首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The simian virus 40 large T antigen (T antigen) inactivates tumor suppressor proteins and therefore has been used in numerous studies to probe the mechanisms that control cellular growth and to generate immortalized cell lines. Binding of T antigen to the Rb family of growth-regulatory proteins is necessary but not sufficient to cause transformation. The molecular mechanism underlying T-antigen inactivation of Rb function is poorly understood. In this study we show that T antigen associates with pRb and p130-E2F complexes in a stable manner. T antigen dissociates from a p130-E2F-4-DP-1 complex, coincident with the release of p130 from E2F-4-DP-1. The dissociation of this complex requires Hsc70, ATP, and a functional T-antigen J domain. We also report that the "released" E2F-DP-1 complex is competent to bind DNA containing an E2F consensus binding site. We propose that T antigen disrupts Rb-E2F family complexes through the action of its J domain and Hsc70. These findings indicate how Hsc70 supports T-antigen action and help to explain the cis requirement for a J domain and Rb binding motif in T-antigen-induced transformation. Furthermore, this is the first demonstration linking Hsc70 ATP hydrolysis to the release of E2F bound by Rb family members.  相似文献   

4.
5.
Replication of the Chinese hamster dihydrofolate reductase gene (dhfr) initiates near a fragment of stably bent DNA that binds multiple cellular factors. Investigation of protein interactions with the dhfr bent DNA sequences revealed a novel nuclear protein that also binds to domain B of the yeast origin of replication, the autonomously replicating sequence ARS1. The origin-specific DNA-binding activity was purified 9,000-fold from HeLa cell nuclear extract in five chromatographic steps. Protein-DNA cross-linking experiments showed that a 60-kDa polypeptide, which we call RIP60, contained the origin-specific DNA-binding activity. Oligonucleotide displacement assays showed that highly purified fractions of RIP60 also contained an ATP-dependent DNA helicase activity. Covalent radiolabeling with ATP indicated that the DNA helicase activity resided in a 100-kDa polypeptide, RIP100. The cofractionation of an ATP-dependent DNA helicase with an origin-specific DNA-binding activity suggests that RIP60 and RIP100 may be involved in initiation of chromosomal DNA synthesis in mammalian cells.  相似文献   

6.
7.
8.
Using oligonucleotide affinity chromatography with DNase I footprinting as an assay we have looked for proteins that interact with sequence elements within the yeast origin of replication, autonomously replicating sequence 1 (ARS1). In this work we describe a protein that binds with high affinity to DNA but displays only moderate sequence specificity. It is eluted at 0.7 M salt from an ARS1 oligonucleotide column. Footprinting analysis on ARS1 at a high protein concentration revealed at least three sites of protection flanking element A and its repeats. Element A itself is rendered hypersensitive to DNase I digestion upon protein binding. This pattern is also observed for the H4 and HMR-E ARSs, suggesting that the protein alters the DNA conformation at element A and its repeats. The affinity-purified fraction is also capable of supercoiling a relaxed, covalently closed plasmid in the presence of topoisomerase. Highly purified preparations of the protein are enriched in an 18-kDa polypeptide which can be renatured from a denaturing gel and shown to bind ARS1 DNA. We have designated this protein DBF-A, DNA-binding factor A.  相似文献   

9.
The E7 oncoprotein of human papillomavirus type 16 promotes cell proliferation in the presence of antiproliferative signals. Mutagenesis of E7 has revealed that this activity requires three regions, conserved regions 1 and 2 and a C-terminal zinc finger. Binding to the retinoblastoma tumor repressor (Rb) through an LxCxE motif in conserved region 2 is necessary, but not sufficient, for E7 to induce proliferation. We tested the hypothesis that binding to Rb is not sufficient because conserved region 1 and/or the C terminus are required for E7 to functionally inactivate Rb and thus induce proliferation. One mechanism proposed for how E7 inactivates Rb is by blocking Rb-E2F binding. Either conserved region 1 or the C terminus was necessary, in combination with the LxCxE motif, for E7 to block Rb-E2F binding in vitro. While all full-length E7 proteins with mutations outside of the LxCxE motif inhibited Rb-E2F binding, some failed to abrogate cell cycle arrest, demonstrating that blocking Rb-E2F binding is not sufficient for abrogating antiproliferative signals. Another mechanism proposed for how E7 inactivates Rb is by promoting the destabilization of Rb protein. Mutations in conserved region 1 or the LxCxE motif prevented E7 from reducing the half-life of Rb. Though no specific C-terminal residues of E7 were essential for destabilizing Rb, a novel class of mutations that uncouple the destabilization of Rb from the deregulation of keratinocyte proliferation was discovered. Destabilization of Rb correlated with the abrogation of Rb-induced quiescence but was not sufficient for overriding DNA damage-induced cell cycle arrest or for increasing keratinocyte life span. Finally, the same regions of E7 required for destabilizing Rb were required for reducing p107 and p130 levels. Together, these results suggest that inactivation of all three Rb family members is not sufficient to deregulate keratinocyte cell cycle control.  相似文献   

10.
It is widely accepted that adenoviral E1A exerts its influence on recipient cells through binding to the retinoblastoma (Rb) family proteins, followed by a global release of E2F factors from pocket-protein control. Our study challenges this simple paradigm by demonstrating previously unappreciated complexity. We show that E1A-expressing primary and transformed cells are characterized by the persistence of Rb-E2F1 complexes. We provide evidence that E1A causes Rb stabilization by interfering with its proteasomal degradation. Functional experiments supported by biochemical data reveal not only a dramatic increase in Rb and E2F1 protein levels in E1A-expressing cells but also demonstrate their activation throughout the cell cycle. We further show that E1A activates an Rb- and E2F1-dependent S-phase checkpoint that attenuates the growth of cells that became hyperploid through errors in mitosis and supports the fidelity DNA replication even in the absence of E2F complexes with other Rb family proteins, thereby functionally substituting for the loss of p53. Our results support the essential role of Rb and E2F1 in the regulation of genomic stability and DNA damage checkpoints.  相似文献   

11.
12.
13.
14.
15.
C M Price  R Skopp  J Krueger  D Williams 《Biochemistry》1992,31(44):10835-10843
The 51-kDa telomere protein from Euplotes crassus binds to the extreme terminus of macronuclear telomeres, generating a very salt-stable telomeric DNA-protein complex. The protein recognizes both the sequence and the structure of the telomeric DNA. To explore how the telomere protein recognizes and binds telomeric DNA, we have examined the DNA-binding specificity of the purified protein using oligonucleotides that mimic natural and mutant versions of Euplotes telomeres. The protein binds very specifically to the 3' terminus of single-stranded oligonucleotides with the sequence (T4G4) > or = 3 T4G2; even slight modifications to this sequence reduce binding dramatically. The protein does not bind oligonucleotides corresponding to the complementary C4A4 strand of the telomere or to double-stranded C4A4.T4G4-containing sequences. Digestion of the telomere protein with trypsin generates an N-terminal protease-resistant fragment of approximately 35 kDa. This 35-kDa peptide appears to comprise the DNA-binding domain of the telomere protein as it retains most of the DNA-binding characteristics of the native 51-kDa protein. For example, the 35-kDa peptide remains bound to telomeric DNA in 2 M KCl. Additionally, the peptide binds well to single-stranded oligonucleotides that have the same sequence as the T4G4 strand of native telomeres but binds very poorly to mutant telomeric DNA sequences and double-stranded telomeric DNA. Removal of the C-terminal 15 kDa from the telomere protein does diminish the ability of the protein to bind only to the terminus of a telomeric DNA molecule.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号