首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of guanosine 5'-[beta-thio]diphosphate (GDP[S]) on the kinetics of activation of rat liver membrane adenylate cyclase by guanosine 5'-[beta,gamma-imido]triphosphate (p[NH]ppG) were examined. GDP[S] caused immediate inhibition of the activation by p[NH]ppG at all time points tested. Substantial inhibition by GDP[S] was observed even after the time required for the enzyme to reach its steady-state activity, but the extent of inhibition became progressively smaller as the preincubation time with p[NH]ppG increased. The rate at which adenylate cyclase became quasi-irreversibly activated was a strictly first-order process. In the presence of glucagon, the formation of the irreversibly activated state was much slower. A combination of GDP[S] and glucagon could partially reverse the quasi-irreversible activation by p[NH]ppG. Glucagon decreased the lag time required for p[NH]ppG to activate adenylate cyclase and increased the extent of activation by p[NH]ppG. This stimulatory effect of the hormone on top of guanine nucleotide decreased on preincubation with p[NH]ppG, but not with GTP. Our results suggest that the activation of adenylate cyclase by non-hydrolysable GTP analogues is a two-stage process: the formation of a reversibly activated form (G rev) is a rapid process, followed by a much slower formation of the quasi-irreversibly activated form (G irr). Glucagon can stimulate G rev but not G irr, and can partially facilitate the formation of the G rev from the G irr state.  相似文献   

2.
In the presence of 1 microM atrial natriuretic factor (ANF) and low (0.1 mM) Mg2+ concentrations, the initial rate of binding of [3H]guanosine 5'-[beta, gamma-imido)triphosphate [( 3H]p[NH]ppG) to rat lung plasma membranes was increased twofold to threefold. ANF-dependent stimulation of the initial rate of [3H]p[NH]ppG binding was reduced at high (5 mM) Mg2+ concentrations. Preincubation of membranes with p[NH]ppG (5 min at 37 degrees C) eliminated the ANF-dependent effect on [3H]p[NH]ppG binding whereas ANF-dependent [3H]p[NH]ppG binding was unaffected by similar pretreatment with guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). An increase in ANF concentration from 10 pM to 1 microM caused a 40% decrease in forskolin-stimulated or isoproterenol-stimulated adenylate cyclase activities (IC50 5 nM) in rat lung plasma membranes. GTP (100 microM) was obligatory for the ANF-dependent inhibition of adenylate cyclase, which could be completely overcome by the presence of 100 microM GDP[beta S] or the addition of 10 mM Mn2+. Reduction of Na2+ concentration from 120 mM to 20 mM had the same effect. Pertussis toxin eliminated ANF-dependent inhibition of adenylate cyclase by catalyzing ADP-ribosylation of membrane-bound Ni protein (41-kDa alpha subunit of the inhibitory guanyl-nucleotide-binding protein of adenylate cyclase). The data support the notion that one of the ANF receptors in rat lung plasma membranes is negatively coupled to a hormone-sensitive adenylate cyclase complex via the GTP-binding Ni protein.  相似文献   

3.
1. Adenylate cyclase of the washed 600g sediment of bovine corpus-luteum homogenate is stimulated by p[NH]ppG (guanosine 5'-[beta,gamma-imido]triphosphate), the imido analogue of GTP, and to a lesser extent by GTP itself. Activation by p[NH]ppG is not reversed by extensive washing before assay, but can, however, be reversed by NaF. 2. Both p[NH]ppG and NaF stabilize the enzyme during incubation at 37 degrees C. NaF also causes an irreversible activation, but only of part of the potentially NaF-activatable adenylate cyclase; there are possibly two components of the adenylate cyclase system, which can be distinguished by their response to NaF. 3. Solubilization of the adenylate cyclase activity in the 600g sediment, by using the non-ionic detergent Lubrol-PX, gave variable yields. A relationship between the magnitude of NaF stimulation of the 600g-sediment enzyme and the yield of soluble activity derived from the sediment was recognized. The results suggest that the pre-existing state of the enzyme complex in vivo is reflected by the response in vitro to NaF and may determine the success with which activity can be solubilized. 4. The absolute yields of soluble activity could be increased by p[NH]ppG preactivation of the 600g sediment. During the development of the maximally active state by preincubation with p[NH]ppG the enzyme passes through a stage in which Lubrol solubilization is increased, but the maximally active state is itself less amenable to solubilization. p[NH]ppG activation causes the appearance of NaF-inhibited states, which appear to be preferentially solubilized by Lubrol-PX.  相似文献   

4.
1. Preincubation of luteal membranes with human choriogonadotropin results in the formation of an activated state of adenylate cyclase which is not reversed by washing and which is limited only by the absence of guanine nucleotides, whereas preincubation with GTP yields only a partially activated adenylate cyclase which requires the presence of both GTP and human choriogonadotropin during assay to demonstrate maximal activity. 2. Preincubation of luteal membranes with GTP and human choriogonadotropin does not lead to a synergistic increase in wash-resistant activity. 3. Luteal membranes that had been preincubated with GTP and hormone exhibited a decreasing rate of cyclic AMP synthesis during the adenylate cyclase assay incubation; addition of GTP during the assay incubation reversed the decrease. 4. Membranes that had been preincubated in the absence of guanine nucleotide and hormone showed a `burst' phase of cyclic AMP synthesis when GTP was present in the assay incubation and a `lag' phase with p[NH]ppG (guanosine 5′-[β,γ-imido]triphosphate) present in the assay. The presence of human choriogonadotropin with either nucleotide in the assay incubation eliminated the curvatures in plots observed with guanine nucleotides alone. 5. Luteal adenylate cyclase was persistently activated by preincubation with p[NH]ppG alone or in combination with human choriogonadotropin; the activation caused by p[NH]ppG alone was still increasing after 70min of preincubation, whereas that caused by p[NH]ppG in the presence of hormone was essentially complete within 10min of preincubation. 6. Luteal adenylate cyclase that had been partially preactivated by preincubation with p[NH]ppG was slightly increased in activity by the inclusion of further p[NH]ppG in the adenylate cyclase assay incubation, but more so with p[NH]ppG and hormone. Human choriogonadotropin alone caused no further increase in the activity of the partially stimulated preparation unless p[NH]ppG was also added to the assay incubation. 7. GTP decreased the activity of adenylate cyclase in membranes that had been partially preactivated in the presence of p[NH]ppG; the decrease in activity was greater when GTP and hormone were present simultaneously in the assay. 8. The results indicate that stable activation states of adenylate cyclase can be induced by preincubation of luteal membranes in vitro with human choriogonadotropin or p[NH]ppG, and that in the presence of p[NH]ppG the hormone may accelerate events subsequent to guanine nucleotide binding. Stable activation of luteal adenylate cyclase by prior exposure to GTP is not achieved. The involvement of GTPase activity and of hormone-promoted guanine nucleotide exchange in the modulation of luteal adenylate cyclase activity is discussed.  相似文献   

5.
1. The activation of rat pancreatic adenylate cyclase by guanosine 5'-(beta-gamma-imido)triphosphate (p[NH]ppG) and GTP, and by the two gastrointestinal hormones pancreozymin (as C-terminal octapeptide) and secretin was correlated with the binding of [8-3H]guanosine 5'-(beta-gamma-imido)triphosphate to rat pancreatic plasma membranes. 2. The low basal adenylate cyclase activity was stimulated 17-fold by p[NH]ppG (after a 2 min lag period), 3,5-fold only by GTP, 21-fold by C-terminal octapeptide of pancreozymin, and 8-fold by secretin. GTP inhibited competitively the activation of adenylate cyclase by p[NH]ppG with a Ki,app almost identical with the Ka,app (0.3 micron). p[NH]ppG and GTP enhanced the stimulation by secretin more markedly than that by the C-terminal octapeptide of pancreozymin, leading to the same maximal activity. Both hormones suppressed the lag period of activation by p[NH]ppG. 3. The binding of [8-3H]p[NH]ppG was dependent on time, temperature and Mg2+ and it was also a saturable and reversible process. Scatchard plots with a concavity upward were linearized after co-addition of ATP, Mg2+ and an ATP-regenerating system that abolished low-affinity sites for p[NH]ppG without saturating higher affinity sites, GTP, ITP and UTP inhibited [8-3H]p[NH]ppG binding to the high-affinity sites in concentration ranges identical with those found for adenylate cyclase activation. Considerable binding of [8-3H]p[NH]ppG was still evident at 20 degrees C, but enzyme activation was not observed any more, except in the presence of hormones.  相似文献   

6.
Treatment of intact, 32Pi-labelled hepatocytes from lean Zucker rats with a range of agents including 12-O-tetradecanoyl-phorbol 13-acetate (TPA), vasopressin, and angiotensin II elicited substantial increases in the phosphorylation of the alpha-subunit of the inhibitory G protein of adenylate cyclase (alpha Gi-2). These agonist-induced phosphorylations of alpha Gi-2 were associated with loss of Gi function as assessed by the ability of low concentrations of guanylyl 5'-[beta,gamma imido]triphosphate (p[NH]ppG) to inhibit forskolin-stimulated adenylate cyclase activity. Hepatocytes from obese Zucker rats displayed a resistance to both agonist-induced phosphorylation of alpha Gi-2 and to p[NH]ppG-mediated inhibition of adenylate cyclase. The basal level of alpha Gi-2 phosphorylation in hepatocytes from obese Zucker rats was considerably greater at 1.06 +/- 0.09 mol phosphate/mol alpha Gi-2 than in hepatocytes from lean animals which gave 0.54 +/- 0.09 mol phosphate/mol alpha Gi-2. Incubation with TPA (10 ng/ml, 15 min) approximately doubled the level of phosphorylation of alpha Gi-2 in the hepatocytes from lean animals but had little effect on the phosphorylation of alpha Gi-2 in hepatocytes from obese animals. Incubation of hepatocytes from lean animals with ligands which lead to the phosphorylation of alpha Gi-2 abolished the ability of low concentrations of p[NH]ppG to inhibit adenylate cyclase expressed in isolated membranes. Treatment of hepatocyte plasma membranes from lean but not obese Zucker rats with pure protein kinase C led to the phosphorylation of alpha Gi-2. The resistance to protein-kinase-C-mediated phosphorylation in hepatocyte membranes from obese animals could be overcome by treatment of the membranes with alkaline phosphatase. These results indicate that the defect in guanine-nucleotide-mediated 'Gi function' seen in obese Zucker rats may be due to an inactivating phosphorylation of alpha Gi-2.  相似文献   

7.
Purified rat tumour Leydig cells were pretreated with or without lutropin (1 h at 32 degrees C). The plasma membranes were then isolated and the adenylate cyclase activity measured in the presence of freshly prepared or heat-inactivated (1 h at 60 degrees C) human erythrocyte membranes. In plasma membranes from control cells in the presence of heat-inactivated human erythrocyte membranes both guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) plus lutropin and NaF caused a 45--50-fold increase in cyclic AMP production over 30 min compared with 12--13 fold p[NH[ppG and 2--3-fold with lutropin alone. In plasma membranes isolated from lutropin-pretreated cells the NaF- and the p[NH]ppG-stimulated cyclic AMP production rates were unchanged, but no effect of lutropin could be demonstrated with or without added p[NH]ppG. However, after mixing lutropin-desensitized Leydig tumour-cell plasma membranes with freshly prepared human erythrocyte plasma membranes, the adenylate cyclase activity in the presence of lutropin, p[NH]ppG, lutropin plus p[NH]ppG and NaF were similar to those of control cell plasma membranes treated in the same manner. The possible mechanisms of this reversal of lutropin-induced desensitization by human erythrocytes are discussed.  相似文献   

8.
Cells with the morphological properties of endothelial cells were cultured from the rat aorta. The cultured cells accumulated 45Ca2+ from the medium in a manner which was stimulated by forskolin and by 8-bromo-cyclic AMP. Pretreating the cultures for 20 h with forskolin diminished forskolin-dependent Ca2+-uptake activity. Adenylate cyclase activity of cultured cell homogenates was stimulated by guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) and forskolin, and by isoprenaline in the presence, but not in the absence, of guanine nucleotide. p[NH]ppG increased forskolin sensitivity and caused a leftward shift in the forskolin dose-response curve. Pretreating the cultured cells with forskolin for 20 h, conditions that decreased forskolin-dependent Ca2+ uptake, increased basal and guanine nucleotide-dependent adenylate cyclase activity, but not forskolin-dependent activity determined in the absence of p[NH]ppG. Forskolin pretreatment diminished p[NH]ppG's capacity to increase forskolin sensitivity, but did not have a significant effect on either the sensitivity of adenylate cyclase to p[NH]ppG or its responsiveness to isoprenaline. These results suggest that the Ca2+-uptake mechanism is cyclic AMP-dependent and that guanine nucleotides mediated forskolin-dependent cyclic AMP production by the intact cells. In addition, there may be different guanine nucleotide requirements for hormone-receptor coupling and forskolin activation.  相似文献   

9.
The activation energy of adenylate cyclase by p[NH]ppG in rat pancreatic plasma membranes was estimated to be 141-189 kj/mol. When a high concentration of secretin or CCK-8 (C-terminal octopeptide of cholecystokinin-pancreozimin) was added to the assay medium, the activation energy was reduced to 73 kj/mol. This hormone effect was exerted on the activation energy of the activation process of adenylate cyclase by p[NH]ppG. Indeed, when plasma membranes were preactivated with p[NH]ppG alone or with p[NH]ppG and CCK-8 and then washed, there resulted a persistent activation with low activation energy (65 and 48 kj/mol, respectively). A similar low activation energy was observed in membranes preincubated with GMP and CCK-8. The latter treatment could not induce persistent activation but facilitated the activation by p[NH]ppG, suggesting that the step of p[NP]ppG activation requiring a high activation energy in the absence of hormone had developed during preincubation with GMP and CCK-8, and had not been reversed by membrane washing. By contrast, EDTA pretreatment did not influence p[NH]ppG activation while provoking a reversible deactivation of persistently activated adenylate cyclase.  相似文献   

10.
Hepatocyte membranes from both lean and obese Zucker rats exhibited adenylate cyclase activity that could be stimulated by glucagon, forskolin, NaF and elevated concentrations of p[NH]ppG. In membranes from lean animals, functional Gi was detected by the ability of low concentrations of p[NH]ppG to inhibit forskolin-activated adenylate cyclase. This activity was abolished by treatment of hepatocytes with either pertussis toxin or the phorbol ester TPA, prior to making membranes for assay of adenylate cyclase activity. In hepatocyte membranes from obese animals no functional Gi activity was detected. Quantitative immunoblotting, using an antibody able to detect the alpha subunit of Gi, showed that hepatocyte plasma membranes from both lean and obese Zucker rats had similar amounts of Gi-alpha subunit. This was 6.2 pmol/mg plasma membrane for lean and 6.5 pmol/mg plasma membrane for obese animals. Using thiol pre-activated pertussis toxin and [32P]-NAD+, similar degrees of labelling of the 40 kDa alpha subunit of Gi were found using plasma membranes of both lean and obese Zucker rats. We suggest that liver plasma membranes from obese Zucker rats express an inactive Gi alpha subunit. Thus lesions in liver Gi functioning are seen in insulin-resistant obese rats and in alloxan- and streptozotocin-induced diabetic rats which also show resistance as regards the acute actions of insulin. Liver plasma membranes of obese animals also showed an impairment in the coupling of glucagon receptors to Gs-controlled adenylate cyclase, with the Kd values for activation by glucagon being 17.3 and 126 nM for lean and obese animals respectively. Membranes from obese animals also showed a reduced ability for high concentration of p[NH]ppG to activate adenylate cyclase. The use of [32P]-NAD+ and thiol-preactivated cholera toxin to label the 43 kDa and 52 kDa forms of the alpha-subunit of Gs showed that a reduced labelling occurred using liver plasma membranes from obese animals. It is suggested that abnormalities in the levels of expression of primarily the 52 kDa form of alpha-Gs may give rise to the abnormal coupling between glucagon receptors and adenylate cyclase in liver membranes from obese (fa/fa) Zucker rats.  相似文献   

11.
After fractionation of rabbit bone marrow into dividing (early) and non-dividing (late) erythroid cells, the adenylate cyclase activity of membrane ghosts was assayed in the presence of guanine nucleotides ((GTP and its analogue p[NH]ppG (guanosine 5'-[beta, gamma-imido]triphosphate))), the beta-adrenergic agonist L-isoprenaline (L-isoproterenol) and the antagonist L-propranolol. Both GTP and p[NH]ppG increased the adenylate cyclase activity of early and late erythroblasts, whereas the stimulating effect of the beta-adrenergic drug L-isoprenaline was limited to the immature dividing bone-marrow cells. The effect of L-isoprenaline was completely inhibited by the antagonist L-propranolol, confirming that the response was due to stimulation of beta-adrenergic receptors on the plasma membrane. The lack of response of non-dividing erythroblasts to beta-adrenergic stimuli is not due to loss of beta-receptors, since both dividing and non-dividing cells bind the selective ligand [125I]iodohydroxybenzylpindolol with almost equal affinities, the apparent dissociation constants, Kd, being 0.91 X 10(-8)M and 1.0 X 10(-8) M respectively. The number of beta-adrenergic receptors per cell was 2-fold higher in the dividing cells. No significant change in binding affinity for GTP and p[NH]ppG during erythroblast development was observed: the dissociation constants of both guanine nucleotides were almost identical with early and late erythroblast membrane preparations [2-3 (X 10(-7) M]. With dividing cells, however, in the presence of L-isoprenaline the dissociation constants of GTP and p[NH]ppG were lower (6 X 10(-8) M). The dose-response curves for isoprenaline competition in binding of [125I]iodohydroxybenzylpindolol by dividing cells showed that the EC50 (effective concentration for half maximum activity) value for isoprenaline was higher in the presence of p[NH]ppG. With non-dividing cells the EC50 value for isoprenaline was equal in the presence and in the absence of p[NH]ppG and similar to that observed with dividing-cell membranes in the presence of the nucleotide. Thus differentiation of rabbit bone-marrow erythroid cells seems to be accompanied by uncoupling of the beta-adrenergic receptors from the adenylate cyclase catalytic protein as well as by a decrease in the number of receptors per cell, but not by changes in the catecholamine and guanine-nucleotide-binding affinities.  相似文献   

12.
The antiserum AS7 can specifically immunoprecipitate alpha-Gi from membrane extracts as well as from a mixture of purified alpha-Gi and alpha-Go as ascertained using [32P]ADP-ribosylated G-proteins. Using this antiserum to immunoprecipitate alpha-Gi from hepatocytes labelled with 32P it was evident that alpha-Gi was phosphorylated under basal (resting) conditions. Challenge of hepatocytes with the tumour promoting phorbol ester TPA, however, elicited a marked enhancement of the phosphorylation state of alpha-Gi. This was accompanied by the loss of inhibitory effect of Gi on adenylate cyclase, as judged by the inability of low concentrations of p[NH]ppG to inhibit forskolin-stimulated adenylate cyclase activity. Such actions were mimicked by treatment of hepatocytes with either glucagon or TH-glucagon, an analogue of glucagon which is incapable of activating adenylate cyclase and elevating intracellular cyclic AMP concentrations. Pre-treatment of hepatocytes with either glucagon, TPA or insulin did not affect the ability of pertussis toxin to cause the NAD+-dependent, [32P]ADP-ribosylation of alpha-Gi in membrane fractions isolated from such pre-treated hepatocytes. We suggest that protein kinase C can elicit the phosphorylation and functional inactivation of alpha-Gi in intact hepatocytes. As pertussis toxin only causes the ADP-ribosylation of the holomeric form of Gi, it may be that phosphorylation leaves alpha-Gi in its holomeric state.  相似文献   

13.
1. GTP, but not p[NH]ppG (guanosine 5′-[βγ-imido]triphosphate), abolishes the sensitivity of glucagon-stimulated adenylate cyclase to the lipid-phase separations occurring in the outer half of the bilayer in liver plasma membranes from rat. 2. When either GTP or p[NH]ppG alone stimulate adenylate cyclase, the enzyme senses only those lipid-phase separations occurring in the inner half of the bilayer. 3. Trypsin treatment of intact hepatocytes has no effect on the basal, fluoride-, GTP- or p[NH]ppG-stimulated adenylate cyclase activity. However, 125I-labelled-glucagon specific binding decays with a half-life matching that of the decay of glucagon-stimulated adenylate cyclase activity. 4. When GTP or p[NH]ppG are added to assays of glucagon-stimulated activity, the half-life of the trypsin-mediated decay of activity is substantially increased and the decay plots are no longer first-order. 5. Trypsin treatment of purified rat liver plasma membranes abolishes basal and all ligand-stimulated adenylate cyclase activity, and 125I-labelled-glucagon specific binding. 6. Benzyl alcohol activates the GTP- and p[NH]ppG-stimulated activities in an identical fashion, whereas these activities are affected differently when glucagon is present in the assays. 7. We suggest that guanine nucleotides alter the mode of coupling between the receptor and catalytic unit. In the presence of glucagon and GTP, a complex of receptor, catalytic unit and nucleotide regulatory protein occurs as a transient intermediate, releasing a free unstable active catalytic unit. In the presence of p[NH]ppG and glucagon, the transient complex yields a relatively stable complex of the catalytic unit associated with a p[NH]ppG-bound nucleotide-regulatory protein.  相似文献   

14.
Irradiation inactivation was used to monitor changes in the state of adenylate cyclase in rat liver plasma membranes in the presence of F-.F- caused a decrease in the target size from 328000 to 237000 at 0 degrees C and from 329000 to 219000 at 30 degrees C. Adenylate cyclase was activated by F- at both 0 degrees C and 30 degrees C. The effect of F- was biphasic, activating up to a concentration of 10mM and inhibiting at higher concentrations. If adenylate cyclase weas maximally activated with glucagon and p[NH]ppG ([beta gamma-imido]GTP) all concentrations of F- were inhibitory. The implications of the results with respect to the mechanism of activation of adenylate cyclase are discussed.  相似文献   

15.
The requirements for stability and activity of the catalytic unit (C) of adenylate cyclase were investigated. After solubilization of bovine brain membranes in the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulphonate (Chaps), the catalytic unit was separated from the stimulatory guanine-nucleotide-binding protein (Gs) by gel filtration on Ultrogel AcA-34. The partially purified C unit was rapidly inactivated at 30 degrees C; 0.25 mM-ATP stabilized activity. Although C-unit activity was dependent on Mg2+ or Mn2+, stabilization by ATP did not require bivalent cations. Activity of the Ultrogel-AcA-34-purified C unit was increased by Ca2+ plus calmodulin and by phosphatidylcholine plus lysophosphatidylcholine; activity in the presence of both activators was significantly greater than with each alone. Calmodulin plus Ca2+ and phospholipids also stabilized C unit. The column-purified C unit was activated by forskolin; the effect of forskolin was additive to those of calmodulin plus Ca2+ and phospholipids. p[NH]ppG-stimulated adenylate cyclase activity was reconstituted by mixing samples from the gel-filtration column containing Gs with C unit. Activation by Ca2+ plus calmodulin and Gs plus p[NH]ppG was additive; Ca2+ plus calmodulin did not alter the concentration of p[NH]ppG required for half-maximal activation. Results were similar with forskolin and Gs plus p[NH]ppG; the presence of one activator did not alter the effect of the other. These studies define conditions for separation of C unit and Gs from brain adenylate cyclase and demonstrate that ATP (in the absence of bivalent cations), phospholipids, calmodulin plus Ca2+, and forskolin all interact with C unit in a manner that is independent of functional Gs.  相似文献   

16.
These studies examined the structural specificity for guanine nucleotide-facilitated hormonal activation and guanine nucleotide stabilization of cardiac adenylate cyclase. 1. The phosphonate analogues of GTP, p[CH(2)]ppG (guanosine 5'-[betagamma-methylene]-triphosphate) and pp[CH(2)]pG (guanosine 5'-[alphabeta-methylene]triphosphate), were the most effective activators of adenylate cyclase. Other nucleotides producing significant activation (P<0.01) were, in decreasing order of activation: ITP, GDP, GMP, GTP, XTP, CTP, p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate), dGTP and 2'-O-methyl-GTP. Guanosine, cyclic GMP, UTP and ppppG (guanosine tetraphosphate) had no effect, and 7-methyl-GTP caused a decrease in the activity. 2. Preincubation of membranes at 37 degrees C for 15min before assay at 24 degrees C produced an 80% decrease in adenylate cyclase activity, and preincubation with p[CH(2)]ppG and pp[CH(2)]pG protected and resulted in a net increase in activity. Other nucleotides that completely or partially preserved activity in decreasing order of effectiveness were p[NH]ppG, GDP, GTP, dGTP, ITP, ppppG, 2'-O-methyl-GTP, GMP, CTP and XTP. Several compounds had no effect, including guanosine, cyclic GMP and UTP, whereas preincubation with 7-methyl-GTP produced a further decrease (P<0.05) in activity. 3. The concentration-dependence for activation and stabilization by the naturally occurring guanine nucleotides was examined in the absence of a regenerating system and revealed GMP to have no stabilizing effect and to be less potent than either GDP or GTP in activating adenylate cyclase. 4. A significant correlation (r=0.90) was found between the properties of activation and stabilization for the compounds examined. These findings are consistent with there being a single nucleotide site through which both the activation and stabilization of adenylate cyclase are mediated.  相似文献   

17.
Membrane fractions obtained from hepatocytes treated with glucagon exhibited a decreased glucagon (with or without GTP)-stimulated adenylate cyclase activity. A maximum effect was seen in around 5 min. No change in the rate of cyclic AMP production was observed for the basal, NaF-, p[NH]ppG (guanosine 5'-[beta, gamma-imido]-triphosphate)- and GTP-stimulated states of the enzyme. The lag observed in the p[NH]ppG-stimulated adenylate cyclase activity of native membranes was abolished when membranes from glucagon-pretreated cells were used. When Mn2+ replaced Mg2+ in the assays, the magnitude of the apparent desensitization was decreased. Mn2+ abolished the lag of onset of p[NH]ppG-stimulated activity in native membranes. The desensitization process was dose-dependent on glucagon, which exhibited a Ka of 4 X 10(-10) M. Depletion of intracellular ATP did not affect this process. It is suggested that this desensitization occurs at the level of the guanine nucleotide-regulatory protein.  相似文献   

18.
In isolated perfused rat hearts, epidermal growth factor (EGF; 15 nM) increased cellular cyclic AMP (cAMP) content by 9.5-fold. In rat cardiac membranes, EGF also stimulated adenylate cyclase activity in a dose-dependent manner, with maximal stimulation (35% above control) being observed at 10 nM-EGF. Half-maximal stimulation of adenylate cyclase was observed at 40 pM-EGF. Although the beta-adrenergic-receptor antagonist propranolol markedly attenuated the isoprenaline-mediated increase in cAMP content of perfused hearts and stimulation of adenylate cyclase activity, it did not alter the ability of EGF to elevate tissue cAMP content and stimulate adenylate cyclase. The involvement of a guanine-nucleotide-binding protein (G-protein) in the activation of adenylate cyclase by EGF was indicated by the following evidence. First, the EGF-mediated stimulation of adenylate cyclase required the presence of the non-hydrolysable GTP analogue, guanyl-5'-yl-imidodiphosphate (p[NH]ppG). Maximal stimulation was observed in the presence of 10 microM-p[NH]ppG. Secondly, in the presence of 10 microM-p[NH]ppG, the stable GDP analogue guanosine 5'-[beta-thio]diphosphate at a concentration of 10 microM blocked the stimulation of the adenylate cyclase by 1 nM- and 10 nM-EGF. Third, NaF + AlCl3-stimulated adenylate cyclase activity was not altered by EGF. The ability of EGF to stimulate adenylate cyclase was not affected by pertussis-toxin treatment of cardiac membranes. However, in cholera-toxin-treated cardiac membranes, when the adenylate cyclase activity was stimulated by 2-fold, EGF was ineffective. Finally, PMA by itself did not alter the activity of cardiac adenylate cyclase, but abolished the EGF-mediated stimulation of this enzyme activity. The experimental evidence in the present paper demonstrates, for the first time, that EGF stimulates adenylate cyclase in rat cardiac membranes through a stimulatory GTP-binding regulatory protein, and this effect is manifested in elevated cellular cAMP levels in perfused hearts exposed to EGF.  相似文献   

19.
The beta 1-adrenergic receptors of turkey erythrocyte membranes have been identified by binding of the radioactively labeled antagonist (--)-[3H]dihydroalprenolol, solubilized by treatment of the membranes with the detergent digitonin, and purified by affinity chromatography. Binding of (--)-[3H]dihydroalprenolol to the membranes occurred to a single class of non-cooperative binding sites (0.2--0.3 pmol/mg protein) with a equilibrium dissociation constant (Kd) of 8 (+/- 2) nM. These sites were identified as the functional, adenylate-cyclase-linked beta 1-adrenergic receptors on the basis of: firstly, the fast association and dissociation binding kinetics at 30 degrees C; secondly, the stereospecific displacement of bound (--)-[3H]dihydroalprenolol by beta-adrenergic agonists and antagonists; and thirdly, the order of potencies for agonists to displace bound tracer (isoproterenol congruent to protokylol greater than norepinephrine congruent to epinephrine) similar to the one found for adenylate cyclase activation, and typical for beta 1-adrenergic receptors. Treatment of the membranes with the detergent digitonin solubilized 30% of the receptors in an active form. Digitonin solubilized also adenylate cyclase activity with a yield of 20 to 30%, provided the membranes were first treated with an effector known to produce a persistent active state of the enzyme: e.g. sodium fluoride. Binding sites for guanine nucleotides ([3H]p[NH]ppG) were solubilized as well. Their concentration (24 pmol/mg protein) was in large excess over the concentration of solubilized receptors (0.30--0.45 pmol/mg protein). Solubilized receptors were purified 500--2000-fold by affinity chromatography with a 25 to 35% yield, using an alprenolol-agarose affinity matrix. Affinity purified receptors were devoid of measurable adenylate cyclase activity and guanine nucleotide binding sites, thus showing that receptors and adenylate cyclase are distinct membrane constituents, and that guanine nucleotides apparently do not bind directly to the receptor molecules. Membrane-bound, solubilized and purified receptors were sensitive to inactivation by dithiothreitol, but not by N-ethylmaleimide, suggesting that receptors are at least partly constituted of protein molecules, with essential disulfide bonds.  相似文献   

20.
Transient States of Adenylate Cyclase in Brain Membranes   总被引:3,自引:1,他引:2  
Basal activity of adenylate cyclase from the amygdala of sheep brain and the neostriatum of turkey brain decays in two phases at 37 degrees C. The first phase is rapid (t1/2 = 2.3 +/- 0.3 min) and results in the loss of 60-70% of basal activity. The second phase is slow (t1/2 approximately 100 min) during which time the catalytic units denature irreversibly. The GTP analogue guanosine-5' (beta-gamma imino) triphosphate (p[NH]ppG) prevents the rapid decay by stabilizing the enzyme at its initial level of activity and also reactivates the enzyme to initial levels during or immediately following the early phase, indicating that denaturation of neither the guanylnucleotide units nor the catalytic units causes the rapid decline in basal activity. Activation by p[NH]ppG is rapid at 37 degrees C, but the binding of p[NH]ppG to the guanylnucleotide subunit also occurs at nonactivatory temperatures. This is determined by the protection of catalytic units from thermal or N-ethylmaleimide inactivation after extensive washing. Thus, at 25 degrees C all of the catalytic units can be stabilized by saturating p[NH]ppG concentrations. At 0 degree C, 35% of the catalytic units can be stabilized by saturating p[NH]ppG concentrations within 30 s. The half-saturation constant for the binding of p[NH]ppG at 0 degree C is identical to that derived in an assay at 37 degrees C, or after an incubation of the membranes for 10 min at 45 degrees C, when the process of thermal denaturation is 80% complete (K1/2 approximately 3 +/- 2 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号