首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen tube cells adhere to the wall surface of the stylar transmitting tract epidermis in lily. This adhesion has been proposed as essential for the proper delivery of the sperm cells to the ovule. An in vitro adhesion bioassay has been used to isolate two stylar molecules required for lily pollen tube adhesion. The first molecule was determined to be a small, cysteine-rich protein with some sequence similarity to lipid transfer proteins and now called stigma/stylar cysteine-rich adhesin (SCA). The second, larger, molecule has now been purified from style fragments and characterized. Chemical composition, specific enzyme degradations, and immunolabeling data support the idea that this molecule required for pollen tube adhesion is a pectic polysaccharide. In vitro binding assays revealed that this lily stylar adhesive pectin and SCA are able to bind to each other in a pH-dependent manner.  相似文献   

2.
During pollination the pollen tube grows into the style and toward the ovary via the transmitting tract. In lily the growth of pollen tubes involves tube cell adhesion to transmitting tract cells. We reported two molecules involved in this adhesion event. One is a pectic polysaccharide and the other, a 9 kDa basic protein named SCA for stigma/stylar cysteine-rich adhesin. SCA, which shows some identity with LTP (lipid transfer protein), was localized to the transmitting tract epidermis of the style where pollen tubes adhere. The present studies on the expression of SCA indicate that the protein has a similar expression pattern with LTP1 in Arabidopsis and that the protein is abundant in both the stigma and the style. For further proof of its role in pollen tube adhesion the activity of Escherichia coli-expressed protein has been studied in an in vitro adhesion assay system.  相似文献   

3.
Adhesion occurs both between pollen tubes and between the pollen tube and transmitting tract epidermis (TTE) in lily. The stylar matrix secreted by the TTE can be isolated and used in an in vitro adhesion assay for pollen tubes. This bioassay was used to isolate two stigma/stylar adhesion molecules in lily: a pectic polysaccharide and a small cysteine-rich, basic protein we named SCA (stigma/stylar cysteine-rich adhesin). Both molecules were purified and used in an adhesion assay. Adhesion in the assay can be disrupted by treatment of the pectin with polygalacturonase and of SCA with proteinase K. The two molecules bind to each other in a pH-dependent fashion, and this binding is necessary for the adhesion assay to work. Antibodies to each of the molecules show their localization at the sites of pollen tube adhesion in the style. Pollen does not produce SCA but does bind this protein in vivo and in vitro. In vivo functional analyses are necessary to establish the roles of these molecules in lily pollination. Received: 29 October 2000 / Accepted: 17 April 2001  相似文献   

4.
Adhesion of lily pollen tubes on an artificial matrix   总被引:2,自引:0,他引:2  
 We proposed that pollination in lily is a case of cell adhesion and cell movement, but experimental evidence for the adhesion event is lacking. In this study, we developed an artificial extracellular matrix that mimics the in vivo lily stylar transmitting tract. This artificial matrix was created by applying the transmitting tract exudate extracted from lily styles onto a nitrocellulose membrane. When in vitro-grown pollen tubes were applied to the matrix, they adhered by their tips to the area of the stylar exudate which is rich in arabinogalactan proteins. Once they adhered, they grew on the in vitro artificial matrix at rates faster than normal. This is the first experimental evidence demonstrating the adhesion of in vitro-grown pollen tubes, an event that has been described as common in vivo. The adhesion event is stylar exudate specific, concentration dependent, and is affected by the developmental age of the pollen tube. This bioassay for pollen tube adhesion will be used to isolate the adhesive molecules from the stylar exudate. Received: 9 December 1996 / Revision accepted: 5 May 1997  相似文献   

5.
Chae K  Lord EM 《Annals of botany》2011,108(4):627-636
BACKGROUND: Pollination is a crucial step in angiosperm (flowering plant) reproduction. Highly orchestrated pollen-pistil interactions and signalling events enable plant species to avoid inbreeding and outcrossing as a species-specific barrier. In compatible pollination, pollen tubes carrying two sperm cells grow through the pistil transmitting tract and are precisely guided to the ovules, discharging the sperm cells to the embryo sac for fertilization. SCOPE: In Lilium longiflorum pollination, growing pollen tubes utilize two critical mechanisms, adhesion and chemotropism, for directional growth to the ovules. Among several molecular factors discovered in the past decade, two small, secreted cysteine-rich proteins have been shown to play major roles in pollen tube adhesion and reorientation bioassays: stigma/style cysteine-rich adhesin (SCA, approx. 9·3 kDa) and chemocyanin (approx. 9·8 kDa). SCA, a lipid transfer protein (LTP) secreted from the stylar transmitting tract epidermis, functions in lily pollen tube tip growth as well as in forming the adhesive pectin matrix at the growing pollen tube wall back from the tip. Lily chemocyanin is a plantacyanin family member and acts as a directional cue for reorienting pollen tubes. Recent consecutive studies revealed that Arabidopsis thaliana homologues for SCA and chemocyanin play pivotal roles in tip polarity and directionality of pollen tube growth, respectively. This review outlines the biological roles of various secreted proteins in angiosperm pollination, focusing on plant LTPs and chemocyanin.  相似文献   

6.
The style of lily produces a specialized extracellular matrix (ECM) in the transmitting tract epidermis that functions to guide pollen tubes to the ovary. This adhesive ECM contains low esterified pectins and a peptide, SCA (stigma/stylar cysteine-rich adhesin). Together they form a matrix to which pollen tubes adhere as they grow through the style. Pollen tubes also adhere to each other but only when grown in vivo, not in vitro. Pollen does not produce detectable SCA, but when SCA is added to an in vitro growth medium, it binds to pollen tubes that have esterified and low-esterified pectins in their walls. Since adhesion of the pollen tube to the stylar matrix requires tip growth, we hypothesized that the pectin wall at the pollen tube tip interacted with the SCA protein to initiate adhesion with the stylar pectin [Lord (2000) Trends Plant Sci 5:368–373]. Here, we use a pollen protoplast system to examine the effect of SCA on protoplast adhesion when it is added to the growth medium in the absence of the stylar pectin. We found that SCA induces a 2-fold increase in protoplast adhesion when it is added at the start of protoplast culture. This effect is less when SCA is added to the medium after the cell wall on the protoplast has begun to regenerate. We show that among the first components deposited in the new wall are arabinogalactan proteins (AGPs) and highly esterified pectins. We see no labeling for low esterified pectins even after 3 days of culture. In the pollen protoplast culture, adhesion occurs in the absence of the low esterified pectin. The newly formed wall on the protoplast mirrors that of the pollen tube tip in lily, which is rich in AGPs and highly esterified pectins. Thus, the protoplast system may be useful for isolating the pollen partner for SCA in this adhesion event.  相似文献   

7.
Adhesion and cell movement during pollination: cherchez la femme   总被引:10,自引:0,他引:10  
Pollination involves an interaction between the female tissues (stigma, style and ovary) and the male gametophyte or the pollen tube cell, which contains the sperm cells. Freezing methods now allow us to visualize the extracellular matrices that guide pollen tubes to the ovary. Adhesion of the pollen tube to these specialized extracellular matrices might be a mechanism of guidance and tube cell movement in the style. In lily, the stylar adhesion molecules are a pectin and a small, basic cysteine-rich protein, both of which are necessary to induce tube cell adhesion to an artificial, in vitro style matrix.  相似文献   

8.
Kim ST  Zhang K  Dong J  Lord EM 《Plant physiology》2006,142(4):1397-1411
Pollen tube adhesion and guidance on extracellular matrices within the pistil are essential processes that convey the pollen tube cell and the sperm cells to the ovule. In this study, we purified an additional molecule from the pistil that enhances pollen tube adhesion when combined with the SCA (stigma/stylar cysteine-rich adhesin)/pectin matrix in our in vitro assay. The enhancer of adhesion was identified as free ubiquitin (Ub). This was confirmed by use of bovine Ub as a substitute for lily (Lilium longiflorum Thunb.) stigma Ub. To study the interaction of SCA and Ub with the lily pollen tube, we labeled both proteins with biotin. We observed uptake of biotin-labeled SCA and Ub into the pollen tube cells in vitro using confocal microscopy. For SCA, a strong signal occurred first at the tip of the pollen tube, suggestive of an endocytosis event, and then progressively throughout the tube cytoplasm. SCA was also localized inside the in vivo pollen tube using immunogold electron microscopy and found to be present in endosomes, multivesicular bodies, and vacuoles, all known to be endocytic compartments. It was also confirmed that SCA is endocytosed in the in vitro adhesion assay. Internalization of SCA was increased in pollen tubes treated with exogenous Ub compared to those without Ub, suggesting that Ub may facilitate SCA endocytosis. These results show that Ub can act as an enhancer of pollen tube adhesion in vitro and that it is taken up into the pollen tube as is SCA. The Ub machinery may play a role in pollen tube adhesion and guidance in lily.  相似文献   

9.
Summary We have used high-pressure freezing followed by freeze substitution (HPF/FS) to preserve in vivo grown lily pollen tubes isolated from the style. The results indicated that HPF/FS (i) allows excellent preservation of the pollen tubes, (ii) maintains in situ the stylar matrix secreted by the transmitting tract cells, and (iii) preserves the interactions that exist between pollen tubes. Particular attention has been given to the structure of the pollen tube cell wall and the zone of adhesion. The cell wall is composed of an outer fibrillar layer and an inner layer of material similar in texture and nature to the stylar matrix and that is not callose. The stylar matrix labels strongly for arabinogalactan proteins (AGPs) recognized by monoclonal antibody JIM13. The zone of adhesion between pollen tubes contains distinct matrix components that are not recognized by JIM13, and apparent cross-links between the two cell walls. This study indicates that HPF/FS can be used successfully to preserve in vivo grown pollen tubes for ultrastructural investigations as well as characterization of the interactions between pollen tubes and the stylar matrix.Abbreviations AGPs arabinogalactan proteins - FS freeze substitution - HPF high-pressure freezing  相似文献   

10.
In flowering plants, penetration of the pollen tube through stigma, style, and transmitting tract is essential for delivery of sperm nuclei to the egg cells embedded deeply within female tissues. Despite its importance in plant reproduction, little is known about the underlying molecular mechanisms that regulate the navigation of the pollen tube through the stigma, style, and transmitting tract. Here, we report the identification and characterization of an Arabidopsis thaliana gene, VANGUARD1 (VGD1) that encodes a pectin methylesterase (PME)-homologous protein of 595 amino acids and is required for enhancing the growth of pollen tubes in the style and transmitting tract tissues. VGD1 was expressed specifically in pollen grain and the pollen tube. The VGD1 protein was distributed throughout the pollen grain and pollen tube, including the plasma membrane and cell wall. Functional interruption of VGD1 reduced PME activity in the pollen to 82% of the wild type and greatly retarded the growth of the pollen tube in the style and transmitting tract, resulting in a significant reduction of male fertility. In addition, the vgd1 pollen tubes were unstable and burst more frequently when germinated and grown on in vitro culture medium, compared with wild-type pollen tubes. Our study suggests that the VGD1 product is required for growth of the pollen tube, possibly via modifying the cell wall and enhancing the interaction of the pollen tube with the female style and transmitting tract tissues.  相似文献   

11.
Adhesion and guidance in compatible pollination   总被引:14,自引:0,他引:14  
The mechanisms of compatible pollination are less studied than those of incompatible pollination and yet most of the angiosperms show self-compatibility. From the release of pollen from anthers to the penetration of the micropyle by the pollen tube tip, there are numerous steps where the interaction between pollen and the pistil can be regulated. Recent studies have documented some diverse ways in which pollen tubes carrying sperm cells are guided to the ovules through the pistil extracellular matrices of the transmitting tract. What is still missing is an understanding of pollen tube cell biology in vivo. A recent finding supports the role of the synergids in the crucial guidance cue for the pollen tube tip at the micropyle, but experimental evidence for other 'guidepost' cells in the pistil is still lacking. The fact that the pollen tube must first travel through the matrices of the stigma and style before it can respond to the cue from the ovule makes it likely that there is a hierarchy of signalling events in pollen-pistil interactions starting at the stigma and ending at the micropyle. On the pistil side, several model systems have been used in the discovery of molecules implicated in either physical or chemical guidance. In lily, which has a hollow style, adhesion molecules (pectin and SCA) are implicated in guidance. SCA alone is also capable of inducing pollen chemotropism in an in vitro assay, suggesting that this peptide plays a dual role in lily pollination: chemotactic in the stigma and haptotactic (adhesion mediated) in the style.  相似文献   

12.
Upon germination on the stigma, pollen tubes elongate in the stylar transmitting tract, aided by female factors, with speed and directionality not mimicked in in vitro pollen tube growth cultures. We have shown that a stylar transmitting tissue arabinogalactan protein (AGP) from Nicotiana tabacum (tobacco), TTS protein, stimulates pollen tube growth in vivo and in vitro and attracts pollen tubes grown in a semi-in vivo culture system. It has been reported that the self-incompatible Nicotiana alata produced a stylar glycoprotein, GaRSGP, which had a backbone polypeptide that shared 97% identity with those of TTS proteins but some of its properties were different from those described for TTS proteins. We report here the characterization of a family of stylar transmitting tissue glycoproteins from N. alata that is virtually identical to tobacco TTS proteins and which we refer to as NaTTS proteins. Like their tobacco counterparts, NaTTS proteins are recognized by the traditional AGP-diagnostic reagent beta-glucosyl Yariv reagent, and they are also recognized by JIM13, a monoclonal antibody against AGP. NaTTS proteins also stimulate pollen tube elongation in vitro and attract pollen tubes in a semi-in vivo pollen tube culture system. Biochemical and immunological characterization of NaTTS proteins revealed that they have extraordinary variability in the extent of sugar modifications of their polypeptide backbones. The extent of sugar modifications on NaTTS proteins significantly affects their biochemical properties, influences how they interact with the transmitting tissue extracellular matrix, and affects their solubility from this matrix. Our results suggest that the strategy used to purify GaRSGP only recovered a less glycosylated, more tightly extracellular matrix-bound sub-population of the entire spectrum of N. alata TTS proteins.  相似文献   

13.
Pollen tube growth in vitro requires calcium for most species but the in vivo source or reservoir of this calcium is not known. Using methods to localize calcium in situ, we confirm that low levels of calcium are detected in the transmitting tract extracellular matrix (ECM) in unpollinated lily styles. Pollination in lily induces an increase in the detectable levels of calcium in the transmitting tract ECM binding to the stylar cell and pollen tube walls. This calcium is detected in the cytoplasm and vesicles near the pollen tube tip.An erratum to this article can be found at  相似文献   

14.
Class III pistil-specific extensin-like proteins (PELPIII) are chimeric hydroxyproline-rich glycoproteins with properties of both extensins and arabinogalactan proteins. The abundance and specific localization of PELPIII in the intercellular matrix (IM) of tobacco (Nicotiana tabacum) stylar transmitting tissue, and translocation of PELPIII from the IM into the pollen tube wall after pollination, presume the biological function of these glycoproteins to be related to plant reproduction. Here we show that in in vitro assays the translocation of PELPIII is specifically directed to the callose inner wall of the pollen tubes, indicating that protein transfer is not dependent on the physiological conditions of the transmitting tract. We designed a set of experiments to elucidate the biological function of PELPIII in the stylar IM. To study the function of the specific interaction between PELPIII proteins and the pollen tube wall, one of the PELPIII proteins (MG15) was ectopically expressed in pollen tubes and targeted to the tube wall. We also generated transgenic tobacco plants in which PELPIII proteins were silenced. In vitro bioassays were performed to test the influence of purified PELPIII on pollen tube growth, as compared to tobacco transmitting tissue-specific proteins (TTS) that were previously shown to stimulate pollen tube growth. The various tests described for activity of PELPIII proteins all gave consistent and mutually affirmative results: the biological function of PELPIII proteins is not directly related to pollen tube growth. These data show that similar stylar glycoproteins may act very differently on pollen tubes.  相似文献   

15.
从广义上讲,被子植物的受精过程是指花粉粒落到柱头上萌发形成花粉管,花粉管穿过柱头沿着引导组织生长进入子房内,最终在胚囊中实现精细胞与卵细胞以及中央细胞分别融合从而起始胚胎和胚乳的发育.被子植物的精细胞由于不具有鞭毛而无法自由移动,因此在受精过程中需要借助于花粉管来将精细胞运送到胚囊中.花粉管通过与雌性的孢子体组织之间的相互作用和识别将精细胞准确地运送到胚珠附近,而最终将精细胞准确地运送到胚囊内的过程则是受到了雌配子体细胞的控制.可以说,受精的成功实现有赖于雌性和雄性细胞之间的持续的识别和相互作用,这种互作具有多样性和阶段特异性.本文将主要综述被子植物受精过程中花粉粒以及花粉管与多种雌性孢子体组织以及雌配子体之间的信号互作研究.  相似文献   

16.
Our model proposes that pollen tube growth is a form of cell movement where the tube tip can be considered analogous to a migrating cell which leaves a trail of extracellular matrix (the spent pollen tube) behind. We demonstrate that the tube cell can convey the sperm cells to the ovule and effect fertilization even in the absence of the pollen grain and the spent pollen tube. Adhesion is an integral part of cell attachment and movement in animal systems. We show that in vivo-grown pollen tubes grow beneath the cuticle of the stylar transmitting tract epidermis and directly adhere to one another and the outer wall of the epidermal cells. A fibrous wall material is found to cover the tip of the pollen tube cell wall and the surface of the transmitting tract cells where the two adhere. Fixation methods to preserve adhesive compounds were used. The pollen-tubes grown in vivo, but not in vitro, show star-shaped clusters of F-actin microfilaments in the region back from the tip, as seen by rhodamine-phalloidin staining. These configurations are similar to focal adhesions seen in moving animal cells.  相似文献   

17.
Summary A structural study of pollination in the dimorphic flowers ofCollomia grandiflora, a cleistogamous species, reveals significant differences in stigma behavior during pollination, stylar structure, the timing of generative cell division, and pollen tube growth rate patterns. The cleistogamous flower shows a loss of protandry and the stigma is receptive only after reflexing and closing of its lobes. In contrast, the chasmogamous stigma is receptive when reflexed and closes when pollen has been deposited on the lobes. Pollen tube penetration of the dry stigma papillae and entry into the style is similar in the two morphs. The chasmogamous style is solid and the cleistogamous style partly hollow. The matrix of secretion produced by the transmitting tract cells is mainly carbohydrate with a trace of lipids. It is fibrillar in nature and appears to be partly comprised of wall material from the transmitting tract cells. In the chasmogamous pollen, the generative cell enters the tube before division, which occurs between 30 and 60 min after pollination. This division correlates with an increased growth rate for the pollen tube. In the cleistogamous pollen, contact with the stigma triggers generative cell division inside the hydrated pollen grain before germination. The two resulting sperm cells exit the grain 15–30 min after pollination when the pollen tube is in the stigma lobes. The cleistogamous pollen tube shows only one phase of growth which occurs at a rate similar to that of the slow, first phase of the chasmogamous pollen.Abbreviations CH chasmogamous - CL cleistogamous - DAPI 4, 6-diamidino-2-phenylindole  相似文献   

18.
The gynoecium of Phaseolus acutifolius var. latifolius, a self-compatible legume, is characterized by a wet non-papillate stigma, an intermeditae hollow/solid style type, and secretory cells on the ventral surface of the ovary which direct pollen tube growth. The stigma is initially receptive 5–6 days prior to anthesis. Production of stigmatic secretions, composed primarily of carbohydrates and lipids, fragment the cuticle covering epidermal cells of the stigma early in ontogeny; the lipidic aspect of the copious secretions apparently serves to inhibit desiccation after the cuticle is ruptured. Stylar canal development occurs as a combination of elongation of a basal canal present early in development, and dissolution of part of a solid transmitting tract tissue just below the stigma. Anthers dehisce and the tricolporate pollen is released onto the receptive stigma one day before anthesis. Following initial growth in intercellular spaces in the transmitting tract of the stigma, pollen tubes adhere to epidermal secretory cells along the ventral side of the stylar canal and upper ovary; here the transmitting tract is apparently limited in the number of tubes it can accommodate, providing a possible site of selection of male gametes.  相似文献   

19.
Plant sexual reproduction involves the growth of tip-polarized pollen tubes through the female tissues in order to deliver the sperm nuclei to the egg cells. Despite the importance of this crucial step, little is known about the molecular mechanisms involved in this spatial and temporal control of the tube growth. In order to study this process and to characterize the structural composition of the extracellular matrix of the male gametophyte, immunocytochemical and biochemical analyses of Arabidopsis pollen tube wall have been carried out. Results showed a well-defined localization of cell wall epitopes with highly esterified homogalacturonan and arabinogalactan-protein mainly in the tip region, weakly methylesterified homogalacturonan back from the tip and xyloglucan and (1→5)-α-L-arabinan all along the tube. Here, we present complementary data regarding (1) the ultrastructure of the pollen tube cell wall and (2) the immunolocalization of homogalacturonan and arabinan epitopes in 16-h-old pollen tubes and in the stigma and the transmitting tract of the female organ. Discussion regarding the pattern of the distribution of the cell wall epitopes and the possible mechanisms of cell adhesion between the pollen tubes and the female tissues is provided.Key words: arabinan, cell adhesion, cell wall, homogalacturonan, pistil, pollen tube growth, transmitting tractFertilization of flowering plants requires the delivery of the two sperm cells, carried by the fast growing tip-polarized pollen tube, to the egg cell. At every stage of the pollen tube development within the stigma, style and ovary, pollen tubes are guided to the ovules via multiple signals that need to pass through the cell wall of the pollen tube to reach their targets.16The analysis of Arabidopsis pollen tube cell wall has recently been reported.7 Results showed a well-defined localization of cell wall epitopes with highly methylesterified homogalacturonan (HG) and arabinogalactan-protein (AGP) mainly in the tip region, weakly methylesterified HG back from the tip and xyloglucan and arabinan all along the tube. In addition, according to the one letter nomenclature of xyloglucan,8 the main motif of Arabidopsis pollen tube xyloglucan was XXFG harboring one O-acetyl group. In order to bring new information regarding the possible interaction between the pollen tubes and the female tissues, the ultrastructural organization of the pollen tube cell wall, the cytological staining and immunolocalization of the cell wall epitopes of the pistil and especially the transmitting tract (TT), a specialized tissue where pollen tubes grow, were carried out.  相似文献   

20.
Pistil structure, stigma receptivity and pollen tube growthwere investigated in relation to seed set of Eucalyptus woodwardii.Self-pollination resulted in reduced capsule retention and seeddevelopment as compared with cross-pollination. The pistil consistedof an ovary with five locules, a long style with a canal extendingfor two-thirds of its length, and a papillate stigma. Therewas no change in style length with time after anthesis, butboth stigma secretion and ability to support pollen germinationand tube growth increased to reach a peak at 7 d. Pollen germinatedon the stigma surface and in the stylar canal, but most tubegrowth occurred intercellularly in the transmitting tissue surroundingthe canal. At the base of the style the pollen tubes split intofive groups following the transmitting tissue strands to theovary. Each group grew through a septum dividing two loculesand entered the placenta. The tubes then emerged from the placentato penetrate the ovules at between 10 and 20 d after pollination.Fewer ovules were penetrated following self- than cross-pollination. Eucalyptus woodwardii Maiden, Lemon-flowered gum, Pistil receptivity, Pollen tube growth, Breeding system, Self-incompatibility  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号