首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain derived neurotrophic factor (BDNF) when added to explant cultures of both embryonic and adult retinal ganglion cell (RGC) axons exerted a marked effect on their growth cone size and complexity and also on the intensity of GAP-43, ß-III tubulin and F-actin immunoreaction product in their axons. GAP-43 was distributed in axons, lamellipodia, and filopodia whereas ß-III tubulin was distributed along the length of developing and adult regenerating axons and also in the C-domain of their growth cones. BDNF-treated developing RGC growth cones were larger and displayed increased numbers of GAP-43 and microtubule-containing branches. Although filopodia and lamellipodia were lost from both developing and adult RGC growth cones following trkB-IgG treatment, the intensity of the immunoreaction product of all these molecules was reduced and trkB-IgGs had no effect on the axonal distribution of ß-III tubulin and GAP-43. BDNF-treated growth cones also displayed increased numbers of F-actin containing filopodia and axonal protrusions. This study demonstrates, for the first time, that trkB-IgG treatment causes the loss of F-actin in the P-domain of growth cone tips in developing and regenerating RGC axons. Although microtubules and F-actin domains normally remained distinct in cultured growth cones, ß-III tubulin and F-actin overlapped within the growth cone C-domain, and within axonal protrusions of adult RGC axons, under higher concentrations of BDNF. The collapse of RGC growth cones appeared to correlate with the loss of F-actin. In vitro, trkB signalling may therefore be involved in the maintenance and stabilisation of RGC axons, by influencing F-actin polymerisation, stabilisation and distribution.  相似文献   

2.
Previous findings indicate that spatial restriction of intracellular calcium levels within growth cones can regulate growth cone behavior at many levels, ranging from filopodial disposition to neurite extension. By combining techniques for focal stimulation of growth cones with those for measurement of filopodia and for capturing low intensity calcium signals, we demonstrate that filopodia on individual growth cones can respond to imposed stimuli independently from one another. Moreover, filopodia and their parent growth cones appear to represent functionally and morphologically distinct domains of calcium regulation, possessing distinct calcium sources and sinks. Both are sensitive to calcium influx; however, application of the calcium ionophore A23187 to cells in calcium-free medium demonstrated the presence of potential intracellular calcium pools in the growth cone proper, but not in isolated filopodia. Thapsigargin significantly reduced the rise in growth cone calcium levels associated with excitatory neurotransmitters, further implicating release from calcium pools as one component of growth cone calcium regulation. The relative contributions of these pools were examined in response to excitatory neurotransmitters by quantitative calcium measurements made in both growth cones and isolated filopodia. Striking differences were observed; filopodia were sensitive to a low concentration of dopamine and serotonin, while growth cones displayed an amplified rise at a higher concentration. The spatial distribution of organelles that could serve as morphological correlates to such calcium amplification was examined using confocal microscopy. While the majority of organelles were located in the central core of the growth cone proper, peripheral organelles were detected at the base of a subset of filopodia. The distinctive distribution of calcium regulation within motile growth cones suggests one mechanism by which growth cones may regulate their complex behavior. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Myosin light chain phosphorylation and growth cone motility   总被引:8,自引:0,他引:8  
According to the treadmill hypothesis, the rate of growth cone advance depends upon the difference between the rates of protrusion (powered by actin polymerization at the leading edge) and retrograde F-actin flow, powered by activated myosin. Myosin II, a strong candidate for powering the retrograde flow, is activated by myosin light chain (MLC) phosphorylation. Earlier results showing that pharmacological inhibition of myosin light chain kinase (MLCK) causes growth cone collapse with loss of F-actin-based structures are seemingly inconsistent with the treadmill hypothesis, which predicts faster growth cone advance. These experiments re-examine this issue using an inhibitory pseudosubstrate peptide taken from the MLCK sequence and coupled to the fatty acid stearate to allow it to cross the membrane. At 5-25 microM, the peptide completely collapsed growth cones from goldfish retina with a progressive loss of lamellipodia and then filopodia, as seen with pharmacological inhibitors, but fully reversible. Lower concentrations (2.5 microM) both simplified the growth cone (fewer filopodia) and caused faster advance, doubling growth rates for many axons (51-102 microm/h; p <.025). Rhodamine-phalloidin staining showed reduced F-actin content in the faster growing growth cones, and marked reductions in collapsed ones. At higher concentrations, there was a transient advance of individual filopodia before collapse (also seen with the general myosin inhibitor, butanedione monoxime, which did not accelerate growth). The rho/rho kinase pathway modulates MLC dephosphorylation by myosin-bound protein phosphatase 1 (MPP1), and manipulations of MPP1 also altered motility. Lysophosphatidic acid (10 microM), which causes inhibition of MPP1 to accumulate activated myosin II, caused a contracted collapse (vs. that due to loss of F-actin) but was ineffective after treatment with low doses of peptide, demonstrating that the peptide acts via MLC phosphorylation. Inhibiting rho kinase with Y27632 (100 microM) to disinhibit the phosphatase increased the growth rate like the MLCK peptide, as expected. These results suggest that: varying the level of MLCK activity inversely affects the rate of growth cone advance, consistent with the treadmill hypothesis and myosin II powering of retrograde F-actin flow; MLCK activity in growth cones, as in fibroblasts, contributes strongly to controlling the amount of F-actin; and the phosphatase is already highly active in these cultures, because rho kinase inhibition produces much smaller effects on growth than does MLCK inhibition.  相似文献   

4.
Adhesive contacts made by filopodia of neuronal growth cones are essential for proper neurite elongation and may have a role in the formation of synaptic junctions. Previously we described the appearance of filamentous materials extending from growth cone surfaces that seem to be associated with the strongly adhesive behavior of filopodia (Tsui, H.-C., K. L. Lankford, and W. L. Klein. 1985. Proc. Natl. Acad. Sci. USA. 82:8256-8260). Here, we have used immunogold labeling to determine whether known adhesive molecules might be localized at points of adhesion and possibly be constituents of the filamentous material. Antibodies to an adhesive molecule (neural cell adhesion molecule [N-CAM]) and to an adhesive macromolecular complex of proteins and proteoglycans (adheron) were localized at the EM level in whole mounts of cultured avian retina cells. Labeling of fixed cells showed that N-CAM and adheron molecules were both present on growth cones and on filopodia. However, filamentous materials extending from the cell surface were labeled with anti-adheron but not with anti-N-CAM. If cells were labeled before fixation, patches of anti-N-CAM labeling occurred in random areas over the growth cones, but adheron antibodies concentrated at points of apparent adhesion. Particularly dense clustering of anti-adheron occurred at individual filopodial tips and at points of contact between pairs of filopodia. The different patterns of labeling imply that N-CAMS do not associate with the main antigenic components of adheron on the membrane surface. Most importantly, the data indicate the N-CAMs were mobile in the membrane but that constituents of adherons were anchored at adhesive loci. An appealing hypothesis is that molecules found in adheron preparations have an important role in establishing the adhesive junctions formed by growth cone filopodia.  相似文献   

5.
Ezrin-radixin-moesin (ERM) proteins are involved in the linkage of membranes to theactin filament (F-actin) cytoskeleton. Phosphorylation of the C-terminus activates the F-actin binding domain of ERM proteins by preventing the action of an autoinhibitory domain. In this study, we investigated whether a growth cone collapsing signal, semaphorin 3A (Sema3A), alters the state of ERM C-terminus phosphorylation. In the growth cones of dorsal root ganglion axons, phosphorylated ERM proteins localize to filopodia. We report that Sema3A inhibits ERM protein phosphorylation in growth cone filopodia. Significantly, Sema3A decreased ERM phosphorylation prior to the onset of growth cone collapse. Over-expression of the F-actin binding fragment of ERM proteins, which competes with endogenous ERM proteins for binding to F-actin, inhibited filopodial initiation and dynamics. Sema3A has been previously shown to inhibit phosphoinositide 3-kinase (PI3K) activity. Inhibition of PI3K resulted in the loss of phosphorylated ERM proteins from growth cone filopodia, and treatment with a PI3K activating peptide blocked the effects of Sema3A on ERM phosphorylation. Collectively, these observations demonstrate that inactivation of PI3K in response to Sema3A results in decreased phosphorylation of ERM proteins in filopodia thereby contributing to growth cone collapse.  相似文献   

6.
Growth cone collapsing factors induce growth cone collapse or repulsive growth cone turning by interacting with membrane receptors that induce alterations in the growth cone cytoskeleton. A common change induced by collapsing factors in the cytoskeleton of the peripheral domain, the thin lamellopodial area of growth cones, is a decline in the number of radially aligned F-actin bundles that form the core of filopodia. The present study examined whether ML-7, a myosin light chain kinase inhibitor, serotonin, a neurotransmitter and TPA, an activator of protein kinase C, which induce growth cone collapse of Helisoma growth cones, depolymerized or debundled F-actin. We report that these collapsing factors had different effects. ML-7 induced F-actin reorganization consistent with debundling whereas serotonin and TPA predominately depolymerized and possibly debundled F-actin. Additionally, these collapsing factors induced the formation of a dense actin-ring around the central domain, the thicker proximal area of growth cones [Zhou and Cohan, 2001: J. Cell Biol. 153:1071-1083]. The formation of the actin-ring occurred subsequent to the loss of actin bundles. The ML-7-induced actin-ring was found to inhibit microtubule extension into the P-domain. Thus, ML-7, serotonin, and TPA induce growth cone collapse associated with a decline in radially aligned F-actin bundles through at least two mechanisms involving debundling of actin filaments and/or actin depolymerization.  相似文献   

7.
SPIN90 is an F-actin binding protein thought to play important roles in regulating cytoskeletal dynamics. It is known that SPIN90 is expressed during the early stages of neuronal development, but details of its localization and function in growth cones have not been fully investigated. Our immunocytochemical data show that SPIN90 is enriched throughout growth cones and neuronal shafts in young hippocampal neurons. We also found that its localization correlates with and depends upon the presence of F-actin. Detailed observation of primary cultures of hippocampal neurons revealed that SPIN90 knockout reduces both growth cone areas and in the numbers of filopodia, as compared to wild-type neurons. In addition, total neurite length, the combined lengths of the longest (axonal) and shorter (dendritic) neurites, was smaller in SPIN90 knockout neurons than wild-type neurons. Finally, Cdc42 activity was down-regulated in SPIN90 knockout neurons. Taken together, our findings suggest that SPIN90 plays critical roles in controlling growth cone dynamics and neurite outgrowth.  相似文献   

8.
In neuronal growth cones, cycles of filopodial protrusion and retraction are important in growth cone translocation and steering. Alteration in intracellular calcium ion concentration has been shown by several indirect methods to be critically involved in the regulation of filopodial activity. Here, we investigate whether direct elevation of [Ca2+]i, which is restricted in time and space and is isolated from earlier steps in intracellular signaling pathways, can initiate filopodial protrusion. We raised [Ca2+]i level transiently in small areas of nascent axons near growth cones in situ by localized photolysis of caged Ca2+ compounds. After photolysis, [Ca2+]i increased from approximately 60 nM to approximately 1 microM within the illuminated zone, and then returned to resting level in approximately 10-15 s. New filopodia arose in this area within 1-5 min, and persisted for approximately 15 min. Elevation of calcium concentration within a single filopodium induced new branch filopodia. In neurons coinjected with rhodamine-phalloidin, F-actin was observed in dynamic cortical patches along nascent axons; after photolysis, new filopodia often emerged from these patches. These results indicate that local transient [Ca2+]i elevation is sufficient to induce new filopodia from nascent axons or from existing filopodia.  相似文献   

9.

Background

During nerve growth, cytoplasmic vesicles add new membrane preferentially to the growth cone located at the distal tip of extending axons. Growth cone membrane is also retrieved locally, and asymmetric retrieval facilitates membrane remodeling during growth cone repulsion by a chemorepellent gradient. Moreover, growth inhibitory factors can stimulate bulk membrane retrieval and induce growth cone collapse. Despite these functional insights, the processes mediating local membrane remodeling during axon extension remain poorly defined.

Results

To investigate the spatial and temporal dynamics of membrane retrieval in actively extending growth cones, we have used a transient labeling and optical recording method that can resolve single vesicle events. Live-cell confocal imaging revealed rapid membrane retrieval by distinct endocytic modes based on spatial distribution in Xenopus spinal neuron growth cones. These modes include endocytic "hot-spots" triggered at the base of filopodia, at the lateral margins of lamellipodia, and along dorsal ridges of the growth cone. Additionally, waves of endocytosis were induced when individual filopodia detached from the substrate and fused with the growth cone dorsal surface or with other filopodia. Vesicle formation at sites of membrane remodeling by self-contact required F-actin polymerization. Moreover, bulk membrane retrieval by macroendocytosis correlated positively with the substrate-dependent rate of axon extension and required the function of Rho-family GTPases.

Conclusions

This study provides insight into the dynamic membrane remodeling processes essential for nerve growth by identifying several distinct modes of rapid membrane retrieval in the growth cone during axon extension. We found that endocytic membrane retrieval is intensified at specific subdomains and may drive the dynamic membrane ruffling and re-absorption of filopodia and lamellipodia in actively extending growth cones. The findings offer a platform for determining the molecular mechanisms of distinct endocytic processes that may remodel the surface distribution of receptors, ion channels and other membrane-associated proteins locally to drive growth cone extension and chemotactic guidance.  相似文献   

10.
The fan-shaped array of filopodia is the first site of contact of a neuronal growth cone with molecules encountered during neuronal pathfinding. Filopodia are highly dynamic structures, and the “action radius” of a growth cone is strongly determined by the length and number of its filopodia. Since interactions of filopodia with instructive cues in the vicinity of the growth cone can have effects on growth cone morphology within minutes, it has to be assumed that a large part of the signaling underlying such morphological changes resides locally within the growth cone proper. In this study, we tested the hypothesis that two important growth cone parameters namely, the length and number of its filopodiaare regulated autonomously in the growth cone. We previously demonstrated in identified neurons from the snail Helisoma trivolvis that filopodial length and number are regulated by intracellular calcium. Here, we investigated filopodial dynamics and their regulation by the second-messenger calcium in growth cones which were physically isolated from their parent neuron by neurite transection. Our results show that isolated growth cones have longer but fewer filopodia than growth cones attached to their parent cell. These isolated growth cones, however, are fully capable of undergoing calcium-induced cytoskeletal changes, suggesting that the machinery necessary to perform changes in filopodial length and number is fully intrinsic to the growth cone proper. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 179–192, 1998  相似文献   

11.
Filopodia on neuronal growth cones constantly extend and retract, thereby functioning as both sensory probes and structural devices during neuronal pathfinding. To better understand filopodial dynamics and their regulation by encounters with molecules in the environment, we investigated filopodial dynamics of identified B5 neurons from the buccal ganglion of the snail Helisoma trivolvis before and after treatment with nitric oxide (NO). We have previously demonstrated that treatment with several NO-donors caused a transient, cGMP-mediated elevation in [Ca(2+)](i), which was causally related to an increase in filopodial length and a reduction in the number of filopodia on growth cones. We demonstrate here that these effects were the result of distinct changes in filopodial dynamics. The NO-donor SIN-1 induced a general increase in filopodial motility. Filopodial elongation after treatment with SIN-1 resulted from a significant increase in the rate at which filopodia extended, as well as a significant increase in the time filopodia spent elongating. The reduction in filopodial number was caused by a significant decrease in the frequency with which new filopodia were inserted into the growth cone. With the exception of the back where filopodia appeared less motile, filopodial dynamics appeared to be mostly independent of the location on the growth cone. These results suggest that NO can regulate filopodial dynamics on migrating growth cones and might function as a messenger to adjust the action radius of a growth cone during pathfinding.  相似文献   

12.
The growth cone, a terminal structure on developing and regenerating axons, is specialized for motility and guidance functions. In vivo the growth cone responds to environmental cues to guide the axon to its appropriate target. These cues are thought to be responsible for position-specific morphological changes in the growth cone, but the molecules that control growth cone behavior are poorly characterized. We used scanning electron microscopy to analyze the morphology of retinal ganglion cell growth cones in vitro on different adhesion molecules that axons normally encounter in vivo. L1/8D9, N-cadherin, and laminin each induced distinctive morphological characteristics in growth cones. Growth cones elaborated lamellipodial structures in response to the cell adhesion molecules L1/8D9 and N-cadherin, whereas laminin supported filopodial growth cones with small veils. On L1/8D9, the growth cones were larger and produced more filopodia. Filopodial associations between adjacent growth cones and neurites were frequent on L1/8D9 but were uncommon on laminin or N-cadherin. These results demonstrate that different adhesion molecules have profoundly different effects on growth cone morphology. This is consistent with previous reports suggesting that changes in growth cone morphology in vivo occur in response to changes in substrate composition.  相似文献   

13.
Interactions between dynamic microtubules and actin filaments (F-actin) underlie a range of cellular processes including cell polarity and motility. In growth cones, dynamic microtubules are continually extending into selected filopodia, aligning alongside the proximal ends of the F-actin bundles. This interaction is essential for neuritogenesis and growth-cone pathfinding. However, the molecular components mediating the interaction between microtubules and filopodial F-actin have yet to be determined. Here we show that drebrin, an F-actin-associated protein, binds directly to the microtubule-binding protein EB3. In growth cones, this interaction occurs specifically when drebrin is located on F-actin in the proximal region of filopodia and when EB3 is located at the tips of microtubules invading filopodia. When this interaction is disrupted, the formation of growth cones and the extension of neurites are impaired. We conclude that drebrin targets EB3 to coordinate F-actin-microtubule interactions that underlie neuritogenesis.  相似文献   

14.
Neuronal growth cones are motile sensory structures at the tip of axons, transducing guidance information into directional movements towards target cells. The morphology and dynamics of neuronal growth cones have been well characterized with optical techniques; however, very little quantitative information is available on the three-dimensional structure and mechanical properties of distinct subregions. In the present study, we imaged the large Aplysia growth cones after chemical fixation with the atomic force microscope (AFM) and directly compared our data with images acquired by light microscopy methods. Constant force imaging in contact mode in combination with force-distant measurements revealed an average height of 200 nm for the peripheral (P) domain, 800 nm for the transition (T) zone, and 1200 nm for the central (C) domain, respectively. The AFM images show that the filopodial F-actin bundles are stiffer than surrounding F-actin networks. Enlarged filopodia tips are 60 nm higher than the corresponding shafts. Measurements of the mechanical properties of the specific growth cone regions with the AFM revealed that the T zone is stiffer than the P and the C domain. Direct comparison of AFM and optical data acquired by differential interference contrast and fluorescence microscopy revealed a good correlation between these imaging methods. However, the AFM provides height and volume information at higher resolution than fluorescence methods frequently used to estimate the volume of cellular compartments. These findings suggest that AFM measurements on live growth cones will provide a quantitative understanding of how proteins can move between different growth cone regions.  相似文献   

15.
Nitric oxide (NO) has been proposed to play an important role during neuronal development. Since many of its effects occur during the time of growth cone pathfinding and target interaction, we here test the hypothesis that part of NO's effects might be exerted at the growth cone. We found that low concentrations of the NO-donors DEA/NO, SIN-1, and SNP caused a rapid and transient elongation of filopodia as well as a reduction in filopodial number. These effects resulted from distinct changes in filopodial extension and retraction rates. Our novel findings suggest that NO could play a physiological role by temporarily changing a growth cone's morphology and switching its behavior from a close-range to a long-range exploratory mode. We subsequently dissected the pathway by which NO acted on growth cones. The effect of NO donors on filopodial length could be blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase (sGC), indicating that NO acted via sGC. Supporting this idea, injection of cyclic GMP (cGMP) mimicked the effect of NO donors on growth cone filopodia. Moreover, application of NO-donors as well as injection of cGMP elicited a rapid and transient rise in intracellular calcium in growth cones, indicating that NO acted via cGMP to elevate calcium. This calcium rise, as well as the morphological effects of SIN-1 on filopodia, were blocked by preventing calcium entry. Given the role of filopodia in axonal guidance, our new data suggest that NO could function at the neuronal growth cone as an intracellular and/or intercellular signaling molecule by affecting steering decisions during neuronal pathfinding.  相似文献   

16.
Directed outgrowth of neural processes must involve transmission of signals from the tips of filopodia to the central region of the growth cone. Here, we report on the distribution and dynamics of one possible element in this process, actin, in live growth cones which are reorienting in response to in situ guidance cues. In grasshopper embryonic limbs, pioneer growth cones respond to at least three types of guidance cues: a limb axis cue, intermediate target cells, and a circumferential band of epithelial cells. With time-lapse imaging of intracellularly injected rhodamine-phalloidin and rhodamine-actin, we monitored the distribution of actin during growth cone responses to these cues. In distal limb regions, accumulation of actin in filopodia and growth cone branches accompanies continued growth, while reduction of actin accompanies withdrawal. Where growth cones are reorienting to intermediate target cells, or along the circumferential epithelial band, actin selectively accumulates in the proximal regions of those filopodia that have contacted target cells or are extending along the band. Actin accumulations can be retrogradely transported along filopodia, and can extend into the central region of the growth cone. These results suggest that regulation and translocation of actin may be a significant element in growth cone steering.  相似文献   

17.
Drebrin is an actin filament (F-actin)–binding protein with crucial roles in neuritogenesis and synaptic plasticity. Drebrin couples dynamic microtubules to F-actin in growth cone filopodia via binding to the microtubule-binding +TIP protein EB3 and organizes F-actin in dendritic spines. Precisely how drebrin interacts with F-actin and how this is regulated is unknown. We used cellular and in vitro assays with a library of drebrin deletion constructs to map F-actin binding sites. We discovered two domains in the N-terminal half of drebrin—a coiled-coil domain and a helical domain—that independently bound to F-actin and cooperatively bundled F-actin. However, this activity was repressed by an intramolecular interaction relieved by Cdk5 phosphorylation of serine 142 located in the coiled-coil domain. Phospho-mimetic and phospho-dead mutants of serine 142 interfered with neuritogenesis and coupling of microtubules to F-actin in growth cone filopodia. These findings show that drebrin contains a cryptic F-actin–bundling activity regulated by phosphorylation and provide a mechanistic model for microtubule–F-actin coupling.  相似文献   

18.
R W Davenport  S B Kater 《Neuron》1992,9(3):405-416
Highly localized changes in intracellular Ca2+ concentration ([Ca2+]i) can be evoked in neuronal growth cones; these are followed by local changes in filopodia. Focally applied electric fields evoked spatially restricted, high magnitude increases in growth cone [Ca2+]i. The earliest and greatest increases were localized to small regions within a growth cone. Such fields also produced characteristic changes in the disposition of filopodia: both filopodial length and number were significantly increased on the cathode side of growth cones. The requirement for extracellular Ca2+ and the strong correlation between the evoked rise in [Ca2+]i and the changes in filopodia (r = 0.98) indicate that cathode stimulation results in local Ca2+ influx, leading to locally increased [Ca2+]i and local changes in filopodial behavior.  相似文献   

19.
To assess the role of cdc42 during neurite development, cmyc-tagged constitutively active (CA) and dominant negative (DN) cdc42 were expressed in dissociated primary chick spinal cord neurons using adenoviral-mediated gene transfer. Three days after infection, >85% of the neurons in infected cultures expressed cdc42 proteins, as detected by indirect immunofluorescence against cmyc. Growth cones of infected neurons displayed 1.83- (CAcdc42) and 1.93-fold (DNcdc42) higher cmyc immunofluorescence per square micrometer than uninfected controls. CAcdc42 expression stimulated growth cones, almost doubling growth cone size and number of filopodia, and increased neurite growth rates by 65-89%. In neurons plated onto fibronectin, the percent of growth cones with both filopodia and lamellipodia increased from 71 to 92%. Total Texas Red-phalloidin staining in these growth cones doubled, and the percent of growth cones with F-actin localized to peripheral regions increased from 52% in controls to 78% after CAcdc42 expression. Expression of DNcdc42 did not significantly alter growth cone morphology or neurite growth rates. Addition of soluble laminin to spinal cord neurons resulted in the identical phenotype as CAcdc42 expression, including changes in growth cone morphology, F-actin localization, and neurite growth rates. Significantly, expression of DNcdc42 blocked the effects of laminin on growth cones. These results show that cdc42 promotes neurite outgrowth and filopodial and lamellipodial formation in growth cones and suggests that cdc42 and laminin share a common signaling pathway during neurite development. Addition of laminin to CAcdc42-expressing neurons is inhibitory to growth cones, indicating that laminin also may activate some other pathways.  相似文献   

20.
The proportion of synaptic contacts occurring on dendrites as well as on dendritic growth cones and filopodia was determined from electron micrographs of developing mouse (C57BL/6J) spinal cord. Comparable areas of the marginal zone adjacent to the lateral motor nucleus were sampled from specimens on the 13th–16th days of embryonic development (E13–E16). At the beginning of this period, synapses upon growth cones and filopodia comprise about 80% of the observed synaptic junctions, but this proportion decreases with developmental time so that in E16 specimens growth cone synapses account for slightly less than 30% of the synaptic population. Conversely, at E13, synapses upon dendrites comprise less than 20% of the total number of synapses, but increase with developmental time so that they account for about 65% of the synaptic population of E16 specimens. From these data, we suggest the following temporal sequence for the formation of synaptic junctions on motor neuron dendrites growing into the marginal zone. New synapses are initially made upon the filopodia of dendritic growth cones. A synaptically contacted filopodium expands to become a growth cone while the original growth cone begins to differentiate into a dendrite. This process is repeated as the dendrite grows farther into the marginal zone so that synapses originally made with filopodia come to be located upon dendrites. This speculation is briefly discussed in relation to the work and ideas of others concerning synaptogenesis and dendritic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号