首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Concentrations of the intracellular intermediary metabolites fructose 1,6-diphosphate, pyruvate, citrate, and malate in free and calcium alginate-immobilized cells of Saccharomyces cerevisiae fermenting D-glucose anaerobically were determined when the sugar up-take rate and the ethanol production rate were constant No cell growth was observed and the fermentation yields and fermentation rates were the same in both types of cells. The concentrations of intermediary intracellular metabolites were also identical for the two types of fermenting cells.  相似文献   

2.
We conducted an integrated study of cell growth parameters, product formation, and the dynamics of intracellular metabolite concentrations using Escherichia coli with genes knocked out in the glycolytic and oxidative pentose phosphate pathway (PPP) for glucose catabolism. We investigated the same characteristics in the wild-type strain, using acetate or pyruvate as the sole carbon source. Dramatic effects on growth parameters and extracellular and intracellular metabolite concentrations were observed after blocking either glycolytic breakdown of glucose by inactivation of phosphoglucose isomerase (disruption of pgi gene) or pentose phosphate breakdown of glucose by inactivation of glucose-6-phosphate dehydrogenase (disruption of zwf gene). Reducing power (NADPH) was mainly produced through PPP when the pgi gene was knocked out, while NADPH was produced through the tricarboxylic acid (TCA) cycle by isocitrate dehydrogenase or NADP-linked malic enzyme when the zwf gene was knocked out. As expected, when the pgi gene was knocked out, intracellular concentrations of PPP metabolites were high and glycolytic and concentrations of TCA cycle pathway metabolites were low. In the zwf gene knockout, concentrations of PPP metabolites were low and concentrations of intracellular glycolytic and TCA cycle metabolites were high.  相似文献   

3.
A new model for the organization and flow of metabolites through a metabolic pathway is presented. The model is based on four major findings. (1) The intracellular concentrations of enzyme sites exceed the concentrations of intermediary metabolites that bind specifically to these sites. (2) The concentration of the excessive enzyme sites in the cell is sufficiently high so that nearly all the cellular intermediary metabolites are enzyme-bound. (3) Enzyme conformations are perturbed by the interactions with substrates and products; the conformations of enzyme-substrate and enzyme-product complexes are different. (4) Two enzymes, catalyzing reactions that are sequential in a metabolic pathway, transfer the common metabolite back and forth via an enzyme-enzyme complex without the intervention of the solvent environment. The model proposes that the enzyme-enzyme recognition is ligand-induced. Conversion of E2S and E2P results in the loss of recognition of E2 by E1 and the concomitant recognition of E2 by E3. This model substantially alters existent views of the bioenergetics and the kinetics of intracellular metabolism. The rates of direct transfer of metabolite from enzyme to enzyme are comparable to the rates of interconversion between substrate and product within an individual enzyme. Consequently, intermediary metabolites are nearly equipartitioned among their high-affinity enzyme sites within a metabolic pathway. Metabolic flux involves the direct transfer of metabolite from enzyme to enzyme via a set of low and nearly equal energy barriers.  相似文献   

4.
The metabolic effects of glucagon and glucagon plus insulin on the isolated rat livers perfused with 10 mM sodium L-lactate as substrate were studied. Glucagon stimulated gluconeogenesis, ketogenesis and ureogenesis at the concentration used of 2.1 nM. The addition of insulin to give a glucagon-to-insulin ratio of 0.2 reversed all the glucagon effects. The glucagon enhancement of gluconeogenesis was accompanied by a rise in cytosolic and mitochondrial state of reduction of the NAD system and a fall in the [ATP]/[ADP] ratio. The analysis of the intermediary metabolite concentrations suggested, as possible sites of glucagon action, the steps between pyruvate and phosphoenolpyruvate as well as the reactions catalyzed by phosphofructokinase and/or fructose bisphosphatase. All the changes in metabolite contents were abolished when insulin was present. Glucagon increased the intramitochondrial concentration of all the metabolites, whose intracellular distribution was calculated. The finding of a significant rise in the calculated intramitochondrial concentration of oxaloacetate points to pyruvate carboxylation as an important site of glucagon interaction with the gluconeogenic pathway. A primary event in the glucagon action redistributing intracellular metabolites seems to be the mitochondrial entry of malate. The possibility is discussed that the changes in metabolite cellular distribution were brought about by the increased cellular state of reduction caused by the hormone.  相似文献   

5.
Human peripheral monocytes (MO), neutrophils (PMN), and lymphocytes (PBL) were tested for their ability to kill Candida tropicalis. With incubation times between 30 min and 2 h, unstimulated MO and PMN, but not PBL, were efficient killers of C. tropicalis. Both leukocyte subsets were able to kill at minimum 2.5 1 effector to target ratios. Pre-incubation of MO for 24 h with interferon-gamma or tumor necrosis factor (TNF) increased their ability to kill yeast targets. TNF alone had no effect on C. tropicalis targets at concentrations up to 1000 U/ml. PBL activated for 4 d with interleukin-2 did not kill yeast targets. PMN exhibited more cytocidal efficiency per cell than MO in these assays. Direct contact of effectors and targets was required; no significant killing by PMN or MO supernatants was measured. PMN-mediated killing, but not MO killing, was inhibited by a mixture of catalase and Superoxide dismutase suggesting that oxygen-dependent killing mechanisms were partially responsible for candidacidal activity.  相似文献   

6.
Three filamentous fungi were examined for the ability to biotransform phenanthrene to oxidative (phase I) and conjugative (phase II) metabolites. Phenanthrene metabolites were purified by high-performance liquid chromatography (HPLC) and identified by UV/visible absorption, mass, and1H NMR spectra.Aspergillus niger ATCC 6275,Syncephalastrum racemosum UT-70, andCunninghamella elegans ATCC 9245 initially transformed [9-14C]phenanthrene to produce metabolites at the 9,10-, 1,2-, and 3,4- positions. Subsequently, sulfate conjugates of phase I metabolites were formed byA. niger, S. racemosum, andC. elegans. Minor glucuronide conjugates of 9-phenanthrol and phenanthrenetrans-9,10-dihydrodiol were formed byS. racemosum andA. niger, respectively. In addition,C. elegans produced the glucose conjugates 1-phenanthryl -d-glucopyranoside and 2-hydroxy-1-phenanthryl -d-glucopyranoside, a novel metabolite. [9-14C]Phenanthrene metabolites were not detected in organic extracts from biotransformation experiments with the yeasts,Candida lipolytica 37-1,Candida tropicalis ATCC 32113, andCandida maltosa R-42.  相似文献   

7.
Xylitol was produced by selected species of the yeast Candida after growth on a medium containing a hydrolysate of the North American perennial prairie grass big bluestem. The grass was hydrolysed by a combination of dilute acid and enzymatic treatments. After growth on the medium for 120 h at 30 °C, Candida tropicalis ATCC 750 produced a 1.4-fold higher level of xylitol than did C. tropicalis ATCC 20215 while biomass production by C. tropicalis ATCC 750 was 1.7-fold higher than Candida guilliermondii ATCC 20216. The xylitol yields observed for C. tropicalis ATCC 750, Candida mogii ATCC 18364 and C. guilliermondii ATCC 20216 were at least 1.4-fold higher than the yield observed for C. tropicalis ATCC 20215 after growth for 120 h at 30 °C.  相似文献   

8.
Summary When Candida tropicalis fermented xylose under oxygen limited conditions in the presence of increasing concentrations of polyethylene glycol (PEG), the ethanol production increased by a factor of two and the xylitol production was repressed by about 25%. Xylose assimilation and cell growth were not affected by the presence of PEG. The fermentation of glucose was not as strongly influenced by the presence of PEG as were xylose fermentations. The results are discussed in relation to the physico-chemical properties of a medium containing increasing concentrations of PEG. It is suggested that the presence of PEG might result in a fine-tuning of the teration in the medium, necessary for ethanol production from xylose with Candida tropicalis.  相似文献   

9.
A bacterium growing inside yeast cytoplasm was observed by light microscope without staining. The bacterium was separately stained from yeast cell by a fluorescent dye, 4′,6-diamidino-2-phenylindole (DAPI). The bacterium actively moved inside yeast cytoplasm and propagated in company with the yeast growth. The bacterium was separated from the yeast cytoplasm by selective disruption of yeast cells and the yeast without the intracellular bacterium (YWOB) was obtained by selective inactivation of bacterial cells. The yeast and the intracellular bacterium were identified as Candida tropicalis and Microbacterium sp., respectively. The length of Microbacterium sp. and C. tropicalis measured with SEM image was smaller than 0.5 μm and was larger than 5 μm, respectively. The yeast with the intracellular bacterium (YWIB) grew in a starch-based medium but the YWOB was not C. tropicalis has neither extracellular nor intracellular saccharification enzyme. Glucose was produced from starch by the extracellular crude enzyme (culture fluid) of Microbacterium sp. YWIB produced significantly more ethanol from glucose than YWOB but did not from starch. Conclusively, C. tropicalis is thought to catabolize starch dependent upon Microbacterium sp. growing in its cytoplasm and furnish stable habitat for the Microbacterium sp.  相似文献   

10.
Inteins (internal proteins) are self‐splicing transportable genetic elements present in conserved regions of housekeeping genes. The study highlights the importance of intein as a potential diagnostic marker for species‐specific identification of Candida tropicalis, a rapidly emerging opportunistic human pathogen. Initial steps of primer validation, sequence alignment, phylogenetic tree analysis, gel electrophoresis and real‐time polymerase chain reaction (PCR) assays were performed to confirm the specificity of the designed primers. The primers were selective for C. tropicalis with 100% inclusivity and showed no cross‐species or cross‐genera matches. The established technique is a prototype for developing multifaceted PCR assays and for point‐of‐care testing in near future.

Significance and Impact of the Study

Development of molecular markers for specific detection of microbial pathogens using real‐time polymerase chain reaction (PCR) is an appealing and challenging technique. A real‐time PCR is an emerging technology frequently used to detect the aetiologic agents. In recent times, designing species‐specific primers for pathogen detection is gaining momentum. The method offers rapid, accurate and cost‐effective strategy to identify the target, thus providing sufficient time to instigate appropriate chemotherapy. The study highlights the use of intein DNA sequence as molecular markers for species‐specific identification of Candida tropicalis. The study also offers a prototype model for developing multifaceted PCR assays using intein DNA sequences, and provides a developmental starting point for point‐of‐care testing in near future.  相似文献   

11.
The sensitivity to nystatin, 5-fluorocytosine (5-FC) or both was studied for 131 clinical isolates of Candida albicans, 47 of Candida parapsilosis, 34 of Candida tropicalis, 7 of Candida guilliermondii, 28 of Torulopsis glabrata and 1 of Torulopsis Candida.All strains were inhibited by concentrations of nystatin within the usual range of sensitivity except one strain of T. glabrata and another of T. Candida whose minima inhibitory concentrations (MICs) were respectively 250 U/ml and > 20000 U/ml.In respect to 5-FC it was found, after 7 days of incubation at 37 °C, the following frequencies of resistance: C. albicans 28/106 (26%), C. parapsilosis 11/47 (23%), C. tropicalis 24/34 (71%), C. guilliermondii 1/7, T. glabrata 1/28 (4%) and T. candida 0/1. It was particularly striking the activity of 5-FC against T. glabrata.  相似文献   

12.
Abstract

This study aimed to evaluate the effect of diclofenac on minimum inhibitory concentrations of antifungals against planktonic cells and biofilms of Candida tropicalis. Susceptibility testing of planktonic cells was evaluated using the broth microdilution assay and checkerboard method. Biofilm formation by C. tropicalis in the presence of diclofenac, alone or in combination with antifungals, was also evaluated, and scanning electron microscope (SEM) and confocal microscope (CLSM) analyses were performed. Diclofenac showed an MIC of 1024?μg?ml?1 against planktonic cells. The MICs of fluconazole and voriconazole against azole-resistant isolates were reduced 8- to 32-fold and 16- to 256-fold, respectively, when in combination with diclofenac. When in combination with fluconazole or voriconazole, diclofenac reduced the antifungal concentration necessary to inhibit C. tropicalis biofilm formation. In conclusion, diclofenac presents synergism with fluconazole and voriconazole against resistant C. tropicalis strains and improves the activity of these azole drugs against biofilm formation.  相似文献   

13.
The respiration of both glucose-grown and hydrocarbon-grown cells of Candida tropicalis pK 233 harvested in the stationary phases was not inhibited by cyanide when glucose was used as oxidation substrate, but the former was rather stimulated in the presence of cyanide. When n-alkanes were used as oxidation substrate, cyanide lowered the respiratory activities of both cells to about 50%. With respect to the susceptibility to cyanide, the younger cells growing on n-alkanes were less sensitive in hydrocarbon oxidizing ability than the older cells, whereas the older cells growing on glucose or n-alkanes were more resistant in glucose oxidizing ability than the younger cells. Acetate was oxidized by both glucose-grown and hydrocarbon-grown cells of the yeast. Laurate was oxidized by hydrocarbon-grown cells, but not by glucose-grown cells. The respiration on laurate was inhibited completely by 3.3 mM of cyanide. In general, hydrocarbon-grown cells of Candida tropicalis pK 233 were more sensitive to various respiratory inhibitors than glucose-grown cells, although the oxidation substrates had a significant effect.

The respiration of both glucose-grown and hydrocarbon-grown cells of C. albicans, C. guilliermondii and C. lipolytica harvested in the stationary phases was also resistant to cyanide when glucose was used as oxidation substrate. But the respiration on n-alkanes of these cells was inhibited significantly by 3.3 mM of cyanide except for C. albicans.  相似文献   

14.
Candida tropicalis was cultured in a chemostat-type fermentor with n-hexadecane, dispersed in water as submicron droplets, as the only carbon substrate. The emulsion as well as the aqueous medium were fed continuously into the fermentor. A Monod-type equation can correlate the specific group rate in the continuous fermentor with the concentration of submicron droplets. The same equation can also be fitted to the data for the conventional-type batch culture in the same fermentor in which an oil phase as well as an aqueous phase existed, if the hydrocarbon concentration in the aqueous phase excluding oil drops is employed as the substrate concentration. This demonstrates that Candida tropicalis takes up only submicron droplets of n-hexadecane as the carbon substrate.  相似文献   

15.
Microbial metabolomics has been seriously limited by our inability to perform a reliable separation of intra- and extracellular metabolites with efficient quenching of cell metabolism. Microbial cells are sensitive to most (if not all) quenching agents developed to date, resulting in leakage of intracellular metabolites to the extracellular medium during quenching. Therefore, as yet we are unable to obtain an accurate concentration of intracellular metabolites from microbial cell cultures. However, knowledge of the in vivo concentrations of intermediary metabolites is of fundamental importance for the characterization of microbial metabolism so as to integrate meaningful metabolomics data with other levels of functional genomics analysis. In this article, we report a novel and robust quenching method for microbial cell cultures based on cold glycerol-saline solution as the quenching agent that prevents significant leakage of intracellular metabolites and, therefore, permits more accurate measurement of intracellular metabolite concentrations in microbial cells.  相似文献   

16.
The properties of 53 fermentation type II strains of the genusCandida Berkhout were studied. The strains in question were originally identified asCandida tropicalis (Castellani) Berkhout,Candida pelliculosa Redaelli,Candida robusta Diddens et Lodder,Candida intermedia (Cif. et Ashf.) Langeron et Guerra,Candida langeroni Dietrichson,Candida obtusa (Dietrichson) v. Uden et Carmo Sousa and as various intermediate forms between these and other similar species. The classification criteria were extended by a number of very important characteristics, such as the degree of utilization of raffinose, the assimilation of lysine, xylose, cellobiose, maltotriose, maltotetraose and arabinose, virulence for mice, nutrient requirements, serological properties, etc. Actual classification was based on the numerical method of a similarity count. On the basis of this extension of the classification criteria, the characteristics of the speciesCandida tropicalis (Castellani) Berkhout andCandida pelliculosa Redaelli were defined in greater detail.Candida intermedia, evaluated on the basis of previously employed characteristics (lactose utilization, non-assimilation of KNO3) does not appear to be a separate species, but a collection of different border-line forms of other species of this group.Candida robusta Diddens et Lodder is regarded as a member of the genusSaccharomyces, notCandida. The varietiesCandida tropicalis var.lambica andCandida pelliculosa var.cylindrica likewise do not seem to belong to the species concerned and will have to be studied in greater detail from the genetic aspect, in relation to other membrane-forming types ofCandida. The authors' extension of the classification criteria considerably reduced intraspecific variability, particularly in the speciesCandida tropicalis (Castellani) Berkhout, and led to greater accuracy in the practical diagnosis of this species, which is frequent in clinical material.  相似文献   

17.
A large body of evidence exists suggesting that polyamines can play essential roles in cellular growth and differentiation. We examined the ability of -difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, the major rate-limiting enzyme in polyamine biosynthesis, to inhibit the growth of Candida albicans, C. tropicalis, and C. parapsilosis. Substantial growth-inhibition was observed for all three species at DFMO concentrations ranging from 1 to 100 mM. C. tropicalis was significantly more susceptible to DFMO than C. albicans or C. parapsilosis. Depletion of cellular polyamine pools was seen in all 3 species following exposure to DFMO and polyamine depletion enhanced the susceptibility of the organisms to DFMO. The action of DFMO was specifically antagonized by exogenous polyamines. These data suggest that polyamines are important in the growth of Candida spp. and that inhibitors of polyamine biosynthesis may be useful as antifungal agents.  相似文献   

18.
Candida tropicalis has been reported to be one of the Candida species which is most likely to cause bloodstream and urinary tract infections in hospitalized patients. Accordingly, the aim of this study was to characterize the virulence of C. tropicalis by assessing antifungal susceptibility and comparing the expression of several virulence factors. This study was conducted with seven isolates of C. tropicalis from urine and blood cultures and from central venous catheter. C. tropicalis ATCC 750 was used as reference strain. Yeasts adhered (2 h) to epithelial cells and silicone and 24 h biofilm biomass were determined by crystal violet staining. Pseudohyphae formation ability was determined after growth in fetal bovine serum. Enzymes production (hemolysins, proteases, phospholipases) was assessed by halo formation on agar plates. Susceptibility to antifungal agents was determined by E-test. Regarding adhesion, it can be highlighted that C. tropicalis strains adhered significantly more to epithelium than to silicone. Furthermore, all C. tropicalis strains were able to form biofilms and to express total hemolytic activity. However, protease was only produced by two isolates from urine and by the isolates from catheter and blood. Moreover, only one C. tropicalis (from catheter) was phospholipase positive. All isolates were susceptible to voriconazole, fluconazole and amphotericin B. Four strains were susceptible-dose dependent to itraconazole and one clinical isolate was found to be resistant.  相似文献   

19.
The isolate from urine of a dog with cystitis was molecularly identified Candida tropicalis and its minimum inhibitory concentration (MIC) was determined by a microdilution method. The 25S ribosomal DNA sequence analysis indicated that the clinical isolate was essentially identical to that of C. tropicalis and distinct from other Candida species. The MIC50 and the MIC90 of fluconazole (FLZ) for the clinical isolate of C. tropicalis was 6.25 and 25 μg/ml, respectively, indicating that susceptibility of the clinical isolate of C. tropicalis to FLZ was less than for other strains of C. tropicalis as well as C. albicans. The molecular analysis as presented in this study assisted the diagnosis of candidiasis by identifying the yeasts in urine samples within 2 days. The patient dog, a 10-year-old male Shih Tzu dog (7.0 kg) referred for examination of cystitis was successfully treated with itraconazole.  相似文献   

20.
The level of isocitrate lyase, an enzyme of glyoxylate cycle, in Candida tropicalis was enhanced at the later period of growth when the yeast was cultivated in a semisynthetic glucose medium. On the other hand, such increase in the enzyme activity was not observed in C. lipolytica grown under the same conditions. In the case of C. tropicalis, high concentrations of glucose remaining in the medium permitted the increase in the enzyme activity and the addition of ethanol, one of the major products from glucose, to the glucose medium did not stimulate the enzyme formation, indicating that the enhanced enzyme level in the yeast was not merely attributable to the release from the repression by glucose or to the induction by ethanol. Biotin, one of the growth-stimulating factors for C. tropicalis, affected markedly the level of isocitrate lyase. That is, the supplementation of biotin to the synthetic glucose medium inhibited completely the increase in the enzyme activity, and reversely the absence of biotin stimulated the enzyme formation in the glucose-assimilating cells. Thiamine, another growth-stimulating factor for C. tropicalis, did not show any effect on the level of isocitrate lyase in the yeast. The level of isocitrate lyase in C. lipolytica growing on glucose was not affected by biotin added exogenously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号