phenotype, while proliferating polbeta-deficient cells are not more radiosensitive. We have recently shown that cells deficient in polbeta display increased radiosensitivity when confluent. In addition, cells expressing a dominant negative to polbeta have been found to be radiosensitized. Here we show that repair of radiation-induced lesions is inhibited in extracts with altered polbeta or XRCC1 status, as measured by an in vitro repair assay employing irradiated plasmid DNA. Extracts from XRCC1-deficient cells showed a dramatically reduced capacity to repair ionizing radiation-induced DNA damage. Extracts deficient in polbeta or containing a dominant negative to polbeta also showed reduced repair of radiation-induced SSBs. Irradiated repaired plasmid DNA showed increased incorporation of radioactive nucleotides, indicating use of an alternative long-patch repair pathway. These data show a deficiency in repair of ionizing radiation damage in extracts from cells deficient or altered in polbeta activity, implying that increased radiosensitivity resulted from radiation damage repair deficiencies.  相似文献   

17.
Clustered damages—two or more closely opposed abasic sites, oxidized bases or strand breaks—are induced in DNA by ionizing radiation and by some radiomimetic drugs. They are potentially mutagenic or lethal. High complexity, multilesion clusters (three or more lesions) are hypothesized as repair-resistant and responsible for the greater biological damage induced by high linear energy transfer radiation (e.g. charged particles) than by low linear energy transfer X- or γ-rays. We tested this hypothesis by assessing human abasic endonuclease Ape1 activity on two- and multiple-lesion abasic clusters. We constructed cluster-containing oligonucleotides using a central variable cassette with abasic site(s) at specific locations, and 5′ and 3′ terminal segments tagged with visually distinctive fluorophores. The results indicate that in two- or multiple-lesion clusters, the spatial arrangement of uni-sided positive [in which the opposing strand lesion(s) is 3′ to the base opposite the reference lesion)] or negative polarity [opposing strand lesion(s) 5′ to the base opposite the reference lesion] abasic clusters is key in determining Ape1 cleavage efficiency. However, no bipolar clusters (minimally three-lesions) were good Ape1 substrates. The data suggest an underlying molecular mechanism for the higher levels of biological damage associated with agents producing complex clusters: the induction of highly repair-resistant bipolar clusters.  相似文献   

18.
When cells are exposed to ionizing radiation, DNA damages in the form of single strand breaks (SSBs), double strand breaks (DSBs), base damage or their combinations are frequent events. It is known that the complexity and severity of DNA damage depends on the quality of radiation, and the microscopic dose deposited in small segments of DNA, which is often related to the linear transfer energy (LET) of the radiation. Experimental studies have suggested that under the same dose, high LET radiation induces more small DNA fragments than low-LET radiation, which affects Ku efficiently binding with DNA end and might be a main reason for high-LET radiation induced RBE [1] since DNA DSB is a major cause for radiation-induced cell death. In this work, we proposed a mathematical model of DNA fragments rejoining according to non-homologous end joining (NHEJ) mechanism. By conducting Gillespie''s stochastic simulation, we found several factors that impact the efficiency of DNA fragments rejoining. Our results demonstrated that aberrant DNA damage repair can result predominantly from the occurrence of a spatial distribution of DSBs leading to short DNA fragments. Because of the low efficiency that short DNA fragments recruit repair protein and release the protein residue after fragments rejoining, Ku-dependent NHEJ is significantly interfered with short fragments. Overall, our work suggests that inhibiting the Ku-dependent NHEJ may significantly contribute to the increased efficiency for cell death and mutation observed for high LET radiation.  相似文献   

19.
When cells are exposed to radiation serious lesions are introduced into the DNA including double strand breaks (DSBs), single strand breaks (SSBs), base modifications and clustered damage sites (a specific feature of ionizing radiation induced DNA damage). Radiation induced DNA damage has the potential to initiate events that can lead ultimately to mutations and the onset of cancer and therefore understanding the cellular responses to DNA lesions is of particular importance. Using γH2AX as a marker for DSB formation and RAD51 as a marker of homologous recombination (HR) which is recruited in the processing of frank DSBs or DSBs arising from stalled replication forks, we have investigated the contribution of SSBs and non-DSB DNA damage to the induction of DSBs in mammalian cells by ionizing radiation during the cell cycle. V79-4 cells and human HF19 fibroblast cells have been either irradiated with 0–20 Gy of γ radiation or, for comparison, treated with a low concentration of hydrogen peroxide, which is known to induce SSBs but not DSBs. Inhibition of the repair of oxidative DNA lesions by poly(ADP ribose) polymerase (PARP) inhibitor leads to an increase in radiation induced γH2AX and RAD51 foci which we propose is due to these lesions colliding with replication forks forming replication induced DSBs. It was confirmed that DSBs are not induced in G1 phase cells by treatment with hydrogen peroxide but treatment does lead to DSB induction, specifically in S phase cells. We therefore suggest that radiation induced SSBs and non-DSB DNA damage contribute to the formation of replication induced DSBs, detected as RAD51 foci.  相似文献   

20.
Clustered damages-two or more oxidized bases, abasic sites, or strand breaks on opposing DNA strands within a few helical turns-are formed in DNA by ionizing radiation. Clusters are difficult for cells to repair and thus pose significant challenges to genomic integrity. Although endogenous clusters were found in some permanent human cell lines, it was not known if clusters accumulated in human tissues or primary cells. Using high-sensitivity gel electrophoresis, electronic imaging, and number average length analysis, we determined endogenous cluster levels in DNA from human skin, a 3-D skin model, and primary cultured skin cells. DNA from dermis and epidermis of human skin contained extremely low levels of endogenous clusters (a few per gigabase). However, cultured skin fibroblasts and keratinocytes-whether in monolayer cultures or in 3-D model skin cultures-accumulated oxidized pyrimidine, oxidized purine, and abasic clusters. The levels of endogenous clusters were decreased by growing cells in the presence of selenium or by increasing cellular levels of Fpg protein, presumably by increasing processing of clustered damages. These results imply that the levels of endogenous clusters can be affected by the cells' external environment and their ability to deal with DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号