首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous recordings were made of slow potential shift activity occurring at six locations on the surface of the cerebral cortex of seizure-prone and non seizure-prone gerbils. Measurements were made for 80-s epochs of recordings of frequency, maximum and minimum slow shift amplitude and baseline potential of the brain during periods of normal inactivity and subsequently during halothane anaesthesia. Induction of anaesthesia initially provoked large (millivolt) slow (3–4 s) oscillations in all animals, larger in amplitude than any recorded prior to anaesthesia. With increasing depth of anaesthesia, all animals also showed a reduction in the amplitude of this spontaneous slow potential shift activity. The effect was most pronounced in seizure-prone animals, and subsequent to anaesthetic-induced behavioural immobility, these animals also showed a regional resistance to the depression of spontaneous slow potential shift oscillations. Slow potential shift activity during anaesthesia represents ionic fluxes which may normally be involved in modulation of neuronal responsiveness. It was suggested that glia may be targets for anaesthetics and that seizure susceptibility may confer some degree of resistance to the depressant effects of such substances. Accepted: 25 January 1998  相似文献   

2.
The parameters of saccades and presaccadic slow potentials were studied in seven right-handed male volunteers with a dominant right eye before and after exposure to 6-day dry immersion. Visual stimuli were presented using three light diodes, which were located in the center of the visual field (the central fixation stimulus) and 10° to the right and left of it (peripheral stimuli (PSs)). The subjects performed a test with simple saccades to a PS and a test with antisaccades to the point located symmetrically in the opposite visual field. The EEG (19 monopolar leads) and electrooculogram were recorded. To isolate slow potentials, backward EEG averaging was performed, with the moment of switching on the PS serving as a trigger for the averaging. It was found that the characteristics of saccadic eye movements did not substantially change after exposure to immersion. However, both tests revealed a change in topography and a decrease in the amplitude of presaccadic slow negative potentials (PSNPs) during immersion. Characteristically, the focus of presaccadic negativity shifted to the right hemisphere so that the PSNP amplitude sharply decreased in the left and increased in the right hemisphere. A significant decrease in the PSNP amplitude on day 6 of immersion was found in the midline and left-hemispheric frontal and parietal leads. It may be suggested that, because of support unloading and a decrease in proprioceptive input, exposure to microgravity causes a decrease in the activity of the left hemisphere and prefrontal and parietal cortices, initially involved in preparation and realization of motor responses. The activation of the right hemisphere could be of compensatory character.  相似文献   

3.
对中国现生六种灵长类动物:懒猴、猕猴、灰叶猴、川金丝猴、滇金丝猴、长臂猿以及与灵长类关系密切的树鼩的大脑两半球形态,功能的不对称性以及由此引起的行为不对称性进行了研究。结果表明:大脑两半球不对称现象均存在于上述几种动物中。因而,这种不对称性可能经历了一个长期演化历程。  相似文献   

4.
1. Seizure prone (SP)-gerbils (Meriones unguiculatus) tested repeatedly in an open field exhibited habituation of seizures after one or two trials and subsequently showed more ambulatory activity than non-seizure prone (NSP) individuals. 2. A subset of 5 SP and 5 NSP animals were killed and portions of each cerebral hemisphere, the cerebellum and the brainstem medulla were analysed for glutamine synthetase (GS). 3. GFAP immunohistochemistry was used on forebrain sections to assay astrocyte density. 4. It was found by MANOVA, PCA and regression analyses that seizures and ambulatory activity were related to a deficiency in cerebral GS. 5. Rearing behaviour was related to medullary brainstem and cerebellar GS concentrations. 6. The decreased GS of the seizure-prone gerbils was not apparently associated with a deficiency of astrocytes, perhaps the reverse. 7. The results are discussed in relation to glial-neuronal interactions modulating arousal and the propensity for seizures.  相似文献   

5.
Characteristics of spatial-temporal relations of the frontal zones potentials with those of other brain centres were studied in five- to six-year old children during naming of visually presented objects. EEG cross correlation analysis has shown that during visual perception of familiar objects the correlations of frontal areas with the interior pariental area of the left hemisphere are enhanced; the rhythms of the inferior parietal and occipital zones in the left hemisphere precede the potentials in the frontal area, while in the right hemispere synphasic relations are set up between the frontal and occipital zones. Naming the objects by the appropriate word as compared with rest and showing of the object, leads to enhancement of both intra- and interhemispheric correlations between potentials in the frontal zone and the inferior parietal and temporal zones. The frontal lobe rhythms begin to precede the inferior parietal and occipital potentials and form synphasic relations with the temporal and motor zone potentials in the left hemisphere.  相似文献   

6.
We studied the peculiarities of the amplitude/time parameters of evoked EEG potentials (EPs) and event-related potentials (ERPs) in 10- to 11-year-old children characterized by low and high anxiety levels. The latter levels were estimated using the scale of the manifest anxiety test of Prikhozhan and projective techniques (“House–Tree–Person,” HTP, and the Lüscher color test). For children with a high anxiety level, the amplitudes of the following EP components and ERPs were lower than those in low-anxiety children of the same age: P1 (predominantly in the occipital region of the left hemisphere), P2 (in the right occipital region), and Р300 wave (in different loci of both hemispheres). In high-anxiety children, we also more frequently observed increased amplitudes of the N2 component in the left parietal and right occipital regions. High-anxiety individuals were characterized by longer latencies of component P1 (mostly in the right frontal and left central regions) and, at the same time, shorter latencies of component N1 (in the parietal and occipital regions of the left hemisphere and also in the right temporal region). Thus, we found that the amplitude/time characteristics of a few EP components and ERPs in children with high anxiety levels differ statistically significantly from the parameters of corresponding EPs/ERPs in individuals of the same age but with low anxiety levels.  相似文献   

7.
Features of spatial organization of neocortical potentials were studied in subjects with different decision-making time during performing the task of memorizing and subsequently reproducing, on a monitor screen, a sequence of signals. The subjects with a short decision-making time differed from those with a long decision-making time in a higher level of the intra- and interhemispheric coherence in alpha EEG frequency band different neocortical areas during reproduction of a signal sequence (coherence in the frontal, central and parietal areas; coherence between the right central and the left frontal, central, parietal, occipital and temporal areas; coherence between the left occipital and both the frontal areas).  相似文献   

8.
The levels of inhibitory amino acids (Tau, Gly), or excitatory amino acids (Glu, Asp) and Gln, precursor of GABA, have been determined, under resting conditions, in 17 brain areas of 3 sublines of inbred Rb mice displaying different responses to an acoustic stimulus. Rb1 mice were clonictonic seizure-prone, Rb2 mice were clonic seizure-prone and Rb3 mice were seizure resistant. Profile of distribution in the brain of each one of these amino acids differed. Maximum to minimum level ratio was higher for Tau (3.8) than for Glu or Asp or Gln (2). The level of Gly was similar in 13 out of the 17 areas examined. Multiple inter-subline differences were recorded for each amino acid. These differences have been analyzed considering the seizure susceptibility or severity of the three Rb sublines. Common lower levels (approximately –20%: Rb1/Rb3, Rb2/Rb3) of Gln in Temporal Cortex may be implicated in seizure susceptibility. Seirure severity (Rb1/Rb2) seems to correlate, in some areas, with additional lower amounts of GABA already reported and, to a lower extent, of Asp (–19% in striatum, inferior colliculus and cerebellum), of Tau and Gly; a tendency for a rise in Gln content was observed in certain others (10–20% in olfactory bulb, thalamus, hypothalamus, substantia nigra, and frontal, temporal and occipital cortex). The data and correlations recorded provide guidelines for further investigations for synaptosomal and metabolic alterations in the three sublines of the same strain of Rb mice.Abbreviations used GABA 4-aminobutyrate - Tau taurine - Gly glycine - Asp aspartate - Glu glutamate - Gln glutamine - GEPR genetically epilepsy-prone rat - OB olfactory bulbs - OT olfactory tubercles - Sr striatum - Se septum - Hy hypothalamus - Hi hippocampus - Th thalamus - A amygdala - SC superior colliculus - IC interior colliculus - SN substantia nigra - FCx frontal cortex - TCx temporal cortex - OCx occipital cortex - C cerebellum - P pons - Ra raphe  相似文献   

9.
Tian L  Meng C  Yan H  Zhao Q  Liu Q  Yan J  Han Y  Yuan H  Wang L  Yue W  Zhang Y  Li X  Zhu C  He Y  Zhang D 《PloS one》2011,6(12):e28794

Background

Shared neuropathological features between schizophrenic patients and their first-degree relatives have potential as indicators of genetic vulnerability to schizophrenia. We sought to explore genetic influences on brain morphology and function in schizophrenic patients and their relatives.

Methods

Using a multimodal imaging strategy, we studied 33 schizophrenic patients, 55 of their unaffected parents, 30 healthy controls for patients, and 29 healthy controls for parents with voxel-based morphometry of structural MRI scans and functional connectivity analysis of resting-state functional MRI data.

Results

Schizophrenic patients showed widespread gray matter reductions in the bilateral frontal cortices, bilateral insulae, bilateral occipital cortices, left amygdala and right thalamus, whereas their parents showed more localized reductions in the left amygdala, left thalamus and right orbitofrontal cortex. Patients and their parents shared gray matter loss in the left amygdala. Further investigation of the resting-state functional connectivity of the amygdala in the patients showed abnormal functional connectivity with the bilateral orbitofrontal cortices, bilateral precunei, bilateral dorsolateral frontal cortices and right insula. Their parents showed slightly less, but similar changes in the pattern in the amygdala connectivity. Co-occurrences of abnormal connectivity of the left amygdala with the left orbitofrontal cortex, right dorsolateral frontal cortex and right precuneus were observed in schizophrenic patients and their parents.

Conclusions

Our findings suggest a potential genetic influence on structural and functional abnormalities of the amygdala in schizophrenia. Such information could help future efforts to identify the endophenotypes that characterize the complex disorder of schizophrenia.  相似文献   

10.
Major depressive disorder (MDD) is accompanied by atypical brain structure. This study first presents the alterations in the cortical surface of patients with MDD using multidimensional structural patterns that reflect different neurodevelopment. Sixteen first-episode, untreated patients with MDD and 16 matched healthy controls underwent a magnetic resonance imaging (MRI) scan. The cortical maps of thickness, surface area, and gyrification were examined using the surface-based morphometry (SBM) approach. Increase of cortical thickness was observed in the right posterior cingulate region and the parietal cortex involving the bilateral inferior, left superior parietal and right paracentral regions, while decreased thickness was noted in the parietal cortex including bilateral pars opercularis and left precentral region, as well as the left rostral-middle frontal regions in patients with MDD. Likewise, increased or decreased surface area was found in five sub-regions of the cingulate gyrus, parietal and frontal cortices (e.g., bilateral inferior parietal and superior frontal regions). In addition, MDD patients exhibited a significant hypergyrification in the right precentral and supramarginal region. This integrated structural assessment of cortical surface suggests that MDD patients have cortical alterations of the frontal, parietal and cingulate regions, indicating a vulnerability to MDD during earlier neurodevelopmental process.  相似文献   

11.
EEG spectral power was calculated in 39 students at the age of 19-21 years in two experimental conditions: during the common educational process and immediately before an examination (stress condition). During the education process, in subjects with high anxiety (tested by Spielberger) the relative spectral power of the delta activity was higher than in the other group in the occipital, parietal, central, and right frontal brain areas, whereas the power of the EEG alpha in these areas was lower. Before examination tests, in subjects with high activity the delta power bilaterally increased in the temporal areas, whereas in subjects with low anxiety there was a decrease in the alpha rhythm power, especially in the right frontal area. In stress condition, the relative power of the delta activity in both occipital and temporal, right parietal and central areas was higher in subjects with low anxiety, whereas their alpha power was lower in both frontal and in occipital, parietal, and temporal areas of the left hemisphere.  相似文献   

12.
In the paper Pavlov's idea is used about "the bright spot of consciousness" as a zone of increased excitability which moves over the cerebral cortex. Zone of increased activation is revealed migrating from the frontal parts of the left hemisphere to the occipital parts of the right hemisphere. By means of various methods (record of amplitude and latency of the visual evoked responses, frequency and amplitude of the dominant rhythm, spectral-coherent analysis of the electroencephalogram) the activation of focus in the cerebral cortex was singled out, which moved, depending on the novelty, complication and degree of automatization of the task, from the frontal parts of the left hemisphere to the occipital parts of the right hemisphere. A parallel is drawn between Pavlov's hypothesis on the focus of consciousness as foci of increased brain activity, and revealed foci of activation. The conclusion is made about fluctuations of consciousness level as a factor which is in the basis of activation focus migration.  相似文献   

13.
The distribution of the evoked cortical potentials recorded during stereotactic pulvinectomy is analyzed. The evoked cortical potential shows maximal amplitude in the precentral area, with decreasing amplitude in the parietal and anterior temporal area, and minimal amplitude in the occipital area. The pulvinar has been histologically considered to have dense connections with the parietal lobe and no connection with the frontal lobe. However, our results suggest that the pulvinar has a dense functional connection with the frontal cortex, through which the pulvinar plays a role in motor function.  相似文献   

14.
We studied visual representation in the parietal cortex by recording whole-scalp neuromagnetic responses to luminance stimuli of varying eccentricities. The stimuli were semicircles (5.5 degrees in radius) presented at horizontal eccentricities from 0 degree to 16 degrees, separately in the right and left hemifields. All stimuli evoked responses in the contralateral occipital and medial parietal areas. The waveforms and distributions of the occipital responses varied with stimulus side (left, right) and eccentricity, whereas the parietal responses were remarkably similar to all stimuli. The equivalent sources of the parietal signals clustered within 1 cm3 in the medial parieto-occipital sulcus and did not differ significantly between the stimuli. The strength of the parietal activation remained practically constant with increasing stimulus eccentricity, suggesting that the visual areas in the parieto-occipital sulcus lack the enhanced foveal representation typical of most other visual areas. This result strengthens our previous suggestion that the medial parieto-occipital sulcus is the human homologue of the monkey V6 complex, characterized by, for example, lack of retinotopy and the absence of relative foveal magnification.  相似文献   

15.
摘要 目的:探讨抑郁症患者的脑CT灌注成像特征与认知功能的相关性。方法:选取我院2020年1月到2023年1月收治的90例抑郁症患者作为研究对象,将其分为观察组,另选取同期来我院体检的90名健康志愿者作为对照组。收集所有受检者脑CT灌注成像检查数据,分析抑郁症患者的脑CT灌注成像特征,并建立受试者工作特征(ROC)曲线分析脑CT灌注成像对抑郁症的诊断效能。随后对观察组和对照组受检者均进行认知功能评估,其中包括连线检测(TMT)、视觉再生测验(VRT)、言语流畅性测验(VF)、数字广度测验(DST)以及数字符号测验(SDMT),并分析脑CT灌注成像与抑郁症认知功能的相关性。结果:观察组与对照组受检者rCBV、rCBF、MTT、TIP、右枕叶、左枕叶、右颞叶、左颞叶、右顶叶、左顶叶CT值对比无明显差异(P>0.05),观察组与对照组受检者右额叶、左额叶CT值对比差异显著,观察组明显低于对照组(P<0.05);90例抑郁症患者经过汉密尔顿抑郁量表(HAMD)评估后分数均>20分,确定存在抑郁症状,脑CT灌注成像与HAMD评分诊断抑郁症的准确性、灵敏度、特异性、阳性预测值和阴性预测值对比无明显差异(P>0.05),脑CT灌注成像的曲线下面积为83.89,最佳诊断着色界限值为82.53%,HAMD评分的曲线下面积为84.26,最佳诊断着色界限值为87.57%;观察组与对照组受检者连线提笔数、连线错误数、视觉再生检测结果对比无明显差异(P>0.05),观察组与对照组受检者连线、言语流畅性、数字广度、数字符号检测结果对比差异显著(P<0.05);Spearman相关分析结果表明:连线提笔数、连线错误数、视觉再生与脑CT灌注参数均无明显相关性(P>0.05),连线、言语流畅性、数字广度、数字符号与rCBV、rCBF、MTT、TIP、右枕叶、左枕叶、右颞叶、左颞叶、右顶叶、左顶叶CT值无明显相关性(P>0.05),连线与右额叶、左额叶CT值呈负相关(P<0.05),言语流畅性、数字广度、数字符号与右额叶、左额叶CT值呈正相关(P<0.05)。结论:抑郁症患者的脑CT灌注成像与健康群体呈现差异,其中右额叶、左额叶差异情况最为显著,提示抑郁症患者可能存在大脑额叶功能改变,另外,抑郁症患者的大脑额叶功能与认知功能变化具有明显相关性。  相似文献   

16.
Previous studies have suggested that recovery or compensation of language function after a lesion in the left hemisphere may depend on mechanisms in the right hemisphere. However, a direct relationship between performance and right hemisphere activity has not been established. Here, we show that patients with left frontal lesions and partially recovered aphasia learn, at a normal rate, a novel word retrieval task that requires the damaged cortex. Verbal learning is accompanied by specific response decrements in right frontal and right occipital cortex, strongly supporting the compensatory role of the right hemisphere. Furthermore, responses in left occipital cortex are abnormal and not modulated by practice. These findings indicate that frontal cortex is a source of top-down signals during learning.  相似文献   

17.
18.

Background

To identify changes in brain activation patterns in bipolar disorder (BD) and unipolar depression (UD) patients.

Methodology/Principal Findings

Resting-state fMRI scans of 16 healthy controls, 17 BD and 16 UD patients were obtained. T-test of normalized regional homogeneity (ReHo) was performed in a voxel-by-voxel manner. A combined threshold of á = 0.05, minimum cluster volume of V = 10503 mm3 (389 voxels) were used to determine ReHo differences between groups. In UD group, fMRI revealed ReHo increases in the left middle occipital lobe, right inferior parietal lobule, right precuneus and left convolution; and ReHo decreases in the left parahippocampalgyrus, right precentralgyrus, left postcentralgyrus, left precentralgyrus and left cingulated. In BD group, ReHo increases in the right insular cortex, left middle frontal gyrus, left precuneus, left occipital lobe, left parietal, left superior frontal gyrus and left thalamus; and ReHo decreases in the right anterior lobe of cerebellum, pons, right precentralgyrus, left postcentralgyrus, left inferior frontal gyrus, and right cingulate. There were some overlaps in ReHo profiles between UD and BD groups, but a marked difference was seen in the thalamus of BD.

Conclusions/Significance

The resting-state fMRI and ReHo mapping are a promising tool to assist the detection of functional deficits and distinguish clinical and pathophysiological signs of BD and UD.  相似文献   

19.
(1) Field potential study in conscious rats provides a convenient and effective animal model for pain mechanism and pharmacological research. However, the spatial-temporal character of nociception processing in cortex revealed by field potential technique in conscious rats remains unclear. (2) In the present study, multi-channel field potentials evoked by noxious laser stimulation applied to the hind paw of conscious rats were recorded through 12 chronically implanted skull electrodes. Independent component analysis (ICA) was used to remove possible artifacts and to extract the specific nociception-related component. (3) Two fast sharp responses and one slow blunt response were evoked by noxious laser stimulation. Systemic morphine (5 mg/kg, i.p.) preferentially attenuated the amplitude of the slow blunt response while had no significant effect on the first two sharp responses. ICA revealed that those responses came from activities of contralateral anterior parietal area, medial frontal area and posterior parietal area. A movement artifact was also detected in this study. Partial directed coherence (PDC) analysis showed that there were changes of information flows from medial frontal and posterior parietal area to anterior parietal area after noxious laser stimulation. (4) Characterization of the spatio-temporal responses to noxious laser stimulation may be a valuable model for the study of pain mechanisms and for the assessment of analgesia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号