首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
G Calviello  M Chiesi 《Biochemistry》1989,28(3):1301-1306
During excitation of skeletal muscle fibers, Ca ions stored in the cisternal compartments of the sarcoplasmic reticulum (SR) are released to the cytosol within milliseconds. In this study, the kinetics of the fast release of Ca were analyzed by means of a newly developed rapid filtration apparatus. Isolated SR vesicles of cisternal origin were preloaded with 1 mM 45CaCl2, and Ca efflux was studied (between 20 and 1000 ms) after dilution into media of various composition. The effect of extravesicular Ca on the gating of the Ca-release channels and its susceptibility to the influence of drugs were thoroughly investigated. In the presence of 1 mM MgCl2 and 3 mM ATP, highest rates of Ca release were observed at a free Ca concentration between 1 and 50 microM. In the lower micromolar Ca range, compounds such as neomycin and FLA 365 inhibited the release monophasically and with an IC50 of 0.37 and 3.4 microM, respectively. At Ca concentrations between 10 and 50 microM, the inhibitors could not block Ca release effectively. Close analysis of the dose-response curves revealed a biphasic pattern, indicative of the presence of two substrates of the Ca-release channel, displaying high- and low-affinity binding sites for the inhibitors. Interestingly, neomycin (or ruthenium red) and FLA 365 at low concentrations acted synergistically and blocked release completely. The results indicate the existence of various open substates of the Ca channels that can be distinguished pharmacologically. Effective blockade of rapid Ca release requires inhibition of all substates coexisting under a given condition.  相似文献   

2.
[3H]Ryanodine binding to skeletal muscle and cardiac sarcoplasmic reticulum (SR) vesicles was compared under experimental conditions known to inhibit or stimulate Ca2+ release. In the skeletal muscle SR, ryanodine binds to a single class of high-affinity sites (Kd of 11.3 nM). In cardiac SR vesicles, more than one class of binding sites is observed (Kd values of 3.6 and 28.1 nM). Ryanodine binding to skeletal muscle SR vesicles requires high concentrations of NaCl, whereas binding of the drug to cardiac SR is only slightly influenced by ionic strength. In the presence of 5'-adenylyl imidodiphosphate (p[NH]ppA), increased pH, and micromolar concentration of Ca2+ (which all induce Ca2+ release from SR) binding of ryanodine to SR is significantly increased in skeletal muscle, while being unchanged in cardiac muscle. Ryanodine binding to skeletal but not to cardiac muscle SR is inhibited in the presence of high Ca2+ or Mg2+ concentrations (all known to inhibit Ca2+ release from skeletal muscle SR). Ruthenium red or dicyclohexylcarbodiimide modification of cardiac and skeletal muscle SR inhibit Ca2+ release and ryanodine binding in both skeletal and cardiac membranes. These results indicate that significant differences exist in the properties of ryanodine binding to skeletal or cardiac muscle SR. Our data suggest that ryanodine binds preferably to site(s) which are accessible only when the Ca2+ release channel is in the open state.  相似文献   

3.
We examined the interaction of GABA and the competitive inhibitor SR95531 at human alpha1beta1gamma2S and alpha1beta1 GABA(A) receptors expressed in Sf9 cells. The efficacy and potency of inhibition depended on the relative timing of the GABA and SR95531 applications. In saturating (10 mM) GABA, the half-inhibitory concentrations of SR95531 (IC50) when coapplied with GABA to alpha1beta1gamma2S or alpha1beta1 receptors were 49 and 210 microM for the peak and 18 and 130 microM for the plateau current, respectively. Our data are explained by an inhibition mechanism in which SR95531 and GABA bind to two sites on the receptor where the binding of GABA allows channel opening but SR95531 does not. The SR95531 affinity for both receptor types was approximately 200 nM and the binding rate was found to be 10-fold faster than that for GABA. The dual binding-site model gives insights into the differential effects of GABA and SR95531 on the peak and plateau currents. The model predicts the effect of SR95531 on GABA currents in the synapse (GABA concentration approximately mM) and at extrasynaptic (GABA concentration < or = microM) sites. The IC50 (50-100 nM) for the synaptic response to SR95531 was insensitive to the GABA affinity of the receptors whereas the IC50 (50-800 nM) for extrasynaptic inhibition correlated with the GABA affinity.  相似文献   

4.
In this study, we present evidence for the mechanism of neomycin inhibition of skeletal ryanodine receptors (RyRs). In single-channel recordings, neomycin produced monophasic inhibition of RyR open probability and biphasic inhibition of [(3)H]ryanodine binding. The half-maximal inhibitory concentration (IC(50)) for channel blockade by neomycin was dependent on membrane potential and cytoplasmic [Ca(2+)], suggesting that neomycin acts both as a pore plug and as a competitive antagonist at a cytoplasmic Ca(2+) binding site that causes allosteric inhibition. This novel Ca(2+)/neomycin binding site had a neomycin affinity of 100 nM: and a Ca(2+) affinity of 35 nM,: which is 30-fold higher than that of the well-described cytoplasmic Ca(2+) activation site. Therefore, a new high-affinity class of Ca(2+) binding site(s) on the RyR exists that mediates neomycin inhibition. Neomycin plugging of the channel pore induced brief (1-2 ms) conductance substates at 30% of the fully open conductance, whereas allosteric inhibition caused complete channel closure with durations that depended on the neomycin concentration. We quantitatively account for these results using a dual inhibition model for neomycin that incorporates voltage-dependent pore plugging and Ca(2+)-dependent allosteric inhibition.  相似文献   

5.
This study investigated the effects of cardiac glycosides on single-channel activity of the cardiac sarcoplasmic reticulum (SR) Ca2+ release channels or ryanodine receptor (RyR2) channels and how this action might contribute to their inotropic and/or toxic actions. Heavy SR vesicles isolated from canine left ventricle were fused with artificial planar lipid bilayers to measure single RyR2 channel activity. Digoxin and actodigin increased single-channel activity at low concentrations normally associated with therapeutic plasma levels, yielding a 50% of maximal effect of approximately 0.2 nM for each agent. Channel activation by glycosides did not require MgATP and occurred only when digoxin was applied to the cytoplasmic side of the channel. Similar results were obtained in human RyR2 channels; however, neither the crude skeletal nor the purified cardiac channel was activated by glycosides. Channel activation was dependent on [Ca2+] on the luminal side of the bilayer with maximal stimulation occurring between 0.3 and 10 mM. Rat RyR2 channels were activated by digoxin only at 1 microM, consistent with the lower sensitivity to glycosides in rat heart. These results suggest a model in which RyR2 channel activation by digoxin occurs only when luminal [Ca2+] was increased above 300 microM (in the physiological range). Consequently, increasing SR load (by Na+ pump inhibition) serves to amplify SR release by promoting direct RyR2 channel activation via a luminal Ca2+-sensitive mechanism. This high-affinity effect of glycosides could contribute to increased SR Ca2+ release and might play a role in the inotropic and/or toxic actions of glycosides in vivo.  相似文献   

6.
Nanomolar to micromolar ryanodine alters the gating kinetics of the Ca2+ release channel from skeletal sarcoplasmic reticulum (SR) fused with bilayer lipid membranes (BLM). In the presence of asymmetric CsCl and 100 microM CaCl2 cis, ryanodine (RY) (5-40 nM) activates the channel, increasing the open probability (po; maximum 300% of control) without changing unitary conductance (468 picosiemens (pS)). Statistical analyses of gating kinetics reveal that open and closed dwell times exhibit biexponential distributions and are significantly modified by nanomolar RY. Altered channel gating kinetics with low nanomolar RY is fully reversible and correlates well with binding kinetics of nanomolar [3H]RY with its high affinity site (Kd1 = 0.7 nM) under identical experimental conditions. RY (20-50 nM) induces occasional 1/2 conductance fluctuations which correlate with [3H]RY binding to a second site having lower affinity (Kd2 = 23 nM). RY (5-50 nM) in the presence of 500 mM CsCl significantly enhances Ca(2+)-induced Ca2+ release from actively loaded SR vesicles. Ryanodine > or = 50 nM stabilizes the channel in a 234-pS subconductance which is not readily reversible. RY (> or = 70 microM) produces a unidirectional transition from the 1/2 to a 1/4 conductance fluctuation, whereas RY > or = 200 microM causes complete closure of the channel. The RY required for stabilizing 1/4 conductance transitions and channel closure do not quantitatively correlate with [3H]RY equilibrium binding constants and is attributed to significant reduction in association kinetics with > 200 nM [3H]RY in the presence of 500 mM CsCl. These results demonstrate that RY stabilizes four discrete states of the SR release channel and supports the existence of multiple interacting RY effector sites on the channel protein.  相似文献   

7.
Single ryanodine-sensitive sarcoplasmic reticulum (SR) Ca2+ release channels isolated from rabbit skeletal and canine cardiac muscle were reconstituted in planar lipid bilayers. Single channel activity was measured in simple solutions (no ATP or Mg2+) with 250 mM symmetrical Cs+ as charge carrier. A laser flash was used to photolyze caged-Ca2+ (DM-nitrophen) in a small volume directly in front of the bilayer. The free [Ca2+] in this small volume and in the bulk solution was monitored with Ca2+ electrodes. This setup allowed fast, calibrated free [Ca2+] stimuli to be applied repetitively to single SR Ca2+ release channels. A standard photolytically induced free [Ca2+] step (pCa 7-->6) was applied to both the cardiac and skeletal release channels. The rate of channel activation was determined by fitting a single exponential to ensemble currents generated from at least 50 single channel sweeps. The time constants of activation were 1.43 +/- 0.65 ms (mean +/- SD; n = 5) and 1.28 +/- 0.61 ms (n = 5) for cardiac and skeletal channels, respectively. This study presents a method for defining the fast Ca2+ regulation kinetics of single SR Ca2+ release channels and shows that the activation rate of skeletal SR Ca2+ release channels is consistent with a role for CICR in skeletal muscle excitation-contraction coupling.  相似文献   

8.
The mechanism by which chloride increases sarcoplasmic reticulum (SR) Ca2+ permeability was investigated. In the presence of 3 microM Ca2+, Ca2+ release from 45Ca(2+)-loaded SR vesicles prepared from procine skeletal muscle was increased approximately 4-fold when the media contained 150 mM chloride versus 150 mM propionate, whereas in the presence of 30 nM Ca2+, Ca2+ release was similar in the chloride- and the propionate-containing media. Ca(2+)-activated [3H]ryanodine binding to skeletal muscle SR was also increased (2- to 10-fold) in media in which propionate or other organic anions were replaced with chloride; however, chloride had little or no effect on cardiac muscle SR 45Ca2+ release or [3H]ryanodine binding. Ca(2+)-activated [3H]ryanodine binding was increased approximately 4.5-fold after reconstitution of skeletal muscle RYR protein into liposomes, and [3H]ryanodine binding to reconstituted RYR protein was similar in chloride- and propionate-containing media, suggesting that the sensitivity of the RYR protein to changes in the anionic composition of the media may be diminished upon reconstitution. Together, our results demonstrate a close correlation between chloride-dependent increases in SR Ca2+ permeability and increased Ca2+ activation of skeletal muscle RYR channels. We postulate that media containing supraphysiological concentrations of chloride or other inorganic anions may enhance skeletal muscle RYR activity by favoring a conformational state of the channel that exhibits increased activation by Ca2+ in comparison to the Ca2+ activation exhibited by this channel in native membranes in the presence of physiological chloride (< or = 10 mM). Transitions to this putative Ca(2+)-activatable state may thus provide a mechanism for controlling the activation of RYR channels in skeletal muscle.  相似文献   

9.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

10.
A 106 kD protein was isolated from skeletal sarcoplasmic reticulum (SR) vesicles and shown to have the properties of SR Ca2+ release channels, including blockade by 5 nM ryanodine. In view of extensive reports that the ryanodine-receptor complex consists of four 565 kD junctional feet proteins (JFPs) and is the 'physiological' Ca2+ release channel, we prepared ryanodine-affinity columns to isolate its receptor site(s). Conditions known to maximize the association and dissociation of ryanodine to SR proteins were respectively used to link, then elute, the receptor(s) from ryanodine-affinity columns. The method purified a protein at about 100 kD from both rabbit skeletal and canine cardiac SR vesicles. The skeletal and cardiac proteins isolated by ryanodine-affinity chromatography were identified as the low molecular weight Ca2+ release channel through their antigenic reaction with an anti-106 kD monoclonal antibody. Upon reconstitution in planar bilayers, both skeletal and cardiac proteins revealed the presence of functional SR Ca2+ release channels. Surprisingly, ryanodine-affinity columns did not retain JFPs but purified 106 kD Ca2+ release channels which are a minor component (0.1-0.3%) of SR proteins.  相似文献   

11.
We have studied mu-conotoxin (mu-CTX) block of rat skeletal muscle sodium channel (rSkM1) currents in which single amino acids within the pore (P-loop) were substituted with cysteine. Among 17 cysteine mutants expressed in Xenopus oocytes, 7 showed significant alterations in sensitivity to mu-CTX compared to wild-type rSkM1 channel (IC50 = 17.5 +/- 2.8 nM). E758C and D1241C were less sensitive to mu-CTX block (IC50 = 220 +/- 39 nM and 112 +/- 24 nM, respectively), whereas the tryptophan mutants W402C, W1239C, and W1531C showed enhanced mu-CTX sensitivity (IC50 = 1.9 +/- 0.1, 4.9 +/- 0.9, and 5.5 +/- 0.4 nM, respectively). D400C and Y401C also showed statistically significant yet modest (approximately twofold) changes in sensitivity to mu-CTX block compared to WT (p < 0.05). Application of the negatively charged, sulfhydryl-reactive compound methanethiosulfonate-ethylsulfonate (MTSES) enhanced the toxin sensitivity of D1241C (IC50 = 46.3 +/- 12 nM) while having little effect on E758C mutant channels (IC50 = 199.8 +/- 21.8 nM). On the other hand, the positively charged methanethiosulfonate-ethylammonium (MTSEA) completely abolished the mu-CTX sensitivity of E758C (IC50 > 1 microM) and increased the IC50 of D1241C by about threefold. Applications of MTSEA, MTSES, and the neutral MTSBN (benzyl methanethiosulfonate) to the tryptophan-to-cysteine mutants partially or fully restored the wild-type mu-CTX sensitivity, suggesting that the bulkiness of the tryptophan's indole group is a determinant of toxin binding. In support of this suggestion, the blocking IC50 of W1531A (7.5 +/- 1.3 nM) was similar to W1531C, whereas W1531Y showed reduced toxin sensitivity (14.6 +/- 3.5 nM) similar to that of the wild-type channel. Our results demonstrate that charge at positions 758 and 1241 are important for mu-CTX toxin binding and further suggest that the tryptophan residues within the pore in domains I, III, and IV negatively influence toxin-channel interaction.  相似文献   

12.
In Mead and Williams, (Biophys. J. 82:1953-1963, 2002) we have reported that neomycin is a potent partial blocker of single purified sheep cardiac SR calcium release channels. Neomycin is unusual in that it is capable of blocking when applied to either the cytosolic or the luminal face of the channel. Block at either aspect of the channel is both concentration- and voltage-dependent, but exhibits different blocking parameters. In this study we have investigated the actions of neomycin on ion handling in the ryanodine-modified channel. Neomycin is more effective at the cytosolic face, having a Kb(0) value of 534.9 +/- 35.17 nM compared with a Kb(0) value of 971.5 +/- 66.62 nM for the luminal face. The voltage dependence also differs at the two sites. Values of zdelta for cytosolic and luminal neomycin are 1.09 +/- 0.04 and -0.57 +/- 0.03, respectively. The interaction of neomycin with the ryanodine-modified channel differs notably from that in the unmodified channel. Voltage-dependent relief of block is not observed after ryanodine modification, and the luminal blocking characteristics are altered. This suggests that ryanodine induces changes at the luminal mouth of the channel and may confer increased rigidity to the channel protein.  相似文献   

13.
The effect of gadolinium ions on the sarcoplasmic reticulum (SR) calcium release channel/ryanodine receptor (RyR1) was studied using heavy SR (HSR) vesicles and RyR1 isolated from rabbit fast twitch muscle. In the [(3)H]ryanodine binding assay, 5 microM Gd(3+) increased the K(d) of the [(3)H]ryanodine binding of the vesicles from 33.8 nM to 45.6 nM while B(max), referring to the binding capacity, was not affected significantly. In the presence of 18 nM[(3)H]ryanodine and 100 microM free Ca(2+), Gd(3+) inhibited the binding of the radiolabeled ryanodine with an apparent K(d) value of 14.7 microM and a Hill coefficient of 3.17. In (45)Ca(2+) experiments the time constant of (45)Ca(2+) efflux from HSR vesicles increased from 90.9 (+/- 11.1) ms to 187.7 (+/- 24.9) ms in the presence of 20 microM gadolinium. In single channel experiments gadolinium inhibited the channel activity from both the cytoplasmic (cis) (IC(50) = 5.65 +/- 0.33 microM, n(Hill) = 4.71) and the luminal (trans) side (IC(50) = 5.47 +/- 0.24 microM, n(Hill) = 4.31). The degree of inhibition on the cis side didn't show calcium dependency in the 100 microM to 1 mM Ca(2+) concentration range which indicates no competition with calcium on its regulatory binding sites. When Gd(3+) was applied at the trans side, EGTA was present at the cis side to prevent the binding of Gd(+3) to the cytoplasmic calcium binding regulatory sites of the RyR1 if Gd(3+) accidentally passed through the channel. The inhibition of the channel did not show any voltage dependence, which would be the case if Gd(3+) exerted its effect after getting to the cis side. Our results suggest the presence of inhibitory binding sites for Gd(3+) on both sides of the RyR1 with similar Hill coefficients and IC(50) values.  相似文献   

14.
In this study we have investigated the actions of the aminoglycoside antibiotic neomycin on K+ conductance in the purified sheep cardiac sarcoplasmic reticulum (SR) calcium-release channel (RyR). Neomycin induces a concentration- and voltage-dependent partial block from both the cytosolic and luminal faces of the channel. Blocking parameters for cytosolic and luminal block are markedly different. Neomycin has a greater affinity for the luminal site of interaction than the cytosolic site: zero-voltage dissociation constants (Kb(0)) are respectively 210.20 +/- 22.80 and 589.70 +/- 184.00 nM for luminal and cytosolic block. However, neomycin also exhibits voltage-dependent relief of block at holding potentials >+60 mV when applied to the cytosolic face and a similar phenomenon may occur with luminal neomycin at high negative holding potentials. These observations indicate that, under appropriate conditions, neomycin is capable of passing through the RyR channel.  相似文献   

15.
A Tripathy  L Xu  G Mann    G Meissner 《Biophysical journal》1995,69(1):106-119
The calmodulin-binding properties of the rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) and the channel's regulation by calmodulin were determined at < or = 0.1 microM and micromolar to millimolar Ca2+ concentrations. [125I]Calmodulin and [3H]ryanodine binding to sarcoplasmic reticulum (SR) vesicles and purified Ca2+ release channel preparations indicated that the large (2200 kDa) Ca2+ release channel complex binds with high affinity (KD = 5-25 nM) 16 calmodulins at < or = 0.1 microM Ca2+ and 4 calmodulins at 100 microM Ca2+. Calmodulin-binding affinity to the channel showed a broad maximum at pH 6.8 and was highest at 0.15 M KCl at both < or = 0.1 MicroM and 100 microM Ca2+. Under condition closely related to those during muscle contraction and relaxation, the half-times of calmodulin dissociation and binding were 50 +/- 20 s and 30 +/- 10 min, respectively. SR vesicle-45Ca2+ flux, single-channel, and [3H]ryanodine bind measurements showed that, at < or = 0.2 microM Ca2+, calmodulin activated the Ca2+ release channel severalfold. Ar micromolar to millimolar Ca2+ concentrations, calmodulin inhibited the Ca(2+)-activated channel severalfold. Hill coefficients of approximately 1.3 suggested no or only weak cooperative activation and inhibition of Ca2+ release channel activity by calmodulin. These results suggest a role for calmodulin in modulating SR Ca2+ release in skeletal muscle at both resting and elevated Ca2+ concentrations.  相似文献   

16.
The mechanism of doxorubicin-induced Ca2+ release from skeletal and cardiac muscle sarcoplasmic reticulum (SR) was studied by examining the effects of azumolene (a water soluble dantrolene analog) on doxorubicin-mediated Ca2+ release and ryanodine binding. Doxorubicin induced a rapid Ca2+ release from both skeletal and cardiac SR in a similar concentration range (EC50 = 5-10 microM). Maximal doxorubicin-induced Ca2+ release was seen at 2 and 0.2 microM Ca2+ for skeletal and cardiac SR, respectively. Addition of 400 microM azumolene caused approx. 30% inhibition of doxorubicin-induced Ca2+ release from both skeletal and cardiac SR; skeletal SR had significantly higher sensitivity to azumolene than cardiac SR. In the presence of Ca2+, doxorubicin increased [3H]ryanodine binding to both skeletal and cardiac SR; whereas in the absence of Ca2+, doxorubicin led to significant ryanodine binding to skeletal SR, but not to cardiac SR. In both types of SR, doxorubicin-activated, but not Ca2+ activated ryanodine binding was inhibited by azumolene. Azumolene sensitivity for inhibition of doxorubicin-activated ryanodine binding was much higher in skeletal SR than cardiac SR, consistent with the results for effects of azumolene on Ca2+ release. Our results are consistent with the possibility that azumolene inhibits doxorubicin binding by direct competition for the drug receptor(s).  相似文献   

17.
Photoaffinity labeling of the epithelial sodium channel   总被引:7,自引:0,他引:7  
Sodium enters tight epithelia across the apical plasma membrane through a sodium channel, a process inhibited by submicromolar concentrations of amiloride and benzamil. Using membrane vesicles from bovine kidney cortex, we found that sodium transport through the sodium channel was inhibited by benzamil with an IC50 of 4 nM. Amiloride (IC50 = 400 nM) was a weaker inhibitor of sodium transport. [3H]Benzamil bound to the vesicles at a single class of high affinity binding sites with a Kd of 5 nM, the similarity of which to the IC50 suggests that these binding sites are associated with the sodium channel. Amiloride displaced bound [3H]benzamil with a Ki of 2,500 nM. Bromobenzamil is a photoactive amiloride analog with potency similar to benzamil in inhibiting sodium transport (IC50 = 5 nM) and binding to the sodium channel (Kd = 6 nM). [3H]Bromobenzamil was specifically photoincorporated into three molecular weight classes of polypeptides with apparent Mr values of 176,000, 77,000, and 47,000. The photoincorporation of [3H]bromobenzamil into these three classes of polypeptides was blocked by addition of excess benzamil and by amiloride in a dose-dependent manner. These data suggest that these polypeptides are components of the epithelial sodium channel.  相似文献   

18.
The action of ruthenium red (RR) on Ca2+ loading by and Ca2+ release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated. Ca2+ loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method. Ca2+ release was indirectly measured by following tension development evoked by caffeine. Stimulation of the Ca2+ loading rate by 5 microM RR was dependent on free Ca2+, being maximal at pCa 5.56. Isometric force development induced by 5 mM caffeine was reversibly antagonized by RR. IC50 for the rate of tension rise was 0.5 microM; that for the extent of tension was 4 microM. RR slightly shifted the steady state isometric force/pCa curve toward lower pCa values. At 5 microM RR, the pCa required for half-maximal force was 0.2 log units lower than that of the control, and maximal force was depressed by approximately 16%. These results suggest that RR inhibited Ca2+ release from the SR and stimulated Ca2+ loading into the SR by closing Ca2+-gated Ca2+ channels. Previous studies on isolated SR have indicated the selective presence of such channels in junctional terminal cisternae.  相似文献   

19.
Injection of 0.2 ng of cRNA encoding the brain Kv1.2 channel into Xenopus oocytes leads to the expression of a very slowly inactivating K+ current. Inactivation is absent in oocytes injected with 20 ng of cRNA although activation remains unchanged. Low cRNA concentrations generate a channel which is sensitive to dendrotoxin I (IC50 = 2 nM at 0.2 ng of cRNA/oocyte) and to less potent analogs of this toxin from Dendroaspis polylepis venom. A good correlation is found between blockade of the K+ current and binding of the different toxins to rat brain membranes. High cRNA concentrations generate another form of the K+ channel which is largely insensitive to dendrotoxin I (IC50 = 200 nM at 20 ng of cRNA per oocyte). At low cRNA concentrations, the expressed Kv1.2 channel is also blocked by other polypeptide toxins such as MCD peptide (IC50 = 20 nM), charybdotoxin (IC50 = 50 nM), and beta-bungarotoxin (IC50 = 50 nM), which bind to distinct and allosterically related sites on the channel protein. The pharmacologically distinct type of K+ channel expressed at high cRNA concentrations (20 ng of cRNA/oocyte) is nearly totally resistant to 100 nM MCD peptide and hardly altered by charybdotoxin and beta-bungarotoxin at concentrations as high as 1 microM. Both at low and at high cRNA concentrations, the expressed Kv1.2 channel is blocked by an increase in intracellular Ca2+ from the inositol trisphosphate sensitive pools and by the phorbol ester PMA that activates protein kinase C.  相似文献   

20.
The role of calcium in interleukin- (IL) 8-, IL-1 alpha- and IL-1 beta-induced lymphocyte migration has been investigated by using the calcium channel antagonists, verapamil, nifedipine, diltiazem (IL-8) and the optical isomers of the dihydropyridine analogue SDZ 202-791 (IL-8, IL-1 alpha and IL-1 beta). Potent inhibition of IL-8-induced migration was observed in response to nifedipine (IC50 = 10 nM), verapamil (IC50 = 60 nM) and diltiazem (IC50 = 10 nM). The (+)-isomer of SDZ 202-791 was without effect on any of the agonists tested, however, the (-)-isomer induced dose-related inhibition of stimulated migration, IC50 values being 0.1 nM, 10 pM and 1.0 nM, for IL-8-, IL-1 alpha- and IL-1 beta-induced migration, respectively. Reversal of the inhibitory effects of the (-)-isomer was obtained in the presence of increasing concentrations of (+)-isomer. The induction of lymphocyte migration by IL-8, IL-1 alpha and IL-1 beta therefore appears to be a process dependent on calcium channel activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号