首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary hepatocytes were cultured at oxygen tensions similar to those reported to be present in periportal (13% O2) and pericentral (4% O2) regions of the liver lobules. Cellular DNA and protein content of individual hepatocytes were determined simultaneously by two-parameter (DNA/protein) flow cytometry after 1, 4, and 7 days in culture. pO2 tensions monitored on line in conventional plastic culture dishes revealed that the depletion of the pO2 in the culture medium depended on the number of hepatocytes plated. When cultured as monolayer after 4-7 days at periportal (13% O2) and more pronounced at pericentral oxygen concentration (4% O2), up to 90% of the hepatocytes showed degenerated nuclei but normal protein content. By using culture dishes with teflon membrane bottoms the oxygen tension in the culture medium was accurately maintained by the incubator atmosphere. At pericentral oxygen tension the fraction of 2N cells increased by about 20%. That of the 4N cell was not affected, and the contribution of 8N hepatocytes dropped to 70% compared to cultures at periportal oxygen tension. Concomitantly, in the 4% O2 hepatocyte cultures the protein content of the 2N and the 4N cells was better preserved and increased by up to 10%. These results suggest that in vitro at pericentral oxygen conditions (4% O2) ageing of hepatocytes is delayed, regenerating processes are better maintained, and, furthermore, freshly isolated 4N hepatocytes have the potency to adapt their metabolism in vitro to periportal as well as to perivenous oxygen tensions.  相似文献   

2.
The different endowment with key enzymes and thus different metabolic capacities of periportal and perivenous cell types led to the model of "metabolic zonation." The periportal and perivenous hepatocytes receive different signals owing to the decrease of substrate concentrations including O2 and hormone levels during passage of blood through the liver sinusoids. These different signal patterns should be important for the short-term regulation of metabolism and also for the long-term induction and maintenance of the different enzyme pathways by control of gene expression. The periportal to perivenous drop in oxygen tension was considered to be a key regulator in the zonated expression of carbohydrate-metabolizing enzymes. In primary hepatocyte cultures, glucagon activated the phosphoenolpyruvate carboxykinase (PCK) gene to higher levels under arterial than under venous oxygen. The insulin-dependent activation of the glucokinase (GK) gene was reciprocally modulated by oxygen. Exogenously added hydrogen peroxide mimicked the effects of arterial oxygen on both the glucagon-dependent PCK gene and the insulin-dependent GK activation. Therefore, the oxygen sensor could be a hydrogen peroxide-producing oxidase which could contain a heme group for "measuring" the O2 tension. This notion was corroborated by the finding that CO mimicked the positive effect of O2 on PCK gene activation. Transfection of PCK promoter-CAT gene constructs into primary hepatocytes showed that the oxygen modulation of the PCK gene activation occurred in the region -281/+69. The modulation by O2 was not mediated by isolated cAMP-responsive elements. Nuclear protein extracts prepared from hepatocytes cultured under venous Po2 as compared to arterial Po2 showed an enhanced binding activity to the promoter fragment -149/-43. Oxidative conditions such as H2O2 reduced the DNA-binding activity, thus supporting the role of H2O2 as a mediator in the O2 response of the PCK and GK genes.  相似文献   

3.
Tumor necrosis factor alpha (TNF) plays an important role in mediating hepatocyte injury in various liver pathologies. TNF treatment alone does not cause the death of primary cultured hepatocytes, suggesting other factors are necessary to mediate TNF-induced injury. In this work the question of whether reactive oxygen species can sensitize primary cultured hepatocytes to TNF-induced apoptosis and necrosis was investigated. Sublethal levels of H(2)O(2), either as bolus doses or steady-state levels generated by glucose oxidase, were found to sensitize cultured hepatocytes to TNF-induced apoptosis. High levels of H(2)O(2) also triggered necrosis in hepatocytes regardless of whether TNF was present. Similarly, antimycin, a complex III inhibitor that increases reactive oxygen species generation from mitochondria, sensitized hepatocytes to TNF-induced apoptosis at low doses but caused necrosis at high doses. Redox changes seem to be important in sensitizing primary hepatocytes, because diamide, a thiol-oxidizing agent, and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of GSSG reductase, also increased TNF-induced apoptosis in cultured primary hepatocytes at sublethal doses. High doses of diamide and BCNU predominantly triggered necrotic cell death. Agents that sensitized hepatocytes to TNF-induced apoptosis -- H(2)O(2), antimycin, diamide, BCNU -- all caused a dramatic fall in the GSH/GSSG ratio. These redox alterations were found to inhibit TNF-induced IkappaB-alpha phosphorylation and NF-kappaB translocation to the nucleus, thus presumably inhibiting expression of genes necessary to inhibit the cytotoxic effects of TNF. Taken together, these results suggest that oxidation of the intracellular environment of hepatocytes by reactive oxygen species or redox-modulating agents interferes with NF-kappaB signaling pathways to sensitize hepatocytes to TNF-induced apoptosis. The TNF-induced apoptosis seems to occur only in a certain redox range -- in which redox changes can inhibit NF-kappaB activity but not completely inhibit caspase activity. The implication for liver disease is that concomitant TNF exposure and reactive oxygen species, either extrinsically generated (e.g., nonparenchymal or inflammatory cells) or intrinsically generated in hepatocytes (e.g., mitochondria), may act in concert to promote apoptosis and liver injury.  相似文献   

4.
Hypoxia is known to stimulate reactive oxygen species (ROS) generation. Because reduced glutathione (GSH) is compartmentalized in cytosol and mitochondria, we examined the specific role of mitochondrial GSH (mGSH) in the survival of hepatocytes during hypoxia (5% O2). 5% O2 stimulated ROS in HepG2 cells and cultured rat hepatocytes. Mitochondrial complex I and II inhibitors prevented this effect, whereas inhibition of nitric oxide synthesis with Nomega-nitro-L-arginine methyl ester hydrochloride or the peroxynitrite scavenger uric acid did not. Depletion of GSH stores in both cytosol and mitochondria enhanced the susceptibility of HepG2 cells or primary rat hepatocytes to 5% O2 exposure. However, this sensitization was abrogated by preventing mitochondrial ROS generation by complex I and II inhibition. Moreover, selective mGSH depletion by (R,S)-3-hydroxy-4-pentenoate that spared cytosol GSH levels sensitized rat hepatocytes to hypoxia because of enhanced ROS generation. GSH restoration by GSH ethyl ester or by blocking mitochondrial electron flow at complex I and II rescued (R,S)-3-hydroxy-4-pentenoate-treated hepatocytes to hypoxia-induced cell death. Thus, mGSH controls the survival of hepatocytes during hypoxia through the regulation of mitochondrial generation of oxidative stress.  相似文献   

5.
Freshly isolated rat hepatocytes were cultured at periportal- (13% O2) or perivenous-like (4% O2) oxygen tension and exposed to subtoxic exposure levels of cyproterone acetate (CPA: 10–330 μM), phenobarbital (PB: 0.75-6 mM), and dimethylsulfoxide (DMSO: 0.1–3.3%) from 24–72 h after seeding. Induced alterations in ploidy, in the number of S-phase cells, the degree of binuclearity, and cellular protein content were determined by twin parameter protein/DNA flow cytometry analysis of intact cells and isolated nuclei. CPA and PB increased whereas DMSO decreased dose dependently the total number of S-phase cells. The changes differed within individual ploidy classes and were modulated by the oxygen tension. CPA increased and DMSO decreased the number of S-phase cells preferentially among the diploid hepatocytes at periportal-like oxygen tension. In contrast, PB increased binuclearity and S-phase cells mainly among the tetraploid hepatocytes at perivenous-like oxygen tension. Cellular protein content increased dose dependently after exposure to the hepatomitogens (CPA, PB) and decreased after exposure to DMSO at both oxygen tensions. Comparison with in vitro data proves that chemicals which interact with cells from the progenitor liver compartment (CPA, DMSO) exert their mitogenic activity best in cultures at periportal-like oxygen tension preferentially in diploid hepatocytes, whereas chemicals which affect cells from the functional compartment show a higher activity at perivenous-like oxygen tension. Physiological oxygen tension seems to be an effective modulator of the proliferative response of cultured rat hepatocytes similar to that expected for periportally or perivenously derived hepatocytes. © 1993 Wiley-Liss, Inc.  相似文献   

6.
U Rauen  F Petrat  T Li  H De Groot 《FASEB journal》2000,14(13):1953-1964
When incubated at 4 degrees C, cultured rat hepatocytes or liver endothelial cells exhibit pronounced injury and, during earlier rewarming, marked apoptosis. Both processes are mediated by reactive oxygen species, and marked protective effects of iron chelators as well as the protection provided by various other antioxidants suggest that hydroxyl radicals, formed by classical Fenton chemistry, are involved. However, when we measured the Fenton chemistry educt hydrogen peroxide and its precursor, the superoxide anion radical, formation of both had markedly decreased and steady-state levels of hydrogen peroxide did not alter during cold incubation of either liver endothelial cells or hepatocytes. Similarly, there was no evidence of an increase in O2-/H2O2 release contributing to cold-induced apoptosis occurring on rewarming. In contrast to the release/level of O2- and H2O2, cellular homeostasis of the transition metal iron is likely to play a key role during cold incubation of cultured hepatocytes: the hepatocellular pool of chelatable iron, measured on a single-cell level using laser scanning microscopy and the fluorescent indicator phen green, increased from 3.1 +/- 2.3 microM (before cold incubation) to 7.7 +/- 2.4 microM within 90 min after initiation of cold incubation. This increase in the cellular chelatable iron pool was reversible on rewarming after short periods of cold incubation. The cold-induced increase in the hepatocellular chelatable iron pool was confirmed using the calcein method. These data suggest that free radical-mediated hypothermia injury/cold-induced apoptosis is primarily evoked by alterations in the cellular iron homeostasis/a rapid increase in the cellular chelatable iron pool and not by increased formation of O2-/H2O2.  相似文献   

7.
Oxygen supply is a critical issue in the optimization of in vitro hepatocyte microenvironments. Although several strategies have been developed to balance complex oxygen requirements, these techniques are not able to accurately meet the cellular oxygen demand. Indeed, neither the actual oxygen concentration encountered by cells nor the cellular oxygen consumption rates (OCR) was assessed. The aim of this study is to define appropriate oxygen conditions at the cell level that could accurately match the OCR and allow hepatocytes to maintain liver specific functions in a normoxic environment. Matrigel overlaid rat hepatocytes were cultured on the polydimethylsiloxane (PDMS) membranes under either atmospheric oxygen concentration [20%‐O2 (+)] or physiological oxygen concentrations [10%‐O2 (+), 5%‐O2 (+)], respectively, to investigate the effects of various oxygen concentrations on the efficient functioning of hepatocytes. In parallel, the gas‐impermeable cultures (polystyrene) with PDMS membrane inserts were used as the control groups [PS‐O2 (?)]. The results indicated that the hepatocytes under 10%‐O2 (+) exhibited improved survival and maintenance of metabolic activities and functional polarization. The dramatic elevation of cellular OCR up to the in vivo liver rate proposed a normoxic environment for hepatocytes, especially when comparing with PS‐O2 (?) cultures, in which the cells generally tolerated hypoxia. Additionally, the expression levels of 84 drug‐metabolism genes were the closest to physiological levels. In conclusion, this study clearly shows the benefit of long‐term culture of hepatocytes at physiological oxygen concentration, and indicates on an oxygen‐permeable membrane system to provide a simple method for in vitro studies. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1401–1410, 2014  相似文献   

8.
The effects of pretreatment growth conditions on the sensitivity of tumor cells to various cytotoxic agents were investigated using murine Ehrlich ascites tumor cells grown in two different environments. The tumor cells adapted to grow in the peritoneal cavity of mice were found to be more sensitive to ionizing radiation, oxygen toxicity, doxorubicin, and bleomycin than tumor cells adapted to grow in vitro. However, there was no difference in their sensitivity to 5-fluorouracil. One obvious difference between these two growth environments is oxygen tension; it is between 2.6 and 5.2% (20-40 mmHg) for the peritoneal cavity and 21% (159 mmHg) for the regular tissue culture. To investigate the role of oxygen tension, tumor cells from the peritoneal cavity were grown in tissue culture having either 21% O2 or 4% O2 in the gas phase. Within 4 d, tumor cells that were exposed to 21% O2, but not to 4% O2, in vitro gradually became as resistant to cytotoxic agents as the tumor cells continuously cultured in vitro under 21% O2. It appears that the adaptation of tumor cells to different environments having different partial pressure of oxygen alters their sensitivity not only to oxygen toxicity but also to other cytotoxic agents that damage or kill cells by generating free radicals.  相似文献   

9.
Somatic cells undergo a permanent cell cycle arrest, called cellular senescence, after a limited number of cell divisions in vitro. Both the tumor suppressor protein p53 and the stress-response protein p66(shc) are suggested to regulate the molecular events associated with senescence. This study was undertaken to investigate the effect of different oxygen tensions and oxidative stress on cell longevity and to establish the role of p53 and p66(shc) in cells undergoing senescence. As a model of cellular senescence, primary fetal bovine fibroblasts were cultured in either 20% O(2) or 5% O(2) atmospheres until senescence was reached. Fibroblasts cultured under 20% O(2) tension underwent senescence after 30 population doublings (PD), whereas fibroblasts cultured under 5% O(2) tension did not exhibit signs of senescence. Oxidative stress, as measured by protein carbonyl content, was significantly elevated in senescent cells compared to their younger counterparts and to fibroblasts cultured under 5% O(2) at the same PD. p53 mRNA gradually decreased in 20% O(2) cultured fibroblasts until senescence was reached, whereas p53 protein levels were significantly increased as well as p53 phosphorylation on serine 20, suggesting that p53 might be stabilized by posttranslational modifications during senescence. Senescence was also associated with high levels of p66(shc) mRNA and protein levels, while the levels remained low and stable in dividing fibroblasts under 5% O(2) atmosphere. Taken together, our results show an effect of oxidative stress on the replicative life span of fetal bovine fibroblasts as well as an involvement of p53, serine 20-p53 phosphorylation and p66(shc) in senescence.  相似文献   

10.
Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3α mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.  相似文献   

11.
Culture experiments on Ehrlich ascites tumor cells revealed that a low oxygen tension (about 20% in normoxic atmosphere) induced an increase in the length of the growth cycle. The relative growth of aerobic control cells after transfer to the second in vitro passage was 145% within 24 h, and reduced to 50% at 1% O2 and about 30% at 0.1% O2. The increase in protein and DNA content of these hypoxic cultures was equally impaired. Also, the cell cycle traverse as analyzed by flow cytometry was affected predominantly at the G1/early S stage. Uptake of labeled thymidine into acid-insoluble material of hypoxic cells was below that of controls whereas incorporation of uridine exceeded that of normoxic controls. Supplementation of cells cultured under 0.1 and 1% O2 with 0.1 mM uridine or 0.1 mM deoxycytidine + 0.01 mM deoxyadenosine and deoxyguanosine improved all growth parameters; deoxynucleosides were more effective than uridine in cells under 0.1% O2 whereas in cells cultured under 1% O2 similar effects of both were observed. This points to an insufficient supply of nucleic acid precursors even under moderate limitations of oxygen tension and not only under strict hypoxia. Whereas a 12-h cultivation time at 0.1% O2 hardly impaired cell growth after reoxygenation, a cultivation time of 24 h considerably reduced the cellular capability to recover. This was alleviated by addition of (deoxy)nucleosides from the beginning of hypoxic culture. The results are interpreted as supporting the concept that the biosynthetic pathway of pyrimidine (deoxy)nucleotides--because of two oxygen-dependent enzymes, dihydroorotate dehydrogenase and ribonucleotide reductase--is a potential transducer of environmental limitations in oxygen tension to the proliferative capacity of cells.  相似文献   

12.
The primary cultures of 3-day old rats heart myocytes were used for studying hypoxia. The cells were gassed for 1 or 2 hours with 100% N2 or with the mixture of 90% N2, 5% CO2, 5% O2. The cells' morphology was tested by the light microscopy. The contractility of the cells was lost after oxygen deprivation. But it was reversible when the cells were exposed to 5% O2 for an hour and then were returned to the normal conditions. Oxygen deprivation changed the cell's morphology so that vacuolization, bubbling, contracture, exfoliation of the cell membrane from the glass surface could be observed. The number of the cells with morphological alterations increased when the content of oxygen in the gas mixture was lowered and the time of gassing was prolonged. The authors assume that the primary culture of the myocardial cells is a suitable model for studying the metabolic patterns of reversible injuries caused by one hour hypoxia (5% O2).  相似文献   

13.
Various oxygen tensions are employed for in vitro embryo production. Since it is known that oxygen tension can influence the efficiency of embryo production and embryo quality, the aim of our study was to define an optimal oxygen concentration for bovine embryo production in vitro in synthetic oviduct fluid (SOF). Embryo quality criteria were hatching ability and the degree of apoptosis as assessed by TUNEL staining and Bax gene expression. In Experiment 1, the effects of 2, 5 and 20% O(2) tensions on embryo development were compared. The highest rate of eight-cell embryos (47%) at 72 hpi was obtained under 20% O(2). However, it seemed that 2 and 5% O(2) were also suitable as assessed by embryo survival rates at 144 hpi (29 and 30% at morula stage), 168 hpi (21 and 19% at blastocyst stage) and 216 hpi (14 and 17% at hatched blastocyst stage). In Experiment 2, comparisons were made between effects of 5, 20% and alternating O(2) (20% O(2) to 72 hpi and then changed to 5% O(2) up to 216 hpi) on embryo development. Alternating the O(2) tension significantly reduced the number of hatching blastocysts to 7%. Staining with TUNEL revealed that apoptosis occurred in all tested hatched blastocysts, but a significantly lower apoptotic cell ratio was found in embryos cultured under 5% O(2) (P<0.05). Total cell number of embryos cultured under 5% and alternating oxygen was significantly higher than that of other groups (P<0.05). Bax gene expression was detected by means of RT-PCR in only 2 of 66 hatched blastocysts. It can be concluded that 5% oxygen is optimal for bovine embryo culture in cell free media. Moreover, it is very likely that the apoptosis detected by TUNEL staining in this study is Bax-independent.  相似文献   

14.
目的: 通过分离并提纯非酒精性脂肪性肝炎(NASH)大鼠原代肝细胞以及原代Kupffer细胞建立体外NASH原代细胞模型,为研究NASH提供可靠的细胞实验技术支持。方法: 选择SD大鼠40只,随机分为2组(n=20):对照组和NASH组,对照组大鼠利用普通饲料喂养,NASH组大鼠利用高脂饲料(88%基础饲料+10%猪油+ 2%胆固醇)喂养,6~8周后,利用NASH评分表,病理观察下肝组织切片脂肪变+小叶内炎症+气球样变评分≥4 分,表明大鼠NASH模型的成功建立,利用胶原酶原位灌注法分离并提纯NASH模型大鼠原代肝细胞以及原代Kupffer细胞,利用CK-18及CD68免疫荧光以及墨汁吞墨实验进行细胞鉴定,利用油红O染色、试剂盒测定谷丙转氨酶(ALT)、谷草转氨酶(AST)含量观察NASH大鼠原代肝细胞脂质累积和肝功情况,Western blot检测原代Kupffer细胞炎症因子表达情况,最后采用原代肝细胞:原代Kupffer细胞=6∶1比例共培养,显微镜下观察细胞状态。结果: 实验成功分离并提纯NASH原代肝细胞以及原代Kupffer细胞,通过油红O染色,NASH组大鼠原代肝细胞存在明显的脂肪沉积,且NASH组大鼠原代肝细胞中AST、ALT明显高于对照组,存在明显肝损伤(P<0.05),Western blot测定原代Kupffer细胞TNF-α、IL-1β以及MCP-1,NASH组大鼠明显高于对照组(P<0.05)。结论: 通过胶原酶原位灌注法可以成功分离NASH大鼠原代肝细胞以及原代Kupffer细胞,同时成功建立比例共培养大鼠体外原代细胞NASH模型。  相似文献   

15.
We determined whether extrahepatic biliary epithelial cells can differentiate into cells with phenotypic features of hepatocytes. Gallbladders were removed from transgenic mice expressing hepatocyte-specific beta-galactosidase (beta-Gal) and cultured under standard conditions and under experimental conditions designed to induce differentiation into a hepatocyte-like phenotype. Gallbladder epithelial cells (GBEC) cultured under standard conditions exhibited no beta-Gal activity. beta-Gal expression was prominent in 50% of cells cultured under experimental conditions. Similar morphological changes were observed in GBEC from green fluorescent protein transgenic mice cultured under experimental conditions. These cells showed higher levels of mRNA for genes expressed in hepatocytes, but not in GBEC, including aldolase B, albumin, hepatocyte nuclear factor-4alpha, aldehyde dehydrogenase 1, and glutamine synthetase, and they synthesized bile acids. Additional functional evidence of a hepatocyte-like phenotype included LDL uptake and enhanced benzodiazepine metabolism. Connexin-32 expression was evident in murine hepatocytes and in cells cultured under experimental conditions, but not in cells cultured under standard conditions. Notch 1, 2, and 3 and Notch ligand Jagged 1 mRNAs were downregulated in these cells compared with cells cultured under standard conditions. CD34, alpha-fetoprotein, and Sca-1 mRNA were not expressed in cells cultured under standard conditions, suggesting that the hepatocyte-like cells did not arise from hematopoietic stem cells or oval cells. These results point to future avenues for investigation into the potential use of GBEC in the treatment of liver disease.  相似文献   

16.
We have determined that sodium butyrate and, to a lesser extent, dimethylsulfoxide (DMSO) and 3-aminobenzamide (3-AB) preserve aspects of the differentiated phenotype of primary cultures of adult rat hepatocytes. The histone deacetylase inhibitor, butyrate, inhibits the increase in gamma-glutamyltranspeptidase (GGT) activity and the decrease in basal tyrosine aminotransferase (TAT) activity normally observed when hepatocytes are cultured under appropriate conditions. The effects of butyrate on GGT and TAT activities are accompanied by parallel changes in GGT and TAT mRNA levels. The poly(ADP)ribose-synthetase inhibitor, 3-aminobenzamide, has effects similar to butyrate on GGT activity and mRNA levels, while both 3-AB and DMSO increase basal TAT activity in cultured hepatocytes. Under appropriate conditions all three agents--butyrate, 3-AB, and DMSO--extend the length of time cultured hepatocytes can be maintained as confluent monolayers. However, under all the conditions studied, butyrate extended the length of time hepatocytes could be maintained as monolayers more than any other treatment used. Butyrate-treated hepatocytes maintained ultrastructural features that were more similar to those of hepatocytes in vivo than hepatocytes treated with any other of the agents tested. Histone acetylation levels of primary cultures of adult rat hepatocytes declined concomitant with the loss of the differentiated phenotype of the cells. These results suggest that histone acetylation may play a role in the changes in gene expression observed when hepatocytes are placed in culture.  相似文献   

17.
Multiphysics modeling is an emerging approach in cellular bioengineering research, used for simulating complex biophysical interactions and their effects on cell viability and function. Our goal in the present study was to integrate cell-specific finite element modeling--which we have developed in previous research to simulate deformation of individual cells subjected to external loading--with oxygen transport in the deformed cells at normoxic and hypoxic environments. We specifically studied individual and combined effects of substrate stretch levels, O? concentration in the culture media, and temperature of the culture media on intracellular O? levels in cultured myoblasts, in models of two individual cells. We found that (i) O? transport became faster with the increasing levels of substrate stretch (ranging from 0 to 24%), and (ii) the effect of a 3 °C temperature drop on slowing down the O? transport was milder with respect to the effect that strains had. The changes in cell geometry due to externally applied deformations could, hence, theoretically affect cell respiration, which should be a consideration in cellular mechanics experiments.  相似文献   

18.
Examination was made of the effects of oxygen concentration and supplementation of bovine oviductal epithelial tissue (BOET) on the development of bovine in vitro matured and fertilized (IVM/IVF) oocytes in a protein-free medium. The IVM/IVF embryos were cultured in protein-free tissue culture medium 199 supplemented with or without BOET under 5% CO(2) in air (20% O(2)) or 5% CO(2), 5% O(2) and 90% N(2) (5% O(2)). We found that blastocyst development without BOET at 5% O(2) was the same as that with BOET at 20% O(2) (30 vs 33%); BOET suppressed blastocyst development at 5% O(2) (4%). Blastocysts cultured without BOET at 5% O(2) developed into normal fetuses after transfer to recipient heifers. Examination was also made of oxygen pressure in the medium cultured with or without BOET at 20% O(2) or 5% O(2) by a blood gas analyzer. Oxygen pressure in the medium cultured with BOET at 20% O(2) was lower than that without BOET (111.0 +/- 13.3 vs 149.2 +/- 1.3 mmHg). These results indicate that bovine IVM/IVF embryos can develop to the blastocyst stage in a protein-free medium without somatic cell support at low oxygen concentration (5%) and that the beneficial role of BOET for embryonic development may be to reduce oxygen concentration in the medium.  相似文献   

19.
Effects of oxygen toxicity on early development of mouse embryos.   总被引:8,自引:0,他引:8  
To examine the effects of oxygen toxicity on embryonic development, mouse pronuclear embryos were cultured under low oxygen conditions with or without superoxide dismutase (SOD), and the blastulation rate was compared with that of embryos cultured under standard conditions. The blastulation rate of mouse pronuclear embryos cultured under standard conditions was only 1.5% (2/131). This rate was increased significantly, to 28.5% (43/151), when the embryos were cultured under low oxygen conditions; and to 31.0% (35/113) when SOD (500 micrograms/ml) was added to the medium under standard conditions; the rate was increased to 75.2% (115/153) when the embryos were cultured under low oxygen conditions in the presence of SOD. The minimum effective concentration of SOD in the culture medium was 50 micrograms/ml under conditions of 5% O2. The blastulation rate was significantly decreased after 1-hr exposure of pronuclear embryos to room atmospheric oxygen concentration (20% O2), and subsequent culture under 5% O2 with SOD did not result in an improved blastulation rate. Culture with SOD under 5% O2 promoted the development of two-cell stage embryos to the blastocyst stage. When two-cell stage embryos were collected 48 hr after hCG and cultured for 66 hr, their blastulation rate was similar to that of embryos collected from mice 114 hr after hCG. These results suggested that embryonic development in vitro is greatly affected by atmospheric oxygen throughout the early embryonic stages and that this harmful effect can be prevented by culturing embryos under low oxygen conditions and in the presence of SOD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号