首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen tube cells adhere to the wall surface of the stylar transmitting tract epidermis in lily. This adhesion has been proposed as essential for the proper delivery of the sperm cells to the ovule. An in vitro adhesion bioassay has been used to isolate two stylar molecules required for lily pollen tube adhesion. The first molecule was determined to be a small, cysteine-rich protein with some sequence similarity to lipid transfer proteins and now called stigma/stylar cysteine-rich adhesin (SCA). The second, larger, molecule has now been purified from style fragments and characterized. Chemical composition, specific enzyme degradations, and immunolabeling data support the idea that this molecule required for pollen tube adhesion is a pectic polysaccharide. In vitro binding assays revealed that this lily stylar adhesive pectin and SCA are able to bind to each other in a pH-dependent manner.  相似文献   

2.
Kim ST  Zhang K  Dong J  Lord EM 《Plant physiology》2006,142(4):1397-1411
Pollen tube adhesion and guidance on extracellular matrices within the pistil are essential processes that convey the pollen tube cell and the sperm cells to the ovule. In this study, we purified an additional molecule from the pistil that enhances pollen tube adhesion when combined with the SCA (stigma/stylar cysteine-rich adhesin)/pectin matrix in our in vitro assay. The enhancer of adhesion was identified as free ubiquitin (Ub). This was confirmed by use of bovine Ub as a substitute for lily (Lilium longiflorum Thunb.) stigma Ub. To study the interaction of SCA and Ub with the lily pollen tube, we labeled both proteins with biotin. We observed uptake of biotin-labeled SCA and Ub into the pollen tube cells in vitro using confocal microscopy. For SCA, a strong signal occurred first at the tip of the pollen tube, suggestive of an endocytosis event, and then progressively throughout the tube cytoplasm. SCA was also localized inside the in vivo pollen tube using immunogold electron microscopy and found to be present in endosomes, multivesicular bodies, and vacuoles, all known to be endocytic compartments. It was also confirmed that SCA is endocytosed in the in vitro adhesion assay. Internalization of SCA was increased in pollen tubes treated with exogenous Ub compared to those without Ub, suggesting that Ub may facilitate SCA endocytosis. These results show that Ub can act as an enhancer of pollen tube adhesion in vitro and that it is taken up into the pollen tube as is SCA. The Ub machinery may play a role in pollen tube adhesion and guidance in lily.  相似文献   

3.
The contribution of the cellular and fibrillar microenvironment to angiogenesis still remains unclear. Our purpose was to evaluate the effect of the extracellular matrix deposited by fibroblasts on the capacity of human endothelial cells to form capillaries in vitro. We have drastically decreased the amount of extracellular matrix surrounding fibroblasts in our model of endothelialized-reconstructed connective tissue (ERCT) by culturing it without ascorbate. Under these conditions, the number of capillary-like tubes (CLT) formed by endothelial cells was reduced by up to 10-fold after 31 days of culture compared to controls. This decrease was due neither to a variation of MMP-2 and MMP-9 secretion, nor to a reduction in the number of fibroblasts and/or endothelial cells, or a diminution of fibroblast growth factor 2 (FGF2) synthesis. The secretion of vascular endothelial growth factor (VEGF) by fibroblasts accounted for 25-70% of the capillary-like tube formation when tissues were cultured in the presence or absence of ascorbate, as demonstrated by VEGF-blocking studies. The culture of endothelial cells on a similar extracellular matrix but in the absence of living fibroblasts did not promote the formation of CLT, even when tissues were fed with fibroblast-conditioned medium. Thus, the deposition of a rich extracellular matrix by living fibroblasts appeared necessary, but not sufficient to promote capillary-like formation. Fibroblasts seem to induce endothelial cells to spontaneously form CLT by secreting and organizing an abundant extracellular matrix, which creates a microenvironment around cells that could in turn trap growth factors produced by fibroblasts and promote three-dimensional cell organization.  相似文献   

4.
Class III pistil-specific extensin-like proteins (PELPIII) are chimeric hydroxyproline-rich glycoproteins with properties of both extensins and arabinogalactan proteins. The abundance and specific localization of PELPIII in the intercellular matrix (IM) of tobacco (Nicotiana tabacum) stylar transmitting tissue, and translocation of PELPIII from the IM into the pollen tube wall after pollination, presume the biological function of these glycoproteins to be related to plant reproduction. Here we show that in in vitro assays the translocation of PELPIII is specifically directed to the callose inner wall of the pollen tubes, indicating that protein transfer is not dependent on the physiological conditions of the transmitting tract. We designed a set of experiments to elucidate the biological function of PELPIII in the stylar IM. To study the function of the specific interaction between PELPIII proteins and the pollen tube wall, one of the PELPIII proteins (MG15) was ectopically expressed in pollen tubes and targeted to the tube wall. We also generated transgenic tobacco plants in which PELPIII proteins were silenced. In vitro bioassays were performed to test the influence of purified PELPIII on pollen tube growth, as compared to tobacco transmitting tissue-specific proteins (TTS) that were previously shown to stimulate pollen tube growth. The various tests described for activity of PELPIII proteins all gave consistent and mutually affirmative results: the biological function of PELPIII proteins is not directly related to pollen tube growth. These data show that similar stylar glycoproteins may act very differently on pollen tubes.  相似文献   

5.
During pollination the pollen tube grows into the style and toward the ovary via the transmitting tract. In lily the growth of pollen tubes involves tube cell adhesion to transmitting tract cells. We reported two molecules involved in this adhesion event. One is a pectic polysaccharide and the other, a 9 kDa basic protein named SCA for stigma/stylar cysteine-rich adhesin. SCA, which shows some identity with LTP (lipid transfer protein), was localized to the transmitting tract epidermis of the style where pollen tubes adhere. The present studies on the expression of SCA indicate that the protein has a similar expression pattern with LTP1 in Arabidopsis and that the protein is abundant in both the stigma and the style. For further proof of its role in pollen tube adhesion the activity of Escherichia coli-expressed protein has been studied in an in vitro adhesion assay system.  相似文献   

6.
S-RNase participates in at least three mechanisms of pollen rejection. It functions in S-specific pollen rejection (self-incompatibility) and in at least two distinct interspecific mechanisms of pollen rejection in Nicotiana. S-specific pollen rejection and rejection of pollen from Nicotiana plumbaginifolia also require additional stylar proteins. Transmitting-tract-specific (TTS) protein, 120 kDa glycoprotein (120K) and pistil extensin-like protein III (PELP III) are stylar glycoproteins that bind S-RNase in vitro and are also known to interact with pollen. Here we tested whether these glycoproteins have a direct role in pollen rejection. 120K shows the most polymorphism in size between Nicotiana species. Larger 120K-like proteins are often correlated with S-specific pollen rejection. Sequencing results suggest that the polymorphism primarily reflects differences in glycosylation, although indels also occur in the predicted polypeptides. Using RNA interference (RNAi), we suppressed expression of 120K to determine if it is required for S-specific pollen rejection. Transgenic SC N. plumbaginifolia x SI Nicotiana alata (S105S105 or SC10SC10) hybrids with no detectable 120K were unable to perform S-specific pollen rejection. Thus, 120K has a direct role in S-specific pollen rejection. However, suppression of 120K had no effect on rejection of N. plumbaginifolia pollen. In contrast, suppression of HT-B, a factor previously implicated in S-specific pollen rejection, disrupts rejection of N. plumbaginifolia pollen. Thus, S-specific pollen rejection and rejection of N. plumbaginifolia pollen are mechanistically distinct, because they require different non-S-RNase factors.  相似文献   

7.
8.
Upon germination on the stigma, pollen tubes elongate in the stylar transmitting tract, aided by female factors, with speed and directionality not mimicked in in vitro pollen tube growth cultures. We have shown that a stylar transmitting tissue arabinogalactan protein (AGP) from Nicotiana tabacum (tobacco), TTS protein, stimulates pollen tube growth in vivo and in vitro and attracts pollen tubes grown in a semi-in vivo culture system. It has been reported that the self-incompatible Nicotiana alata produced a stylar glycoprotein, GaRSGP, which had a backbone polypeptide that shared 97% identity with those of TTS proteins but some of its properties were different from those described for TTS proteins. We report here the characterization of a family of stylar transmitting tissue glycoproteins from N. alata that is virtually identical to tobacco TTS proteins and which we refer to as NaTTS proteins. Like their tobacco counterparts, NaTTS proteins are recognized by the traditional AGP-diagnostic reagent beta-glucosyl Yariv reagent, and they are also recognized by JIM13, a monoclonal antibody against AGP. NaTTS proteins also stimulate pollen tube elongation in vitro and attract pollen tubes in a semi-in vivo pollen tube culture system. Biochemical and immunological characterization of NaTTS proteins revealed that they have extraordinary variability in the extent of sugar modifications of their polypeptide backbones. The extent of sugar modifications on NaTTS proteins significantly affects their biochemical properties, influences how they interact with the transmitting tissue extracellular matrix, and affects their solubility from this matrix. Our results suggest that the strategy used to purify GaRSGP only recovered a less glycosylated, more tightly extracellular matrix-bound sub-population of the entire spectrum of N. alata TTS proteins.  相似文献   

9.
10.
Direct pollen transformation method improves the classical transformation procedures because some tissue culture steps and subsequent regeneration can be avoided. A critical step in the development of Agrobacterium-mediated transformation is the establishment of optimum conditions for T-DNA delivery into tissue. The pollen grains of David lily (Lilium davidii Duchartre) are transformable by Agrobacterium during their germination, and extremely high GUS expression frequency of pollen had been achieved (92.7 ± 2.7%), but not for the ungerminated pollen. The culture medium, Agrobacterium cell density, duration of co-cultivation, and the combination of bacterial strains and plasmids should be optimized to get the highest transformation frequency. Thus, a method for pollen monocotyledonous species reproductive tissues transformation by Agrobacterium in monocots has been successfully developed. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 3, pp. 475–480 The text was submitted by the authors in English.  相似文献   

11.
The composition of ionogenic groups and ion-exchange capacity were studied in the polymeric matrix of cell walls isolated from the pollen grain and tissues of vegetative organs (leaves and stems) of Lilium longiflorum Thunb. The ion-exchange capacity was evaluated at different pH values and ionic strength of 100 mM. In the two-layered pollen wall and the somatic cell walls four types of ionogenic groups were found: amino groups, two carboxyl groups (represented by residues of uronic and hydroxycinnamic acids), and phenolic OH-groups. The groups of all four types are present in the intine, whereas the exine contains one type of anion-exchange and two types of cation-exchange groups. The contents of each type group and their ionization constants were determined. The qualitative and quantitative compositions of structural polymers of the pollen intine and somatic cell walls are significantly different. It is suggested that hydroxycinnamic acids should be involved in cross-linking of polysaccharide chains in both the intine and somatic cell primary walls, and such cross-links play a crucial role in the structural organization and integrity of the pollen grain wall.  相似文献   

12.
LLA23, an abscisic acid-, stress- and ripening-induced (ASR) protein, was isolated previously from lily ( Lilium longiflorum ) pollen. Close examination of the C-terminus of this ASR protein revealed the presence of basic regions reminiscent of a nuclear localization signal (NLS). Fluorescence microscopy studies using green fluorescent protein (GFP) fusion proteins indicated that the bipartite NLS in LLA23 exhibited nuclear localization properties. Accordingly, mutations in the NLS motifs of LLA23 defined two regions, either of which was necessary for partial nuclear targeting and both of which were required for complete nuclear localization. In addition, oligonucleotide-directed mutagenesis identified lysine residues within the NLS necessary for nuclear localization. Immunogold localization confirmed that the protein was located to both the cytoplasm and nucleus of generative and vegetative cells of pollen grains; the generative nuclei showed the highest number of LLA23 labelling. The possible function of ASR proteins in both the cytoplasm and nuclei of pollen grains is discussed.  相似文献   

13.
Wu Y  Yan J  Zhang R  Qu X  Ren S  Chen N  Huang S 《The Plant cell》2010,22(11):3745-3763
Actin cables in pollen tubes serve as molecular tracks for cytoplasmic streaming and organelle movement and are formed by actin bundling factors like villins and fimbrins. However, the precise mechanisms by which actin cables are generated and maintained remain largely unknown. Fimbrins comprise a family of five members in Arabidopsis thaliana. Here, we characterized a fimbrin isoform, Arabidopsis FIMBRIN5 (FIM5). Our results show that FIM5 is required for the organization of actin cytoskeleton in pollen grains and pollen tubes, and FIM5 loss-of-function associates with a delay of pollen germination and inhibition of pollen tube growth. FIM5 decorates actin filaments throughout pollen grains and tubes. Actin filaments become redistributed in fim5 pollen grains and disorganized in fim5 pollen tubes. Specifically, actin cables protrude into the extreme tips, and their longitudinal arrangement is disrupted in the shank of fim5 pollen tubes. Consequently, the pattern and velocity of cytoplasmic streaming were altered in fim5 pollen tubes. Additionally, loss of FIM5 function rendered pollen germination and tube growth hypersensitive to the actin-depolymerizing drug latrunculin B. In vitro biochemical analyses indicated that FIM5 exhibits actin bundling activity and stabilizes actin filaments. Thus, we propose that FIM5 regulates actin dynamics and organization during pollen germination and tube growth via stabilizing actin filaments and organizing them into higher-order structures.  相似文献   

14.
In vitro pollen germination and tube length studies are valuable in elucidating mechanisms (germination capacity and rate, tube growth rate) possibly associated with genetic differences in male transmission. On each of two collection dates, the percentage germination and tube length of the binucleate pollen grains from five diverse sesame (Sesamum indicum L.) genotypes were determined at eight times (30, 60, 90, 120, 150, 180, 240, 300 min) after inoculation on a semisolid medium containing 10% (100 g l-1) sucrose (C12H22O11), 0.4% (4 g l-1) purified agar (Fisher Lot 914409), 0.1% (1 g l-1) calcium nitrate [Ca(NO3)2 ⋅ 4H2O] and 0.01% (100 mg l-1) boric acid (H3BO3). Before heating, the pH of the medium was adjusted to 7.0 with a 0.1 N potassium hydroxide (KOH) solution. Over the five genotypes, 5% germination was found 30 min after inoculation and a maximum of 37% germination 120 min after inoculation with no significant changes thereafter. As indicated by the highly significant genotype×time after inoculation interaction, the genotypes differed in the time at which germination was initiated and maximum germination attained. Over all five genotypes, the tube length was 91 μm 30 min after inoculation, reaching a maximum of 1000 μm 300 min after inoculation. As shown by the highly significant genotype×time after inoculation interaction, the genotypes differed in the time at which tube length was observed and the maximum tube length was attained. Little or no relationship between percent germination and tube length was observed among the genotypes. For both percent germination and tube length, the statistical significance of collection date and its interactions with genotype and time after inoculation indicated that environment in the form of collection date was also an influencing factor. These results indicated that genetic differences among genotypes were present for in vitro germination capacity, germination rate and tube growth rate and that these factors singly or in combination could alter male transmission of genetic elements. Received: 5 February 1997 / Accepted: 23 June 1997  相似文献   

15.
16.
We have analysed the function of a gene of Bacillus subtilis , the product of which shows significant homology with eukaryotic SMC proteins essential for chromosome condensation and segregation. Two mutant strains were constructed; in one, the expression was under the control of the inducible spac promoter (conditional null) and, in the other, the gene was disrupted by insertion (disrupted null). Both could form colonies at 23°C but not at 37°C in the absence of the expression of the Smc protein, indicating that the B. subtilis smc gene was essential for cell growth at higher temperatures. Microscopic examination revealed the formation of anucleate and elongated cells and diffusion of nucleoids within the elongated cells in the disrupted null mutant grown at 23°C and in the conditional null mutant grown in low concentrations of IPTG at 37°C. In addition, immunofluorescence microscopy showed that subcellular localization of the Spo0J partition protein was irregular in the smc disrupted null mutant, compared with bipolar localization in wild-type cells. These results indicate that the B. subtilis smc gene is essential for chromosome partition. The role of B. subtilis Smc protein in chromosome partition is discussed.  相似文献   

17.
R A Katz  G Merkel  J Kulkosky  J Leis  A M Skalka 《Cell》1990,63(1):87-95
The integration of viral DNA into the host cell chromosome is an essential feature of the retroviral life cycle. The integration reaction requires cis-acting sequences at the ends of linear viral DNA and a trans-acting product of the pol gene, the integration protein (IN). Previously, we demonstrated that avian sarcoma-leukosis virus (ASLV) IN is able to carry out the first step in the integration process in vitro: nicking of the ends of linear viral DNA. In this paper, using two independent assays, we demonstrate that IN, alone, is sufficient to carry out the second step: cleavage and joining to the target DNA. These results demonstrate that the retroviral IN protein is an integrase.  相似文献   

18.
Hatta M  Kawaoka Y 《Journal of virology》2003,77(10):6050-6054
The NB protein of influenza B virus is thought to function as an ion channel and therefore would be expected to have an essential function in viral replication. Because direct evidence for its absolute requirement in the viral life cycle is lacking, we generated NB knockout viruses by reverse genetics and tested their growth properties both in vitro and in vivo. Mutants not expressing NB replicated as efficiently as the wild-type virus in cell culture, whereas in mice they showed restricted growth compared with findings for the wild-type virus. Thus, the NB protein is not essential for influenza B virus replication in cell culture but promotes efficient growth in mice.  相似文献   

19.
* BACKGROUND AND AIMS: High-temperature environments with >30 degrees C during flowering reduce boll retention and yield in cotton. Therefore, identification of cotton cultivars with high-temperature tolerance would be beneficial in both current and future climates. * METHODS: Response to temperature (10-45 degrees C at 5 degrees C intervals) of pollen germination and pollen tube growth was quantified, and their relationship to cell membrane thermostability was studied in 12 cultivars. A principal component analysis was carried out to classify the genotypes for temperature tolerance. * KEY RESULTS: Pollen germination and pollen tube length of the cultivars ranged from 20 to 60 % and 411 to 903 microm, respectively. A modified bilinear model best described the response to temperature of pollen germination and pollen tube length. Cultivar variation existed for cardinal temperatures (T(min), T(opt) and T(max)) of pollen germination percentage and pollen tube growth. Mean cardinal temperatures calculated from the bilinear model for the 12 cultivars were 15.0, 31.8 and 43.3 degrees C for pollen germination and 11.9, 28.6 and 42.9 degrees C for pollen tube length. No significant correlations were found between pollen parameters and leaf membrane thermostability. Cultivars were classified into four groups based on principal component analysis. * CONCLUSIONS: Based on principal component analysis, it is concluded that higher pollen germination percentages and longer pollen tubes under optimum conditions and with optimum temperatures above 32 degrees C for pollen germination would indicate tolerance to high temperature.  相似文献   

20.

Background  

The antioxidant glutathione fulfills many important roles during plant development, growth and defense in the sporophyte, however the role of this important molecule in the gametophyte generation is largely unclear. Bioinformatic data indicate that critical control enzymes are negligibly transcribed in pollen and sperm cells. Therefore, we decided to investigate the role of glutathione synthesis for pollen germination in vitro in Arabidopsis thaliana accession Col-0 and in the glutathione deficient mutant pad2-1 and link it with glutathione status on the subcellular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号