首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Mori  Y Ito  T Ogawa 《Carbohydrate research》1990,195(2):199-224
The mollu-series glycosphingolipids, O-alpha-D-mannopyranosyl-(1----3)-O-beta-D-mannopyranosyl-(1----4)-O-bet a-D-glucopyranosyl-(1----1)-2-N-tetracosanoyl-(4E)-sphingeni ne and O-alpha-D-mannopyranosyl-(1----3)-O-[beta-D-xylopyranosyl-(1----2])-O- beta-D-mannopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-2-N- tetracosanoyl-(4E)-sphingenine, were synthesized for the first time by using 2,3,4-tri-O-acetyl-D-xylopyranosyl trichloroacetimidate, methyl 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranoside, benzyl O-(4,6-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-2,3,6-tri-O-benzyl-be ta-D- glucopyranoside 9, and (2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octade cene-1,3-diol 6 as the key intermediates. The hexa-O-benzyl disaccharide 9 was prepared by coupling two monosaccharide synthons, namely, 2,3-di-O-allyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl bromide and benzyl 2,3,6-tri-O-benzyl-beta-D-glucopyranoside. It was demonstrated that azide 6 was highly efficient as a synthon for the ceramide part in the coupling with both glycotriaosyl and glycotetraosyl donors, particularly in the presence of trimethylsilyl triflate.  相似文献   

2.
p-Nitrophenyl 2-O-benzyl-4,5-O-cyclohexylidene-beta-D-mannopyranoside (4) was condensed with tetra-O-benzoyl-alpha-D-mannopyranosyl bromide. The resulting, protected disaccharide was converted into p-nitrophenyl O-(2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl)-(1----3)-4-O-benzoyl-2-O- benzyl-beta-D-mannopyranoside (8), which was condensed with tetra-O-benzoyl-alpha-D-mannopyranosyl bromide to give p-nitrophenyl O-(2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl)-(1----3)-O -[2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1----6)]-4-O-benzoyl-2-O -benzyl-beta-D-mannopyranoside (9) in 75% yield. Conversion of the p-nitrophenyl group followed by deprotection then yielded the title compound, whose structure was confirmed by 1H- and 13C-n.m.r. spectroscopy.  相似文献   

3.
Methyl 2-O-benzyl-beta-D-galactopyranoside (6) was obtained in five, good yielding steps from methyl beta-D-galactopyranoside (1). Treatment of 1 with tert-butylchlorodiphenylsilane in N,N-dimethylformamide in the presence of imidazole afforded a 6-(tert-butyldiphenylsilyl) ether, which was converted into its 3,4-O-isopropylidene derivative (3). Benzylation of 3 with benzyl bromide-silver oxide in N,N-dimethylformamide, and subsequent cleavage of its acetal and ether groups then afforded 6. On similar benzylation, followed by the same sequence of deprotection, benzyl 2-acetamido-3,6-di-O-benzyl-4-O-[6-O-(tert-butyldiphenylsilyl)-3,4 -O- isopropylidene-beta-D-galactopyranosyl]-2-deoxy-alpha-D-glucopyranoside gave the 2-O-benzyl derivative (10). Compound 10 was converted into its 4,6-O-benzylidene acetal (11). Glycosylation (catalyzed by halide-ion) of 11 with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide afforded the fully protected trisaccharide derivative (13). Cleavage of the benzylidene and then the benzyl groups of 13 furnished the title trisaccharide (16). The structure of 16 was established by 13C-n.m.r. spectroscopy.  相似文献   

4.
The substrate specificity of an endo-(1----4)-beta-D-xylanase of the yeast Cryptococcus albidus was investigated using a series of methyl beta-D-xylotriosides. In addition to (1----4) linkages, the enzyme could cleave (1----3) and (1----2) linkages adjacent to a (1----4) linkage and further from the non-reducing end of the substrate. The enzyme could hydrolyse a (1----3) linkage that attached a terminal xylopyranosyl group to a (1----4)-linked xylobiosyl moiety. The enzyme did not attack alpha-D-xylosidic linkages. The rate of cleavage of (1----4) linkages was much higher than those of other linkages at 0.5mM substrate, but the rates were comparable at 20mM substrate when transglycosylation reactions also occurred that facilitated degradation of the substrates.  相似文献   

5.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

6.
7.
8.
9.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

10.
alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-D-GlcpNAc (2) and, alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-beta-D-GlcpNAcOMBn+ ++ were prepared on a large scale by the action of beta-D-Galp-(1----3)-D-GalpNAc (2----3)-alpha-sialyltransferase (partially purified from porcine liver) on beta-D-Galp-(1----3)-D-GlcpNAc and beta-D-Galp-(1----3)-beta-D-GlcpNAcOMBn, respectively. The trisaccharide 2 is the epitope of the tumor-associated carbohydrate antigen CA 50, highly expressed in human pancreatic adenocarcinoma.  相似文献   

11.
12.
13.
A synthesis of alpha-D-Manp-(1----3)-[beta-D-GlcpNAc-(1----4)]-[alpha-D-Manp++ +-(1----6)]- beta-D-Manp-(1----4)-beta-D-GlcpNAc-(1----4)-[alpha-L-Fucp-( 1----6)]-D- GlcpNAc was achieved by employing benzyl O-(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-O- (2-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(3,6-di-O-benzyl-2-deoxy-2 - phthalimido-beta-D-glucopyranosyl)-(1----4)-3-O-benzyl-2-deoxy-6-O-p- methoxyphenyl-2-phthalimido-beta-D-glucopyranoside as a key glycosyl acceptor. Highly stereoselective mannosylation was performed by taking advantage of the 2-O-acetyl group in the mannosyl donors. The alpha-L-fucopyranosyl residue was also stereoselectively introduced by copper(II)-mediated activation of methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside.  相似文献   

14.
A stereocontrolled synthesis of beta-D-GlcpNAc6SO3-(1----3)-beta-D-Galp6SO3-(1----4)-beta-D- GlcpNAc6SO3- (1----3)-D-Galp, was achieved by use of benzyl O-(2-acetamido-3,4 di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-beta-D- glucopyranosyl)-(1----3)-O-(2,4-di-O-tert-butyldiphenylsilyl-beta- D- galactopyranosyl-(1----4)-O-(2-acetamido-3-O-benzyl-2-deoxy-6-O-p-methox yphenyl - beta-D-glucopyranosyl)-(1----3)-2,4,6-tri-O-benzyl-beta-D-galactopyranos ide as a key intermediate, which was in turn prepared by employing two glycosyl donors, 3,4-di-O-benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D- glucopyranosyl trichloroacetimidate and O-(3,6-di-O-acetyl-2,4-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3-O - benzyl-2-deoxy-6-O-p-methoxyphenyl-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate, and a glycosyl acceptor, benzyl 2,4,6-tri-O-benzyl-beta-D-galactopyranoside.  相似文献   

15.
16.
E Yoon  R A Laine 《Glycobiology》1992,2(2):161-168
Development of tandem mass spectral methods for direct linkage determination in oligosaccharides requires sets of trisaccharides differing only in one structural parameter. In this case, we chose the position of linkage to the reducing-end hexose. These sets of compounds would also be useful for the development of high-resolution separation techniques geared to resolve linkage types. Conventional organic synthesis of such a set could take as long as 2-5 months for each member of the set. Each trisaccharide would require 10-20 steps of synthesis. Instead, we utilized low pH to induce a loose acceptor specificity for bovine milk galactosyltransferase (lactose synthase: EC 2.4.1.22) and by this method, within 2 weeks, generated four novel oligosaccharides for NMR and mass spectral studies. The disaccharides cellobiose (beta 1----4), laminaribiose (beta 1----3), gentiobiose (beta 1----6) and maltose (alpha 1----4) acted as acceptors for EC 2.4.1.22 under these conditions. The beta 1----2-linked disaccharide, sophorose, was not commercially available and is not included in this study. The alpha-linked disaccharides were also examined, but except for the alpha 1----4 disaccharide maltose, were very poor acceptors under a variety of conditions. From these four acceptors, the following four novel trisaccharides were synthesized in micromole amounts, suitable for studies of linkage position using low-energy collision-induced-dissociation tandem mass spectrometry (FAB-MS-CID-MS), and for NMR: Galp(beta 1----4)Glcp(beta 1----3)-Glc, Galp(beta 1----4)Glcp(beta 1----4)Glc, Galp(beta 1----4)Glcp(beta 1----6)-Glc and Galp(beta 1----4)Glcp(alpha 1----4)Glc.  相似文献   

17.
Reactivity of Limulus amoebocyte lysate towards (1----3)-beta-D-glucans   总被引:1,自引:0,他引:1  
The structure activity relationship for beta-D-glucans for the gelation of the amoebocyte lysates of the horseshoe crab (Limulus) has been investigated. beta-D-Glucans that had no (1----3) linkages induced little or no gelation. The (1----3)-beta-D-glucans curdlan (unbranched), grifolan (approximately 33% branched), schizophyllan (approximately 33% branched), lentinan (approximately 40% branched). SSG (approximately 50% branched), and OL-2 (approximately 66% branched) induced significant gelation. The optimum concentration for gelation was correlated with the content of branching. Single chain (rather than a triple helix) conformation and higher molecular weight were associated with higher reactivity.  相似文献   

18.
Benzylation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D- glucopyranosyl)-2,4,6-tri-O-benzyl-beta-D-galactopyranoside with benzyl bromide in N,N-dimethylformamide in the presence of sodium hydride afforded methyl 3-O- (2-acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranosyl) -2,4,6- tri-O-benzyl-beta-D-galactopyranoside (3). Reductive ring-opening of the benzylidene group of 3 gave methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D- glucopyranosyl)- 2,4,6-tri-O-benzyl-beta-D-galactopyranoside (4). Cleavage of the 4,6-acetal group of 3 with hot, 80% aqueous acetic acid afforded the diol (5). Compounds 3, 4, and 5 were each subjected to halide ion-catalyzed glycosylation with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide to produce the corresponding trisaccharide derivatives, which, on catalytic hydrogenation, furnished the title trisaccharides, respectively.  相似文献   

19.
A crystal and molecular structure for GTA I, the low temperature polymorph of (1----3)-alpha-D-glucan triacetate, is proposed on the basis of X-ray diffraction analysis of well-oriented films, combined with stereochemical model refinement. The unit cell is monoclinic with parameters a = 30.17 A, b = 17.42 A, c (fibre axis) = 12.11 A, and beta = 90 degrees C. The probable space group is P2(1) with b axis unique. Six molecular chains pass through the unit cell with alternating polarity and with three independent chains comprising the asymmetric unit. The chain axes are located in a hexagonal packing arrangement. The chain backbone conformation is a left-handed, three-fold helix, but all nine O(6) acetyl groups of the asymmetric unit are in non-equivalent rotational positions. The most probable structure is indicated by X-ray residuals R = 0.261 and R" = 0.283, based on 62 reflection intensities (41 observed and 21 unobserved).  相似文献   

20.
The tetrasaccharide a-D-Glcp-(1----4)-a-D-Xylp-(1----4)-a-D-Xylp-(1----4)-D- Glcp (1) has been synthesized, as a substrate analogue of alpha amylase, by silver perchlorate-catalyzed glycosylation of benzyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-benzyl-a-D-xylopyranosyl)-beta-D- glucopyranoside (30) with 2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-a-D- glucopyranosyl)-a-D-xylopyranosyl chloride or by methyl triflate-promoted condensation of 30 with methyl 2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-a-D-glucopyranosyl)-1-thio- beta-D-xylopyranoside, followed by removal of protecting groups of the resulting tetrasaccharide derivative 40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号