首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
beta gamma subunits of G proteins were purified from starfish oocytes, and their role in the induction of oocyte maturation by 1-methyladenine was investigated. When injected into starfish oocytes, the purified beta gamma subunit of the starfish G protein induced germinal vesicle breakdown (GVBD) faster than that of bovine brain G protein. Injection of the starfish beta gamma into cytoplasm near the germinal vesicle (GV) induced GVBD earlier than when injected into the GV or the cytoplasm near the plasma membrane. Fluorescent-labeled beta gamma was retained in the injected area even after GVBD. Injected beta gamma also induced the formation of maturation-promoting factor as well as an increase of histone H1 kinase activity. These results suggest that beta gamma dissociates from alpha-subunit by the stimulation of 1-methyladenine and interacts with a cytoplasmic effector, which results in formation of active cdc2 kinase.  相似文献   

2.
Starfish oocytes are arrested naturally in the late G(2) phase of the first meiotic division. In response to the natural maturation-inducing hormone, 1-methyladenine (1-MA), oocytes undergo reinitiation of meiosis with germinal vesicle breakdown. We tested 10 newly synthesized N1-substituted adenines that are 1-MA analogues to analyze the interaction between 1-MA and its stereo-specific receptors on the oocyte plasma membranes of the starfish Asterina pectinifera. Among these analogues, 1-(beta-naphthylmethyl)adenine, 1-aminoadenine and 1-(p-nitrobenzyl)adenine played agonistic roles in the induction of oocyte maturation. 1-(o-Nitrobenzyl)adenine, 1-(m-nitrobenzyl)adenine, 1-phenethyladenine and 1-(p-nitrophenethyl)adenine had antagonist effects on 1-MA-induced oocyte maturation. These agonists and antagonists behaved competitively in the binding of [3H]1-MA to receptors in oocyte cortices. In contrast, 1-(alpha-naphthylmethyl)adenine, 1-(2,4-dinitrobenzyl)adenine and 1-(p-methoxybenzyl)adenine had no effects on oocyte maturation. Our results suggest that regional-specific sterical structures at the N1-site of adenine are important in the interaction between 1-MA and its receptors in oocytes. In addition, a negative charge at the N1-site of adenine is required for binding with the receptors.  相似文献   

3.
The 1-methyladenine-induced oocyte maturation in starfish is reversibly inhibited by the anticalmodulin drug, trifluoperazine (TFP). However, when oocytes are exposed for 10 min to trypsin, they lose their sensitivity to TFP. Trypsin does not alter the length of the hormone-dependent period (1-methyladenine minimal contact time) or the 1-methyladenine concentration requirements. Trypsin-treated oocytes remain sensitive to other maturation inhibitors such as procaine, theophylline, caffeine, and D-600. Trypsin exposure modifies the protein pattern composition of the oocyte cortex (breakdown of a 140-kDa protein). TFP binding site localization was studied using fluorescence microscopy: in addition to a general diffuse fluorescence, staining is localized to probably acidic granules located in the cortex. Results are discussed in relation to calmodulin and plasma membrane calmodulin-dependent enzyme involvement in the stimulation of starfish oocyte maturation.  相似文献   

4.
The stimulation of meiotic maturation of starfish oocytes by the hormone 1-methyladenine is mimicked by injection of beta gamma subunits of G-proteins from either retina or brain. Conversely, the hormone response is inhibited by injection of the GDP-bound forms of alpha i1 or alpha t subunits, or by injection of phosducin; all of these proteins should bind free beta gamma. alpha-subunit forms with reduced affinity for beta gamma (alpha i1 or alpha t bound to hydrolysis- resistant GTP analogs, or alpha i1-GMPPCP treated with trypsin to remove the amino terminus of the protein) are less effective inhibitors of 1-methyladenine action. These results indicate that the beta gamma subunit of a G-protein mediates 1-methyladenine stimulation of oocyte maturation.  相似文献   

5.
Accumulating evidence has indicated that vertebrate oocytes are arrested at late prophase (G2 arrest) by a G protein coupled receptor (GpCR) that activates adenylyl cyclases. However, the identity of this GpCR or its regulation in G2 oocytes is unknown. We demonstrated that ritanserin (RIT), a potent antagonist of serotonin receptors 5-HT2R and 5-HT7R, released G2 arrest in denuded frog oocytes, as well as in follicle-enclosed mouse oocytes. In contrast to RIT, several other serotonin receptor antagonists (mesulergine, methiothepine, and risperidone) had no effect on oocyte maturation. The unique ability of RIT, among serotonergic antagonists, to induce GVBD did not match the antagonist profile of any known serotonin receptors including Xenopus 5-HT7R, the only known G(s)-coupled serotonin receptor cloned so far in this species. Unexpectedly, injection of x5-HT7R mRNA in frog oocytes resulted in hormone-independent frog oocyte maturation. The addition of exogenous serotonin abolished x5-HT7R-induced oocyte maturation. Furthermore, the combination of x5-HT7R and exogenous serotonin potently inhibited progesterone-induced oocyte maturation. These results provide the first evidence that a G-protein coupled receptor related to 5-HT7R may play a pivotal role in maintaining G2 arrest in vertebrate oocytes.  相似文献   

6.
Localization and quantitative dynamics of alpha i subunit of G protein was studied by electron immunocytochemistry and immunoenzyme assay after hormonal induction of maturation in Asterias amurensis starfish oocytes. G alpha i protein was chiefly localized in the plasma membrane of immature oocytes; 1-methyladenine induced redistribution of the alpha i protein from the plasma membrane to intracellular structure up to the germinal physical breakdown.  相似文献   

7.
In starfish, oocyte maturation is induced by 1-methyladenine (1-MeAde). 1-MeAde acts on the oocyte surface to produce a cytoplasmic maturation-promoting factor (MPF), which in turn brings about germinal vesicle breakdown and subsequent process of oocyte maturation. The participation of germinal vesicle material in the production of MPF was investigated with oocytes of the starfish, Asterina pectinifera. When enucleated oocytes or oocyte fragments without germinal vesicles were treated with 1-MeAde, MPF was found to be produced. However, the amount of MPF produced was small as compared with that in the case of intact oocytes with germinal vesicles. The capacity of the enucleated oocytes to produce MPF was restored when germinal vesicle material was injected. On the other hand, it has been known that the amount of MPF increases when MPF is injected into intact oocytes (amplification of MPF). However, in the case of enucleated oocytes such increase of MPF was no longer observed, suggesting that germinal vesicle material is required for MPF amplification.  相似文献   

8.
The in vitro effects of 2-4-dinitrophenol (DNP) on spawning and follicular and oocyte maturation in starfish ovaries and its various cellular components were investigated. Spawning and oocyte and follicular maturation induced by starfish gonadotropin radial nerve factor (RNF) in isolated ovarian fragments were all inhibited by appropriate doses of DNP. DNP inhibits processes which occur shortly after addition of the gonadotropin; in ovarian fragments insensitivity to DNP inhibition occurred shortly after addition of RNF but prior to initiation of spawning. Spontaneous follicular and oocyte maturation which occurred following release of ovarian follicles into sea water was prevented by DNP. In non-spontaneously maturing follicles released from the ovary, DNP inhibited both follicle and oocyte maturation induced by the secondary stimulator of spawning and maturation, 1-methyladenine (1-MA). DNP also inhibited 1-MA induced meiotic maturation in isolated immature oocytes incubated in the absence of follicle cells. Inhibition of oocyte maturation was not associated with inhibition of 3H-1-MA incorporation by isolated oocytes. Immature oocytes incubated in the presence of DNP underwent maturation following washing and subsequent exposure to 1-MA. Immature oocytes initially exposed to both 1-MA and DNP, however, showed decreased maturation responsiveness following washing and re-exposure to 1-MA. The results suggest that the inhibitory effects of DNP on spawning and oocyte maturation are the result of direct effects on the oocytes and possibly other cells and tissues within the ovary.  相似文献   

9.
In response to a meiosis-inducing hormone, 1-methyladenine (1-MA), starfish oocytes undergo reinitiation of meiosis with germinal vesicle breakdown. The 1-MA-initiated signal is, however, inhibited by prior microinjection of pertussis toxin into the oocytes, suggesting that a guanine nucleotide-binding protein (G protein) serving as the substrate of pertussis toxin is involved in the 1-MA receptor-mediated signal. We thus investigated properties of 1-MA receptors by means of binding of the radiolabeled ligand to the oocyte membranes. There were apparently two forms of 1-MA receptors with high and low affinities in the membranes. The high-affinity form was converted into the low-affinity one in the presence of a non-hydrolyzable analogue of GTP. A 39-kDa protein, which had been identified as the alpha-subunit of the major substrate G protein for pertussis toxin, was also ADP-ribosylated by cholera toxin only when 1-MA was added to the membranes. The ADP-ribosylated 39-kDa alpha-subunit could be immunoprecipitated with antibodies raised against the carboxy-terminal site of mammalian inhibitory G-alpha. These results indicate that 1-MA receptors are functionally coupled with the 39-kDa pertussis toxin-substrate G protein in starfish oocyte membranes.  相似文献   

10.
11.
The in vitro effects of 2-4-dinitrophenol (DNP) on spawning and follicular and oocyte maturation in starfish ovaries and its various cellular components were investigated. Spawning and oocyte and follicular maturation induced by starfish gonadotropin radial nerve factor (RNF) in isolated ovarian fragments were all inhibited by appropriate doses of DNP. DNP inhibits processes which occur shortly after addition of the gonadotropin; in ovarian fragments insensitivity to DNP inhibition occurred shortly after addition of RNF but prior to initiation of spawning. Spontaneous follicular and oocyte maturation which occurred following release of ovarian follicles into sea water was prevented by DNP. In non-spontaneously maturing follicles released from the ovary, DNP inhibited both follicle and oocyte maturation induced by the secondary stimulator of spawning and maturation, 1-methyladenine (1-MA). DNP also inhibited 1-MA induced meiotic maturation in isolated immature oocytes incubated in the absence of follicle cells. Inhibition of oocyte maturation was not associated with inhibition of 3H-1-MA incorporation by isolated oocytes. Immature oocytes incubated in the presence of DNP underwent maturation following washing and subsequent exposure to 1-MA. Immature oocytes initially exposed to both 1-MA and DNP, however, showed decreased maturation responsiveness following washing and re-exposure to 1-MA. The results suggest that the inhibitory effects of DNP on spawning and oocyte maturation are the result of direct effects on the oocytes and possibly other cells and tissues within the ovary.  相似文献   

12.
Oocytes of the starfish Pisaster ochraceus exhibit an early response to 1-methyladenine (the maturation-inducing hormone), which is described for the first time. In this response approximately 6,500 spikelike surface projections, much larger than microvilli, emerge transiently from oocytes stripped of their follicle cells and then treated with the hormone in vitro. Each spike contains a prominent bundle of microfilaments, possibly composed of actin. The distribution of spikes when follicle cells are only partially removed and the morphological details of the normal junctional association between follicle cells and oocytes suggest that 1-methyladenine-sensitive sites (receptor sites) can be identified with the approximately 6,500 postjunctional specializations that are part of the oocyte surface. This finding in turn is employed to construct a set of hypotheses concerning the route that 1-methyladenine normally takes from the follicle cells to an oocyte during stimulation of maturation; it is postulated that, for each oocyte, 1-methyladenine is transported along approximately 6,500 thin follicle-cell processes, it is transmitted across the junctional gaps of an equivalent number of junctions between follicle cells and an oocyte, and then interacts with the postjunctional sites where 1- methyladenine receptors are thought to be clustered. Comparative aspects of this mode of intercellular communication are discussed.  相似文献   

13.
The effect of various disulfide-reducing agents including cysteine and its alkylesters on the induction of germinal vesicle breakdown (GVBD) in starfish ( Asterina pectinifera ) oocytes was investigated in vitro . Although cysteine did not induce GVBD, its alkylesters were effective. Cysteine alkylesters significantly mimicked the effect of 1-methyladenine (1-MeAde), the naturally occurring maturation-inducing hormone of starfish, on oocyte maturation. However, the effective concentrations and pH optimum for stimulation of oocyte maturation varied between 1-MeAde and the cysteine alkylesters. By comparing pKa values of the disulfide-reducing agents to pH of the medium, it is suggested that the redox potential of a disulfide-reducing agent is an important indicator its ability to induce oocyte maturation.
With the use of fluorescent probes for thiol groups, it was shown that the fluorescence in oocyte cortices increased within 5 min after administration of 1-MeAde. The fluorescence intensity in the cortices also increased after treatment with cysteine and its alkylesters, although the intensity was much stronger with the latter. Furthermore, both 1-MeAde and the disulfide-reducing agents were suggested to cause reduction of thiol groups within the plasma membrane as opposed to those on the external and internal surfaces. Thus, it is suggested that disulfide-reducing agents and 1-MeAde induce starfish oocyte maturation by changing the redox state of the thiol groups located within the oocyte plasma membrane.  相似文献   

14.
Immature starfish oocytes are surrounded by envelopes consisting of follicular cells. These cells adhere to each other and to the oocyte, immobilizing the latter within the ovary. When isolated oocytes in their follicles are treated with 1-methyladenine (1-MeAde), germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) occur simultaneously. The 1-MeAde acts on the oocyte surface to produce a maturation-promoting factor (MPF) in the cytoplasm, which brings about GVBD. In the present study, MPF was found to induce FEBD as well as GVBD when injected into immature oocytes with their follicles in Asterina pectinifera. Although GVBD was induced by MPF in the presence of cytochalasin D, this drug prevented MPF-induced FEBD, and each follicular cell remained in situ on the surface of the oocyte. However, desmosomes connecting the processes of the follicle cell with the oocyte surface were disrupted following MPF injection even in the presence of cytochalasin D, and the processes became detached from the oocyte. FEBD occurred in these oocytes when cytochalasin D was removed, resulting in the formation of a small follicular clump by microfilament-mediated contraction of the follicle cells. These results show that FEBD is not brought about by the direct action of 1-MeAde but by the action of MPF. Therefore, in starfish, spawning as well as oocyte maturation is directly triggered by MPF produced under the influence of 1-MeAde.  相似文献   

15.
Mechanical release of oocytes from the ovary of the starfish Asterias amurensis into sea water results in “spontaneous” meiotic maturation of the oocytes. The substances blocking the maturation of Asterias oocytes have been purified from the ovary and shown to be steroid glycosides named asterosaponins A and B. The extract prepared from isolated oocytes was incapable of inhibiting oocyte maturation. The ovarian extract inhibited the production of 1-methyladenine (1-MA) in follicle cells surrounding the oocyte. The ovarian extract failed to influence 1-MA-induced maturation of the oocyte with or without follicle cells. It can be concluded from the present results that the role of the ovarian extract containing steroid glycosides is to arrest “spontaneous” production of 1-MA in follicle cells. The suppression can be overcome by the action of a gonadotropic peptide hormone released from the nerve tissue.  相似文献   

16.
In starfish, oocytes are released from prophase block by a hormone, which has been identified as 1-methyladenine. The action of 1-methyladenine is indirect in inducing oocyte maturation: it acts on the oocyte surface to produce a cytoplasmic maturation-promoting factor (MPF), the direct trigger of germinal vesicle breakdown (GVBD). Less than 5 min after hormone addition, thus about 10 min before appearance of the cytoplasmic maturation-promoting factor, a factor appears in the germinal vesicle, which triggers the production of cytoplasmic MPF, GVBD, and the subsequent events of meiotic maturation when transferred in the cytoplasm of any fully grown oocyte of the starfishes Marthasterias glacialis and Asterias rubens. Before hormone action, the germinal vesicle also contains a factor capable of inducing meiosis reinitiation in recipient oocytes, but in contrast with nuclear MPF, this factor acts exclusively when transferred in the cytoplasm of a special category of oocytes (the “competent” oocytes). In contrast to other oocytes (the “incompetent” oocytes) the competent oocytes are capable of producing MPF to some extent after enucleation, upon hormonal stimulation. Transfer of either nuclear or cytoplasmic MPF initially produced in hormone-treated maturing oocytes triggers the production of both cytoplasmic and nuclear MPF in non-hormone-treated recipient oocytes of both categories.  相似文献   

17.
Development of calcium release mechanisms during starfish oocyte maturation   总被引:8,自引:1,他引:7  
In response to the maturation-inducing hormone 1-methyladenine, starfish oocytes acquire increased sensitivity to sperm and inositol trisphosphate (InsP3), stimuli that cause a release of calcium from intracellular stores and a rise in intracellular free calcium. In the immature oocyte, the calcium release in response to 10 sperm entries is less than that seen with a single sperm entry in the mature egg. Likewise, the sensitivity to injected InsP3 is less in the immature oocyte. Approximately 100 times as much InsP3 is required to obtain the same calcium release in an immature oocyte as in a mature egg. However, with saturating amounts of InsP3, immature oocytes and mature eggs release comparable amounts of calcium. These results indicate that although calcium stores are well-developed in the immature oocyte, mechanisms for releasing the calcium develop fully only during oocyte maturation.  相似文献   

18.
1-Methyladenine, which has been previously shown to be the hormone responsible for meiosis reinitiation in starfish oocytes, triggers parthenogenetic activation when applied to matured starfish oocytes after emission of the second polar body and formation of the pronucleus. In Marthasterias glacialis and Asterias rubens oocytes parthenogenetic activation includes elevation of a fertilization membrane, cleavage and the formation of normal bipinnaria larvae. Activation is likely to result from 1-methyladenine interaction with the category of stereospecific membrane receptors involved in meiosis reinitiation, since structural requirements of this compound are identical for both biological responses. Appearance of oocyte responsiveness to 1-MeAde after, but not before emission of the second polar body cannot be accounted for by their increased sensitivity to intracellular Ca2+ at that time, although it is shown that Ca2+ mediates hormone effect in inducing parthenogenetic activation. Pretreatment of immature oocytes with the free hormone in excess strongly inhibits the 1-methyladenine-induced parthenogenetic activation of the oocytes when they have completed maturation.It is suggested that reappearance of 1-MeAde sensitivity when oocytes form a pronucleus depends either upon recruitment or new receptor units or on the reactivation of pre-existing inactivated receptors at this stage of oocyte maturation.  相似文献   

19.
1-Methyladenine, which has been previously shown to be the hormone responsible for meiosis reinitiation in starfish oocytes, triggers parthenogenetic activation when applied to matured starfish oocytes after emission of the second polar body and formation of the pronucleus. In Marthasterias glacialis and Asterias rubens oocytes parthenogenetic activation includes elevation of a fertilization membrane, cleavage and the formation of normal bipinnaria larvae. Activation is likely to result from 1-methyladenine interaction with the category of stereospecific membrane receptors involved in meiosis reinitiation, since structural requirements of this compound are identical for both biological responses. Appearance of oocyte responsiveness to 1-MeAde after, but not before emission of the second polar body cannot be accounted for by their increased sensitivity to intracellular Ca2+ at that time, although it is shown that Ca2+ mediates hormone effect in inducing parthenogenetic activation. Pretreatment of immature oocytes with the free hormone in excess strongly inhibits the 1-methyladenine-induced parthenogenetic activation of the oocytes when they have completed maturation.It is suggested that reappearance of 1-MeAde sensitivity when oocytes form a pronucleus depends either upon recruitment or new receptor units or on the reactivation of pre-existing inactivated receptors at this stage of oocyte maturation.  相似文献   

20.
In starfish ovaries follicle cells that envelop each oocyte are thought to mediate the production of a maturation inducing substance (MIS), identified as 1-methyladenine, that induces maturation and spawning of oocytes after exposure to a gonadotropic substance secreted by the radial nerve (RNF). Studies were carried out to assess the possible role of extrafollicular cells within the ovarian wall in mediating this signal transduction process in the ovary of Pisaster ochraceus. Oocyte maturation and spawning occurred following the addition of RNF to intact ovarian tissue in vitro whereas no maturation occurred following the addition of RNF to germinal vesicle (GV) oocytes or GV oocytes surrounded by follicle cells. In contrast, oocyte maturation occurred when small ovarian wall fragments, lacking mature follicles, were incubated with GV oocytes and RNF. Neither actinomycin D nor cycloheximide altered RNF induction of oocyte maturation in the presence of the ovarian wall tissue whereas preheating (boiling water for 5 min) the tissue obliterated its response to RNF. Non-ovarian tissues failed to produce MIS in response to RNF. Results suggest that ovarian components other than the follicle cells that envelop fully grown immature oocyte are responsive to RNF and represent a significant and previously unrecognised intra-ovarian source of MIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号