首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
探讨青年猫和老年猫小脑髓质中胶质反应的年龄相关性变化及其意义。用改良的Holzer结晶紫染色显示所有胶质细胞,GFAP(胶质纤维酸性蛋白)免疫染色显示星形胶质细胞。光镜下对青年猫与老年猫小脑髓质中胶质细胞和GFAP免疫阳性(GFAP-IR)星形胶质细胞进行形态学观察和定量研究。与青年猫比较,老年猫小脑髓质中胶质细胞和GFAP-IR细胞密度均显著增加(P<0.01),胞体较大;GFAP阳性细胞阳性反应较强,突起稠密;星形胶质细胞占胶质细胞总数比例增加。这表明小脑髓质中胶质细胞随年龄增长明显增生,尤其星形胶质细胞具有明显的年龄相关性活动增强。提示胶质细胞及星形胶质细胞的增生可能对衰老的神经纤维起保护作用;星形胶质细胞对衰老较敏感。  相似文献   

2.
目的观察βamyloid蛋白在不同年龄的恒河猴脑中的表达及其组织学和细胞超微结构水平的分布特点。方法分别取脑组织额叶、海马、颞叶和顶叶做免疫组化,观察βamyloid蛋白在组织学上的分布特点及与年龄的关系;选用23岁恒河猴一只,灌注后取上述部位做免疫电镜,观察βamyloid蛋白在细胞超微结构水平的分布特点。结果免疫组化染色可观察到年轻猴的神经细胞和胶质细胞中有少量的Aβ40颗粒,以额叶和海马居多。在老年猴脑中Aβ40常聚集成团状斑块。年轻猴脑细胞内未见明显的颗粒状Aβ42,而老年猴的额叶有多量的Aβ42细胞外散在斑块,神经细胞和胶质细胞内也见有Aβ42颗粒状沉积。免疫电镜可观察到Aβ40的胶体金颗粒大部分存在于老年猴神经细胞细胞质中,在细胞间质和小胶质细胞中也可见少量的胶体金颗粒,多见于额叶;标记Aβ42的胶体金颗粒也是多见于神经细胞中,在小胶质细胞中少量存在,同时在颞叶的神经纤维束中也可见Aβ42标记的胶体金颗粒。结论Aβ42是恒河猴老年斑的主要成分,并在其形成过程中起到重要作用。  相似文献   

3.
Schwann cells (SCs), the glial cells of the peripheral nervous system, cover synaptic terminals, allowing them to monitor and modulate neurotransmission. Disruption of glial coverage leads to axon degeneration and synapse loss. The cellular mechanisms that establish and maintain this coverage remain largely unknown. To address this, we labeled single SCs and performed time-lapse imaging experiments. Adult terminal SCs are arranged in static tile patterns, whereas young SCs dynamically intermingle. The mechanism of developmental glial segregation appears to be spatial competition, in which glial-glial and axonal-glial contacts constrain the territory of single SCs, as shown by four types of experiments: (1) laser ablation of single SCs, which led to immediate territory expansion of neighboring SCs; (2) axon removal by transection, resulting in adult SCs intermingling dynamically; (3) axotomy in mutant mice with blocked axon fragmentation in which intermingling was delayed; and (4) activity blockade, which had no immediate effects. In summary, we conclude that glial cells partition synapses by competing for perisynaptic space.  相似文献   

4.
This study focuses on the ability of primary rat brain cells in culture to synthesize angiotensinogen, angiotensin I, and angiotensin II. HPLC in combination with radioimmunoassay was used to characterize these compounds. Following incubation with 3H-labeled isoleucine, radioactively labeled angiotensinogen with an approximate molecular weight of 25,000 was identified in both glial and neuronal cells. Other molecular weight forms of angiotensinogen with molecular weights of about 300 and 160,000 were present in both cell types. In addition to angiotensinogen, radioactively labeled angiotensin I and angiotensin II were also synthesized by neuronal and glial cells. These results suggest that glial and neuronal cells can synthesize angiotensinogen, angiotensin I, and angiotensin II in a similar manner shown for the peripheral renin angiotensin system.  相似文献   

5.
K Iu Reznikov 《Ontogenez》1975,6(2):169-176
Potencies of brain cells to DNA synthesis and proliferation were studied in two weeks old and adult mice in the norm and after the brain mechanical injury. No labeled large and middle neurons were found in the brain of intact and operated animals both under the pulse 3H-thymidine incorporation and saturation of mice with 3H-thymidine during 36 hrs. The same types of brains cells were labeled both in intact and operated two weeks old and adult mice: glial cells, cells of the subependymal zone, cells of the dentate gyrus inner margin, and sometimes, cells having characteristics of microneurons. The number of glial cells in the temporal cortex of intact mice diminished with the age. Under the brain trauma, the proliferative reaction of glia was expressed in a similiar way both in two weeks old and adult mice. The index of labeled cells in the subependymal zone is the same in these two age groups. With the age the cellular mass of subependymal zone decreases, rather than proliferative tendencies of supependymal zone. The brain traumatization resulted in the increase of labeled subependymal cell only under the direct injury of subependymal zone.  相似文献   

6.
以青年成年猫(1-3龄,2-2.5 kg)和老年猫(12龄,3-3.5kg)L6段脊髓白质为研究对象,用 神经丝蛋白(NF)免疫染色显示神经纤维,用改良的Holzer结晶紫染色显示所有胶质细胞并用成年动物Golgi 法显示其形态,用胶质纤维酸性蛋白(GFAP)免疫染色显示星形胶质细胞。光镜下对青年猫与老年猫腰髓白质 中神经纤维和胶质细胞进行形态学观察和定量研究。与青年猫相比,老年猫腰髓白质中的神经纤维密度显著下 降(P相似文献   

7.
The specificities of carbonic anhydrase isoenzyme C (CA C) and glial fibrillary acidic (GFA) protein as immunocytochemical markers for different glial cell populations in human brain and retina were studied using indirect immunofluorescence and peroxidase-antiperoxidase complex methods. With antibodies against CA C, only those cerebral cells that were morphologically oligodendrocytes and Müller cells of the retina showed positive immunostaining reaction, whereas antibodies against GFA protein selectively labeled cerebral astrocytes and a part of the glial cells and fibers in the inner layers of the retina. In double labeling, when both glial cell markers were successively localized in the same cerebral tissue sections, GFA protein immunofluorescence was never found in the immunoperoxidase-stained CA C-positive cells, which further supports the oligodendrocyte-specificity of CA C in human brain.  相似文献   

8.
Contact among rabbit retinal glial cells in subconfluent culture was previously shown to stimulate DNA synthesis [J. M. Burke (1983) Exp. Cell Res. 146, 204-206]. In this study nonliving surface membranes and metabolic coupling were investigated as mediators of the contact-dependent phenomenon. To evaluate surface membranes, preparations of fixed glial cells and fixed fibroblasts of several types were added in varying numbers to sparse cultures of glia or fibroblasts. In agreement with published data, fibroblast proliferation was inhibited by the fixed cells in a dose-dependent manner. Growth in glial cells was similarly inhibited. Fixed cells of both types were approximately equally effective in suppressing proliferation in cells of both types. No number of fixed cells was identified which, when added to glial cultures, stimulated glial proliferation. In contrast, metabolic coupling among glial cells was associated with increased DNA synthesis. Coupling was detected radioautographically as a flux of labeled precursor molecules from a prelabeled to a recipient population of glial cells in coculture. The cocultures were secondarily incubated with [3H]thymidine to label the nuclei of S-phase recipient cells. In the cocultures there was a higher rate of nuclear labeling in coupled than in uncoupled recipient glial cells. The results suggest that growth in subconfluent retinal glial cell cultures is modulated differentially by two types of interactions which require cell contact: growth is inhibited by interaction among nonliving cell surfaces but stimulated by metabolic cooperation among living cells.  相似文献   

9.
 Retrograde and anterograde degeneration have been reported to be sufficient stimuli to activate glial cells, which, in turn, are involved in phagocytosis of degenerating material. Here we describe a double-fluorescence technique which allows for direct and simultaneous visualization of both labeled incorporated axonal debris and incorporating glial cells in the course of anterograde degeneration. Stereotaxic application of small crystals of biotinylated and tetramethylrhodamine (TRITC)-conjugated dextran amine Mini Ruby into the medial entorhinal cortex resulted in a stable rhodamine fluorescence confined to fibers and terminals in the middle molecular layer of the dentate gyrus, the stratum lacunosum-moleculare, and the crossed temporo-hippocampal pathway. Subsequent stereotaxic lesion of the entorhinal cortex induced transformation of rhodamine-fluorescent fibers and terminals into small granules. Incorporation of these granules by microglial cells [labeled by fluorescein isothiocyanate (FITC)-coupled Bandeiraea simplicifolia isolectin B4] or astrocytes (labeled by FITC-coupled glial fibrillary acidic protein antibodies) resulted in phagocytosis-dependent labeling of these non-neuronal cells, which could be identified by double-fluorescence microscopy. Electron microscopical analysis revealed that, following lesion, the tracer remained confined to entorhinal axons which were found to be incorporated by glial cells. Our data show that TRITC- and biotin-conjugated dextran amines are versatile tracers leading to Phaseolus vulgaris leucoagglutinin-like axonal staining. Lesion-induced phagocytosis of anterogradely degenerating axons by immunocytochemically identified glial cells can be directly observed by this technique on the light and electron microscopical levels. Accepted: 8 January 1997  相似文献   

10.
Wang  X. S.  Ong  W. Y.  Connor  J. R. 《Brain Cell Biology》2001,30(4):353-360
We have studied by immunocytochemistry, the distribution of DMT-1, a cellular iron transporter responsible for transport of metal irons from the plasma membrane to endosomes, in the normal monkey cerebral neocortex and hippocampus. Light to moderate DMT-1 staining was observed in glial cell bodies in the neocortex, the subcortical white matter, and the hippocampus. Despite light labeling of cell bodies, glial end feet around cortical and subcortical blood vessels were heavily labeled. In the neocortex, the glial cell bodies displayed the morphological features of protoplasmic astrocytes. Labeled glial cells in the subcortical white matter contained dense bundles of glial filaments and were identified as fibrous astrocytes. The observation that DMT-1 was present on astrocytic endfeet suggests that these cells are involved in uptake of iron from endothelial cells. It is possible that the iron could then be redistributed into the extracellular space in the brain parenchyma.  相似文献   

11.
Summary Lectins with different sugar specificities and labeled with horseradish peroxidase or gold were used to study, at the electron-microscopic level, surface glycoconjugates of glial cells and neurites growing out from explant cultures of the central nervous system of embryonic locusts. Differential binding to differentiating glial cells and to neurites was demonstrated. Concanavalin A (Con A) and wheat-germ agglutinin (WGA) bound to glial and neurite surfaces with different degrees of labeling. The formation of glial processes and junctional complexes was invariably accompanied by a corresponding increase of Con A- and WGA-receptors. Peanut agglutinin (PNA) failed to bind to glial cells but strongly stained the plasma membrane of neurite junctions. Lotus tetragonolobus a. (LTA) did not bind either to glial cells or to neurites. In addition, staining with an antibody against laminin showed labeling in areas of neurite outgrowth and neurite interactions; this resembled the localization of PNA receptors. These findings provide evidence for the presence of different carbohydrates at the surface of neurites and glial cells of locust. Their predominant localization in glial processes and neurite junctions suggests that these carbohydrates constitute part of a group adhesion glycoproteins that also includes laminin.  相似文献   

12.
We have recently shown that acetylated alpha-tubulin containing microtubules (acetyl-MTs; labeled by antibody 6-11B-1) constitute a cold-stable subset of the microtubule network of nonneuronal cells in rat primary forebrain cultures [Cambray-Deakin and Burgoyne: Cell Motil. 8(3):284-291, 1987b]. In contrast, tyrosinated alpha-tubulin containing MTs (tyr-MTs; labeled by antibody YL1/2) are cold-labile. Here we have examined the distribution of acetyl-MTs and tyr-MTs in cultures of newborn rat forebrain astrocytes and simultaneously investigated the distribution of mitochondria and glial filaments. In double-label immunofluorescence experiments a marked colocalisation of acetyl-MTs and glial filament bundles was observed. Tyr-MTs did not show a similar colocalisation with glial filament bundles. Furthermore, the distribution of mitochondria closely followed that of the acetyl-MT and glial filament bundles. When cells were exposed to short-term (30-min) treatments with MT-disrupting agents such as colchicine and nocodazole, the tyr-MT network was removed but the distributions of acetyl-MTs, glial filaments, and mitochondria were unchanged. Increased exposure to colchicine (9-16 hr) caused a progressive disruption of the acetyl-MTs and the collapse of glial filaments and mitochondria to the perinuclear region. These results suggest that acetyl-MTs and glial filaments but not tyr-MTs may be involved in the intracellular transport of organelles and/or in the control of their cytoplasmic distribution.  相似文献   

13.
Nitric oxide (NO) is a gas produced through the action of nitric oxide synthase that acts as a neurotransmitter in the central nervous system (CNS) of adult gastropod mollusks. There are no known reports of the presence of NOS-containing neurons and glial cells in young and adult Megalobulimus abbreviatus. Therefore, NADPH-d histochemistry was employed to map the nitrergic distribution in the CNS of young and adult snails in an attempt to identify any transient enzymatic activity in the developing CNS. Reaction was observed in neurons and fibers in all CNS ganglia of both age groups, but in the pedal and cerebral ganglia, positive neurons were more intense than in other ganglia, forming clusters symmetrically located in both paired ganglia. However, neuronal NADPH-d activity in the mesocerebrum and pleural ganglia decreased from young to adult animals. In both age groups, positive glial cells were located beneath the ganglionic capsule, forming a network and surrounding the neuronal somata. The trophospongium of large and giant neurons was only visualized in young animals. Our results indicate the presence of a nitrergic signaling system in young and adult M. abbreviatus, and the probable involvement of glial cells in NO production.  相似文献   

14.
对4只青年猫(1-3龄)和4只老年猫(10-13龄)视神经进行形态计量比较研究。取两个年龄组的颅内相应部分视神经进行横向连续切片,H.E染色于光镜下观察其基本结构;相邻切片进行结晶紫染色显示胶质细胞;神经丝蛋白(NF)免疫染色显示视神经纤维,胶质纤维酸性蛋白(GFAP)免疫染色显示星形胶质细胞(AS),对实验结果进行统计学分析并绘制纤维直径谱。与青年猫相比,老年猫视神经外膜厚度、直径、面积均显著增加,视神经纤维的密度和数量显著下降,且以视神经中央部纤维密度下降最显著;纤维直径谱分析结果显示,青、老年猫纤维直径分布范围相似,但老年猫的峰直径及纤维平均直径比青年猫的显著减小;另外,老年猫视神经束中的星形胶质细胞明显膨大,胶质细胞密度以及星形胶质细胞占胶质细胞总数的百分比均显著增加。结果表明:在衰老过程中视神经纤维出现明显的丢失现象,纤维平均直径显著减小使其对视觉信息的传导速度减慢,这可能是导致老年个体视觉分析速度下降的重要原因;老年个体视神经束内胶质细胞活动增强可能对维持视神经纤维形态、功能或延缓视神经进一步衰老起保护作用  相似文献   

15.
The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon.  相似文献   

16.
分别用Nissl法及免疫组织化学ABC法标记青、老年猫嗅球中嗅觉二级神经元和外丛层胶质细胞,显微镜下观察其分布并计数,对嗅觉二级神经元胞体直径和外丛层厚度进行测量,比较其年龄相关性变化,研究神经元与胶质细胞之间的关系,探讨老年性嗅觉功能衰退的相关神经机理。结果显示,老年猫嗅觉二级神经元胞体直径和分布密度均有不同程度的显著性下降(P<0.05);外丛层厚度变化不明显(P>0.05);外丛层胶质细胞特别是星形胶质细胞显著性增生(P<0.05)。表明在衰老过程中嗅觉二级神经元有丢失,并呈现功能下降,可能是老年性嗅觉功能衰退的原因之一。同时外丛层胶质细胞增生以进一步保护神经元,延缓其衰老。  相似文献   

17.
Hu  Chang-Yong  Ong  Wei-Yi  Sundaram  R. K.  Chan  Chumpon  Patel  Shutish C. 《Brain Cell Biology》2001,30(3):209-218
Apolipoprotein D, a lipocalin transporter of small hydrophobic molecules including sterols, steroid hormones and arachidonic acid, is a widely expressed protein in peripheral and neural tissues. It has been shown to be upregulated in the context of neural injury, and with neuronal degeneration and regeneration. Here we have used light and electron microscopic immunocytochemistry with immunogold labeling to delineate the pattern of expression of apoD in the human brain. Our results confirm previous observations that apoD is a predominantly glial protein in the nervous system. In addition we have found that apoD is present in the cytosol and outer membrane of the nuclear envelope of glial cells in the neuropil. The labeled glial cells were putatively identified as a population of oligodendrocyte precursor cells. Immunoreactivity was also associated with the cytosol of perivascular cells, and lysosomes of pericytes, in the walls of blood vessels. These observations suggest a potential role for glial cells and apoD, in the transport of sterols and small hydrophobic molecules to, or from, blood vessels in the cortex.  相似文献   

18.
High resolution 2DGE (two-dimensional gel electrophoresis) was used to characterize neuronal and glial proteins of the rat optic nerve, to examine the phases of intraaxonal transport with which the neuronal proteins are associated, and to identify the ribosomal populations on which these proteins are synthesized. Neuronal proteins synthesized in the retinal ganglion cells were identified by injecting the eye with L-[35S]methionine, followed by 2DGE analysis of fast and slow axonally transported proteins in particulate and soluble fractions. Proteins synthesized by the glial cells were labeled by incubating isolated optic nerves in the presence of L-[35S]methionine and then analyzed by 2DGE. A number of differences were seen between filamentous proteins of neurons and glia. Most strikingly, proteins in the alpha- and beta-tubulin region of the 2D gels of glial proteins were distinctly different than was observed for axonal proteins. As expected, neurons but not glia expressed neurofilament proteins, which appeared among the slow axonally transported proteins in the particulate fraction; significant amounts of the glial filamentous protein, GFA, were also labeled under these conditions, which may have been due to transfer of amino acids from the axon to the glial compartment. The fast axonally transported proteins contained relatively large amounts of high-molecular-weight acidic proteins, two of which were shown to comigrate (on 2DGE) with proteins synthesized by rat CNS rough microsomes; this finding suggests that rough endoplasmic reticulum may be a major site of synthesis for fast transported proteins. In contrast, the free polysome population was shown to synthesize the principal components of slow axonal transport, including tubulin subunits, actin, and neurofilament proteins.  相似文献   

19.
UDP-galactose:ceramide galactosyltransferase (CGalT, EC 2.4.1.45) and UDP-glucose:ceramide glucosyltransferase (CGlcT, EC 2.4.1.80) were determined in the glial cell lines G26-20, G26-24, C6, and C6TK-. The enzymatic assay for CGalT in cultured glial cells was complicated by a rapid conversion of UDP-galactose to UDP-glucose, due to the elevated UDP-galactose-4'-epimerase activity in certain glial cell clones. It seems that mechanisms regulating UDP-galactose-4'-epimerase activity and levels of UDP sugars in the glial cell lines differ from those in brain tissue. Compared with the maximum activity of CGalT in the myelinating rat brain, the enzyme activities in the oligodendroglioma clonal cell lines G26-20 and G26-24 were 16-30 times lower. On the other hand, CGalT levels in G26-20 and G26-24 cells were comparable to the values found in young rat brain before myelination starts. No CGalT activity could be detected in C6 or C6TK- cells by the method used in this study, whereas CGlcT activity was found in all glial cell lines tested and its levels were close to the values observed in the young rat brain.  相似文献   

20.
—Glial cells were cultured from brain tissue obtained at autopsy of a patient with Sanfilippo A syndrome. Mucopolysaccharides were labeled by culturing the cells in the presence of [35S]sulfate. After proteolysis, intracellular and media-elaborated mucopolysaccharides were fractionated by Dowex 1 chromatography. One fraction, identified as heparan sulfate by chromatographic, electrophoretic, and enzyme susceptibility properties, accumulated in Sanfilippo glial cells in greater amounts than in controls. Heparan sulfate was also excreted into the culture media by both Sanfilippo and normal cultures, and it constituted a major fraction of the sulfated mucopolysaccharides synthesized by glial cells. Sanfilippo and normal fibroblasts were also included in these studies for comparative purposes. Sanfilippo fibroblasts accumulated significantly increased amounts of heparan sulfate as compared to normal fibroblasts. Heparan sulfate was excreted into the culture media by Sanfilippo and normal fibroblasts in equivalent amounts, but in contrast to glial cells, it was only a minor component of the sulfated mucopolysaccharides produced. Cultured glial cells should provide a useful system for investigating the role of heparan sulfate in glial cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号