首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the responsible components of isolated sperm centrioles for the aster induction in sea urchin eggs, the sperm centriolar fraction was treated with various enzymes and was injected into the unfertilized eggs, then the aster formation in first division was observed after fertilization.
Treatment with 1 μg/ml or higher concentration of trypsin inhibited the centriolar activity for aster induction, whereas the treatment with 50 μg/ml of DNase 1, 80 μg/ml of RNase A, 40 μg/ml of RNase T1, or 0.1 μg/ml of trypsin had no inhibitory effect to induce asters. Injection of 0.5 μg/ml of RNase A or 1 mUg/ml of RNase T1 into the egg caused the detention of mitosis at the streak stage. To examine the temperature effect for aster induction, the centriolar fraction was pre-treated with boiling temperature, and it was found that the fraction became incapable to induce any aster.
Results obtained suggest that the effective components of the sperm centriolar fraction to induce asters in the fertilized sea urchin eggs are the proteins but not the nucleic acids. The aster inducing activity is destroyed by heat treatment.  相似文献   

2.
The eggs of Xenopus laevis are capable of initiating spindle formation and cleavage in response to microinjection of partially purified components of sea urchin sperm. High activity was assayed from a sperm head fraction obtained after removal of the plasma and nuclear membranes, acrosome, midpiece mitochondrion, and tail. Chromatin, the basal plate, and the distal centriole comprised the components of the head fraction. Disruption of the chromatin did not impair activity and purified chromatin lacked activity, suggesting the centriole and basal plate as the active materials. Low doses of active material induced apparently normal cleavage at 90 min after injection, with 16% of the eggs reaching the late blastula stage. High doses of active material induced precocious multiple cleavage, with some eggs cleaving into 3–10 segments within 20 min after injection. These eggs contained numerous spindles and asters in the animal hemisphere, as judged by light microscopy of stained sections. Microinjection of eggs is presented as a semi-quantitative bioassay for agents initiating spindle formation and cleavage.  相似文献   

3.
In the fertilization of sea urchin eggs, intracellular [Ca2+] (Cai) increases transiently and intracellular pH (pHi) elevates accordingly. Unlinking these two activating factors experimentally, the requirement of the increase in pHi for sperm aster formation in the sea urchin, Clypeaster japonicus, was investigated. When the eggs were injected with an EGTA or BAPTA solution, they incorporated sperm but did not organize the sperm aster. Using these sperm-incorporated eggs under the condition that an increase in Cai was blocked, pHi was regulated by two methods: (i) perfusing ammonium acetate-containing seawater; and (ii) injecting pH buffer solutions of various pH values. By either of the two methods, the sperm aster formed at pHi 7.0 or more and functioned in female pronuclear migration when the sperm aster reached the female pronucleus. Hence, the step of the transient increase in Cai at fertilization can be bypassed. In contrast, a pHi increase is indispensably required for sperm aster formation in sea urchin eggs. Moreover, under the condition that there was the transient increase in Cai, the threshold pHi value for sperm aster formation was pHi 7.0 or more. Consequently, whether a Cai increase on fertilization occurs or not, the threshold pHi value for sperm aster formation is constant in sea urchin eggs.  相似文献   

4.
5.
C A Gabel  E M Eddy  B M Shapiro 《Cell》1979,18(1):207-215
Sea urchin and mouse sperm that are labeled on their surfaces with fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TMRTC) or 125I-diiodofluorescein isothiocyanate (125IFC) remain viable and can fertilize eggs. When sea urchin eggs were fertilized with 125IFC-labeled sperm, the radioactivity from the sperm was quantitatively transferred to the egg (at a ratio of one sperm equivalent per egg) and persisted in the embryo as it developed to the pluteus larval state (5 days at 12 degrees C). The radioactivity was acid-precipitable and was associated with the particulate fraction of embryo homogenates. In addition, FITC-labeled sea urchin sperm were used to fertilize eggs, and the labeled components were followed by fluorescence microscopy. In the embryo, labeled sperm components were present as a discrete patch that was partitioned unequally during early cleavages. In experiments using mouse sperm labeled with TMRTC, the labeled sperm components were also transferred to the embryo as a discrete patch that was again distributed unequally after cleavage. This physiological cell fusion system therefore has distinctive characteristics: there is limited lateral mobility of surface components, which have a low turnover rate unlike that see in other systems. In this paper, we discussed the possible morphogenetic role of this unusual behavior.  相似文献   

6.
Insemination of sea urchin (Arbacia) ova with mussel (Mytilus) sperm has been accomplished by treating eggs with trypsin and suspending the gametes in seawater made alkaline with NaOH. Not all inseminated eggs undergo a cortical granule reaction. Some eggs either elevate what remains of their vitelline layer or demonstrate no cortical modification whatsoever. After its incorporation into the egg, the nucleus of Mytilus sperm undergoes changes which eventually give rise to the formation of a male pronucleus. Concomitant with these transformations, a sperm aster may develop in association with the centrioles brought into the egg with the spermatozoon. Both the male pronucleus and the sperm aster may then migrate centrad to the female pronucleus. Evidence is presented which suggests that fusion of the male pronuclei from Mytilus sperm with female pronuclei from Arbacia eggs may occur, although this was not directly observed. These results demonstrate that Mytilus sperm nuclei are able to react to conditions within Arbacia eggs and differentiate into male pronuclei.  相似文献   

7.
Studies examining cytoplasmic and sperm nuclear transformations in sea urchin (Arbacia punctulata) eggs inseminated at different periods after ammonia activation have been caried out at the light- and electron-microscopic levels of observation. Arbaca eggs treated with ammonia-seawater demonstrated chromosome condensation after DNA synthesis and underwent a chromosome cycle similar to that described for Lytechinus [Mazia, 1947]. Cortical granule reaction, fertilization cone formation, and sperm aster development in eggs fertilized at 20 (interphase), 50 (prometaphase), and 180 (interphase) min after ammonia activation were structurally simialr to processes in untreated zygotes. Cyclical changes in the formation of fertilization cones and sperm asters, as reported for eggs fertilized after activation by agents that induce a cortical granule reaction, were not observed. Although sperm nuclear transformations were prolonged (14 vs 18 min), male pronuclei that developed in eggs fertilized 20 min after ammonia activation were morphologically similar to those observed in fertilized, untreated ova and incorporated 3H-thymidine. Sperm incorporated into eggs at 50 min after ammonia activation underwent nuclear envelope breakdown and chromatin despersion; however, 3H-thymidine incorporation was not observed, and male pronuclei rarely developed (less than 5% of all specimens examined). Subsequent to dispersion, the paternal chromatin condensed into chromosomes which were associated with an aster. These results demonstrate that although ammonia-activated eggs inseminated at interphase or prometaphase undergo similar cytoplasmic alterations, sperm nuclear transformations vary with the chromosome cycle of the egg.  相似文献   

8.
Summary Interspecies intracytoplasmic sperm injection has been carried out to understand species-specific differences in oocyte environments and sperm components during fertilization. While sperm aster organization during cat fertilization requires a paternally derived centriole, mouse and hamster fertilization occur within the maternal centrosomal components. To address the questions of where sperm aster assembly occurs and whether complete fertilization is achieved in cat oocytes by interspecies sperm, we studied the fertilization processes of cat oocytes following the injection of cat, mouse, or hamster sperm. Male and female pronuclear formations were not different in the cat oocytes at 6 h following cat, mouse or hamster sperm injection. Microtubule asters were seen in all oocytes following intracytoplasmic injection of cat, mouse or hamster sperm. Immunocytochemical staining with a histone H3-m2K9 antibody revealed that mouse sperm chromatin is incorporated normally with cat egg chromatin, and that the cat eggs fertilized with mouse sperm enter metaphase and become normal 2-cell stage embryos. These results suggest that sperm aster formation is maternally dependent, and that fertilization processes and cleavage occur in a non-species specific manner in cat oocytes.  相似文献   

9.
Flagella and their microtubules obtained from sea urchin ( Hemicentrotus pulcherrimus ) spermatozoa were injected into unfertilized eggs of the medaka ( Oryzias latipes ) with a micropipette. Upon activation, some of the eggs began the first cleavage with three or more irregular blastomeres, and developed to the morula stage. It is suggested that sperm flagellar microstubule material is one of the cleavage initiation substances.  相似文献   

10.
Motility and the behavior and inheritance of centrosomes are investigated during mouse and sea urchin fertilization. Sperm incorporation in sea urchins requires microfilament activity in both sperm and eggs as tested with Latrunculin A, a novel inhibitor of microfilament assembly. In contrast the mouse spermhead is incorporated in the presence of microfilament inhibitors indicating an absence of microfilament activity at this stage. Pronuclear apposition is arrested by microfilament inhibitors in fertilized mouse oocytes. The migrations of the sperm and egg nuclei during sea urchin fertilization are dependent on microtubules organized into a radial monastral array, the sperm aster. Microtubule activity is also required during pronuclear apposition in the mouse egg, but they are organized by numerous egg cytoplasmic sites. By the use of an autoimmune antibody to centrosomal material, centrosomes are detected in sea urchin sperm but not in unfertilized eggs. The sea urchin centrosome expands and duplicates during first interphase and condenses to form the mitotic poles during division. Remarkably mouse sperm do not appear to have the centrosomal antigen and instead centrosomes are found in the unfertilized oocyte. These results indicate that both microfilaments and microtubules are required for the successful completion of fertilization in both sea urchins and mice, but at different stages. Furthermore they demonstrate that centrosomes are contributed by the sperm during sea urchin fertilization, but they might be maternally inherited in mammals.  相似文献   

11.
We have assayed various materials for their ability to induce aster formation by microinjection into unfertilized eggs of Xenopus laevis. We have found that purified basal bodies from Chlamydomonas reinhardtii and Tetrahymena pyriformis induce the formation of asters and irregular cleavage furrows within 1 h after injection. Other microtubule structures such as flagella, flagellar axonemes, cilia, and brain microtubules are completely ineffective at inducing asters or cleavage furrows in unfertilized eggs. When known amounts of sonicated Tetrahymena and Chlamydomonas preparations are injected into unfertilized eggs, 50% of the injected eggs show a furrowing response at approximately 3 cell equvalents for Chlamydomonas and 0.1 cell equivalent for Tetrahymena. These results are close to those expected if basal bodies were the effective astral-inducing agent in these cells. Other materials effective at inducing asters in unfertilized eggs, such as crude brain nuclei, sperm, and a particulate fraction from brain known to induce parthenogenesis in eggs of Rana pipiens, probably contain centrioles as the effective agent. Our experiments provide the first functional assay to indicate that centrioles play an active role in aster initiation. None of the injected materials effective in unfertilized eggs produced any observable response in fully grown oocytes. Oocytes and eggs were found to have equal tubulin pools as judged by colchicine-binding activity. Therefore, the inability of oocytes to form asters cannot be due to a lack of an organizing center or to a lack of tubulin. Experiments in which D2O was found to stimulate aster-like fibrous areas in eggs but not oocytes suggest that the inability of oocytes to form asters may be due to an inability of tubulin in oocytes to assemble.  相似文献   

12.
Although mechanisms that contribute to microtubule (MT) aster positioning have been extensively studied, still little is known on how asters move inside cells to faithfully target a cellular location. Here, we study sperm aster centration in sea urchin eggs, as a stereotypical large-scale aster movement with extreme constraints on centering speed and precision. By tracking three-dimensional aster centration dynamics in eggs with manipulated shapes, we show that aster geometry resulting from MT growth and interaction with cell boundaries dictates aster instantaneous directionality, yielding cell shape–dependent centering trajectories. Aster laser surgery and modeling suggest that dynein-dependent MT cytoplasmic pulling forces that scale to MT length function to convert aster geometry into directionality. In contrast, aster speed remains largely independent of aster size, shape, or absolute dynein activity, which suggests it may be predominantly determined by aster growth rate rather than MT force amplitude. These studies begin to define the geometrical principles that control aster movements.  相似文献   

13.
"Spiral asters" composed of swirls of subcortical microtubules were recently described in fertilized eggs of the sea urchin Strongylocentrotus purpuratus. In our study, these structures did not occur at culture temperatures below 16 degrees C. When the culture temperature was elevated, however, "spiral asters" routinely appeared during a susceptible period before mitotic prophase when the sperm aster-diaster normally exists. A massive and protracted rotation of the cytoplasm (excluding an immobile cortex and perinuclear region) began within 1 min of exposure to elevated temperature. Fibrils of the "spiral aster" could be seen within this rotating mass even by bright-field microscopy. The identity of microtubules in these structures was confirmed by indirect immunofluorescence microscopy. A mechanistic association between "spiral aster" formation and cytoplasmic rotation was indicated by the simultaneous inhibitory effects of microtubule and dynein poisons. Inhibitors of microfilaments, however, had no effect. We infer that elevated temperature induces unique changes in the microtubules of the pre-prophase sperm aster-diaster, resulting in cytoplasmic rotation and the spiral configuration of microtubules. Comparative cytological evidence supports the idea that "spiral asters" do not normally occur in fertilized sea urchin eggs. Biogeographic evidence for S. purpuratus indicates that fertilization and development naturally occur below 15 degrees C, hence "spiral asters" in eggs of this species should be regarded as abnormalities induced in the laboratory by unnaturally elevated temperatures.  相似文献   

14.
Microtubule and centrosome distribution during sheep fertilization   总被引:3,自引:0,他引:3  
The distribution of microtubules and centrosomes was studied during sheep fertilization by electron and immunofluorescence microscopy. Tubulin and centrosomal material was identified with monoclonal anti-alpha-tubulin and MPM-2 antibodies, respectively. In ovulated eggs, microtubules were exclusively found in the meiotic spindle and centrosomal material at each of its poles. At fertilization, sperm centrosomes were incorporated into the egg and organized the sperm astral microtubules. During pronuclear development and migration, the sperm aster increased in size; microtubules of the sperm aster extended from the male pronucleus to the egg center and towards the female pronucleus. The position of the sperm aster during pronuclear migration suggests that it plays a role in this process. When the pronuclei were in apposition in the egg center, a dense array of microtubules and the centrosomal material were present between the two pronuclei. The proximal centriole of the sperm was identified by electron microscopy, between the apposed pronuclei. The centrosomal material extending around the centriole and the sperm neck and proximal mid-piece, apparently contained several foci from which microtubules radiated. These data suggest that in sheep unlike in mice, centrosomal material originating from the sperm is involved in the fertilization events.  相似文献   

15.
The adult male Japanese quail produces white foam from the cloacal gland, which is transferred to the female proctodeum during natural mating. The physiological role of foam on quail spermatozoa is still unclear. Therefore, attempts have been made to understand the effect of cloacal foam on motility and metabolism of quail spermatozoa. The profile of various biochemical constitutes in the foam extract was investigated. The addition of foam extract to neat semen completely disaggregated the clumps of spermatozoa leading to vigorous motility. The metabolic rate (MBRT) of the spermatozoa was significantly increased with the addition of foam extract. The foam extract was sub fractionated into seven different fractions by using the molecular cut off devices. Among all the seven sub-fractions from the foam extract, the addition of < 1 KDa sub-fraction contained lactate and has enhanced sperm motility and metabolism. Another fraction (3-10 KDa) has non-protein and non-heparin components which completely disaggregated the clumped quail spermatozoa. However, the remaining fractions did not show any effect on quail spermatozoa. It can be concluded from the present investigation that the lactate present in foam might be a fuel for sperm metabolism and motility. Furthermore, low molecular weight (3-10 KDa) components in the foam may responsible for sperm disaggregation.  相似文献   

16.
Cross-fertilization between sea urchin eggs (Strongylocentrotus nudus) and starfish sperm (Asterina pectinifera) was induced by treatment with polyethylene glycol (PEG). Without treatment with PEG, the denuded egg surface (jelly coat- and vitelline coat-free) engulfed the head of acrosome-reacted sperm; however, sperm penetration did not occur [Kyozuka and Osanai, 1988]. When these eggs were exposed briefly to PEG (molecular weight 3,000) in seawater, the sperm entered the egg by membrane fusion. Cortical granules were discharged, and embryogenesis began following sperm penetration. PEG did not induce parthenogenesis in Strongylocentrotus eggs. Egg activation is thus closely linked with gamete membrane fusion.  相似文献   

17.
A method is described for isolating preparative quantities of plasma membranes from sea urchin sperm. The final membrane fraction is homogeneous by sucrose density sedimentation and is enriched in adenylate cyclase as well as in the four glycoproteins accessible to radioiodination of intact sperm. The electrophoretic profiles of sperm membranes from three sea urchin species are very similar. The membrane preparation consists primarily of sealed vesicles which release carboxyfluorescein when exposed to detergents or distilled water. Ninety-two percent of the 125I-labeled vesicle material binds to wheat germ lectin columns, suggesting a right-side-out orientation. The isolated sperm membrane vesicles exhibit species specific adhesion to the surfaces of sea urchin eggs; this adhesion is blocked by pretreatment of the vesicles with trypsin or egg jelly. This method will be useful for isolating biologically active sperm membrane components involved in sperm-egg recognition during fertilization.  相似文献   

18.
In human fertilization, the sperm introduces the centrosome; the microtubule-organizing center and microtubules are organized within the inseminated egg from the sperm centrosome. These microtubules form a radial array, called the sperm aster, the functioning of which is essential to pronuclear movement for union of male and female genome. The sperm centrosomal function is considered to be necessary for the normal human fertilization process. Therefore, the dysfunction of sperm centrosome is a possible cause of human fertilization failure. However, little information is available regarding human sperm centrosomal function during fertilization in clinically assisted reproductive technology. To assess the human sperm centrosomal function, we examined sperm aster formation and pronuclear decondensation following intracytoplasmic sperm injection (ICSI) with human sperm into the bovine egg using a Piezo-driven pipette and ethanol activation of eggs. After human sperm incorporation into bovine egg, we observed that the sperm aster was organized from sperm centrosome, and that the sperm aster was enlarged as the sperm nuclei underwent pronuclear formation. The sperm aster formation rate at 6 h post-ICSI and the male pronuclear formation rate at 8-12 h post-ICSI were 60.0% and 83.3%, respectively. No difference of the sperm aster formation rate and the male pronuclear formation rate was observed between eggs activated with ethanol and eggs without artificial activation. We concluded that this heterologous Piezo-ICSI system into bovine egg can be a novel assay for human sperm centrosomal function, and it is possible to explicate a course of fertilization failure that was unknown until now.  相似文献   

19.
Fertilization and the cytoskeleton in the mouse   总被引:1,自引:0,他引:1  
The behaviour and roles of the microtubule network and the microfilaments following fertilization in the mouse oocyte are described. The microtubule network is organized by multiple microtubule organizing centres (MTOCs) and these play a major role in establishing spindle structure and pronuclear movement following fertilization; in contrast to sea urchin and frog eggs, the sperm centriole plays little part in organization of the post-fertilization spindle. The microfilaments are required for spindle rotation, polar body formation, certain changes in the egg cortex, and also for pronuclear movement. Influences of the chromosomes on microtubule and microfilament organisation are also discussed.  相似文献   

20.
The movements during fertilization have been investigated with differential interference optics and recorded by time-lapse video microscopy of the clear egg of the sea urchin Lytechinus variegatus. Sperm-egg binding occurs rapidly, and following a time when the sperm gyrates on the egg surface, gamete fusion occurs. A rapid cortical contraction radiates from the fusion site and is succeeded by the elevation of the fertilization coat. Sperm incorporation occurs in two stages: the fertilization cone enlarges around and above the erect and immotile sperm and then the sperm head, midpiece, and tail are displaced along the subsurface region of the egg at an average rate of 3.5 μm/min. The formation of the sperm aster moves the male pronucleus from the subsurface region of the egg toward the egg center at a rate of 4.9 μm/min. When the rays of the radial sperm aster appear to contact the female pronucleus, the female pronucleus migrates at a rate of 14.6 μm/min to the center of the sperm aster. The now adjacent pronuclei are moved to the egg center by the continuing enlargement of the sperm aster at a rate of 2.6 μm/min. Syngamy is usually preceded by the disassembly of the sperm aster. The centripetal migration of the pronuclei appears involved in the establishment of the first embryonic axis; cleavage occurs within 8° of the direction of this centering motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号