首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The covalent anchoring of surface proteins to the cell wall envelope of Gram-positive bacteria occurs by a universal mechanism requiring sortases, extracellular transpeptidases that are positioned in the plasma membrane. Surface protein precursors are first initiated into the secretory pathway of Gram-positive bacteria via N-terminal signal peptides. C-terminal sorting signals of surface proteins, bearing an LPXTG motif or other recognition sequences, provide for sortase-mediated cleavage and acyl enzyme formation, a thioester linkage between the active site cysteine residue of sortase and the C-terminal carboxyl group of cleaved surface proteins. During cell wall anchoring, sortase acyl enzymes are resolved by the nucleophilic attack of peptidoglycan substrates, resulting in amide bond formation between the C-terminal end of surface proteins and peptidoglycan cross-bridges within the bacterial cell wall envelope. The genomes of Gram-positive bacteria encode multiple sortase genes. Recent evidence suggests that sortase enzymes catalyze protein anchoring reactions of multiple different substrate classes with different sorting signal motif sequences, protein linkage to unique cell wall anchor structures as well as protein polymerization leading to the formation of pili on the surface of Gram-positive bacteria.  相似文献   

2.
《FEBS letters》2014,588(23):4325-4333
Covalent attachment of surface proteins to the cell wall of Gram-positive bacteria requires a sortase-mediated transpeptidation reaction. In almost all Gram-positive bacteria, the housekeeping sortase, sortase A, recognizes the canonical recognition sequence LPXTG (X = any amino acid). The human pathogen Clostridium difficile carries a single putative sortase gene (cd2718) but neither transpeptidation activity nor specificity of CD2718 has been investigated. We produced recombinant CD2718 and examined its transpeptidation activity in vitro using synthetic peptides and MALDI-ToF(-ToF) MS analysis. We demonstrate that CD2718 has sortase activity with specificity for a (S/P)PXTG motif and can accommodate diaminopimelic acid as a substrate for transpeptidation.  相似文献   

3.
Haft DH  Varghese N 《PloS one》2011,6(12):e28886
The rhomboid family of serine proteases occurs in all domains of life. Its members contain at least six hydrophobic membrane-spanning helices, with an active site serine located deep within the hydrophobic interior of the plasma membrane. The model member GlpG from Escherichia coli is heavily studied through engineered mutant forms, varied model substrates, and multiple X-ray crystal studies, yet its relationship to endogenous substrates is not well understood. Here we describe an apparent membrane anchoring C-terminal homology domain that appears in numerous genera including Shewanella, Vibrio, Acinetobacter, and Ralstonia, but excluding Escherichia and Haemophilus. Individual genomes encode up to thirteen members, usually homologous to each other only in this C-terminal region. The domain's tripartite architecture consists of motif, transmembrane helix, and cluster of basic residues at the protein C-terminus, as also seen with the LPXTG recognition sequence for sortase A and the PEP-CTERM recognition sequence for exosortase. Partial Phylogenetic Profiling identifies a distinctive rhomboid-like protease subfamily almost perfectly co-distributed with this recognition sequence. This protease subfamily and its putative target domain are hereby renamed rhombosortase and GlyGly-CTERM, respectively. The protease and target are encoded by consecutive genes in most genomes with just a single target, but far apart otherwise. The signature motif of the Rhombo-CTERM domain, often SGGS, only partially resembles known cleavage sites of rhomboid protease family model substrates. Some protein families that have several members with C-terminal GlyGly-CTERM domains also have additional members with LPXTG or PEP-CTERM domains instead, suggesting there may be common themes to the post-translational processing of these proteins by three different membrane protein superfamilies.  相似文献   

4.
Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase function of these proteins in B. subtilis. Proteomics analyses revealed that sortase-mutant cells released elevated levels of the putative sortase substrate YfkN into the culture medium upon phosphate starvation. The results indicate that YfkN required sortase activity of YhcS for retention in the cell wall. To analyze sortase function in more detail, we focused attention on the potential sortase substrate YhcR, which is co-expressed with the sortase YhcS. Our results showed that the sortase recognition and cell-wall-anchoring motif of YhcR is functional when fused to the Bacillus pumilus chitinase ChiS, a readily detectable reporter protein that is normally secreted. The ChiS fusion protein is displayed at the cell wall surface when YhcS is co-expressed. In the absence of YhcS, or when no cell-wall-anchoring motif is fused to ChiS, the ChiS accumulates predominately in the culture medium. Taken together, these novel findings show that B. subtilis has a functional sortase for anchoring proteins to the cell wall.  相似文献   

5.
Aucher W  Davison S  Fouet A 《PloS one》2011,6(11):e27411
LPXTG proteins, present in most if not all Gram-positive bacteria, are known to be anchored by sortases to the bacterial peptidoglycan. More than one sortase gene is often encoded in a bacterial species, and each sortase is supposed to specifically anchor given LPXTG proteins, depending of the sequence of the C-terminal cell wall sorting signal (cwss), bearing an LPXTG motif or another recognition sequence. B. anthracis possesses three sortase genes. B. anthracis sortase deleted mutant strains are not affected in their virulence. To determine the sortase repertoires, we developed a genetic screen using the property of the gamma phage to lyse bacteria only when its receptor, GamR, an LPXTG protein, is exposed at the surface. We identified 10 proteins that contain a cell wall sorting signal and are covalently anchored to the peptidoglycan. Some chimeric proteins yielded phage lysis in all sortase mutant strains, suggesting that cwss proteins remained surface accessible in absence of their anchoring sortase, probably as a consequence of membrane localization of yet uncleaved precursor proteins. For definite assignment of the sortase repertoires, we consequently relied on a complementary test, using a biochemical approach, namely immunoblot experiments. The sortase anchoring nine of these proteins has thus been determined. The absence of virulence defect of the sortase mutants could be a consequence of the membrane localization of the cwss proteins.  相似文献   

6.
The interaction of Streptococcus pyogenes (group A streptococcus [GAS]) with its human host requires several surface proteins. In this study, we isolated mutations in a gene required for the surface localization of protein F by transposon mutagenesis of the M6 strain JRS4. This gene (srtA) encodes a protein homologous to Staphylococcus aureus sortase, which covalently links proteins containing an LPXTG motif to the cell wall. The GAS srtA mutant was defective in anchoring the LPXTG-containing proteins M6, protein F, ScpA, and GRAB to the cell surface. This phenotype was complemented when a wild-type srtA gene was provided in trans. The surface localization of T6, however, was unaffected by the srtA mutation. The M1 genome sequence contains a second open reading frame with a motif characteristic of sortase proteins. Inactivation of this gene (designated srtB) in strain JRS4 affected the surface localization of T6 but not M6, protein F, ScpA, or GRAB. This phenotype was complemented by srtB in trans. An srtA probe hybridized with DNA from all GAS strains tested (M types 1, 3, 4, 5, 6, 18, 22, and 50 and nontypeable strain 64/14) and from streptococcal groups C and G, while srtB hybridized with DNA from only a few GAS strains. We conclude that srtA and srtB encode sortase enzymes required for anchoring different subsets of proteins to the cell wall. It seems likely that the multiple sortase homologs in the genomes of other gram-positive bacteria have a similar substrate-specific role.  相似文献   

7.
Substrate hydrolysis by matrix metalloproteinase-9   总被引:4,自引:0,他引:4  
The catalytic clefts of all matrix metalloproteinases (MMPs) have a similar architecture, raising questions about the redundancy in substrate recognition across the protein family. In the present study, an unbiased phage display strategy was applied to define the substrate recognition profile of MMP-9. Three groups of substrates were identified, each occupying a distinct set of subsites within the catalytic pocket. The most prevalent motif contains the sequence Pro-X-X-Hy-(Ser/Thr) at P(3) through P(2'). This sequence is similar to the MMP cleavage sites within the collagens and is homologous to substrates the have been selected for other MMPs. Despite this similarity, most of the substrates identified here are selective for MMP-9 over MMP-7 and MMP-13. This observation indicates that substrate selectivity is conferred by key subsite interactions at positions other than P(3) and P(1'). This study shows that MMP-9 has a unique preference for Arg at both P(2) and P(1), and a preference for Ser/Thr at P(2'). Substrates containing the consensus MMP-9 recognition motif were used to query the protein data bases. A surprisingly limited list of putative physiologic substrates was identified. The functional implications of these proteins lead to testable hypotheses regarding physiologic substrates for MMP-9.  相似文献   

8.
The important human pathogen Streptococcus pyogenes (group A streptococcus GAS), requires several surface proteins to interact with its human host. Many of these are covalently linked by a sortase enzyme to the cell wall via a C-terminal LPXTG motif. This motif is followed by a hydrophobic region and charged C terminus, which are thought to retard the protein in the cell membrane to facilitate recognition by the membrane-localized sortase. Previously, we identified two sortase enzymes in GAS. SrtA is found in all GAS strains and anchors most proteins containing LPXTG, while SrtB is present only in some strains and anchors a subset of LPXTG-containing proteins. We now report the presence of a third sortase in most strains of GAS, SrtC. We show that SrtC mediates attachment of a protein with a QVPTGV motif preceding a hydrophobic region and charged tail. We also demonstrate that the QVPTGV sequence is a substrate for anchoring of this protein by SrtC. Furthermore, replacing this motif with LPSTGE, found in the SrtA-anchored M protein of GAS, leads to SrtA-dependent secretion of the protein but does not lead to its anchoring by SrtA. We conclude that srtC encodes a novel sortase that anchors a protein containing a QVPTGV motif to the surface of GAS.  相似文献   

9.
10.
Renibacterium salmoninarum, the causative agent of bacterial kidney disease in salmonid fishes, is a Gram-positive diplococcobacillus belonging to the family Micrococcaceae. Analysis of the genome sequence of the bacterium demonstrated the presence of a sortase homolog (srtD), a gene specifying an enzyme found in Gram-positive bacteria and required for covalent anchoring of cell surface proteins. Interference of sortase activity is being examined as a target for therapeutic prevention of infection by several pathogenic Gram-positive bacterial species. In silico analysis identified 8 open reading frames containing sortase recognition motifs, suggesting these proteins are translocated to the bacterial cell wall. The sortase and potential sortase substrate genes are transcribed in R. salmoninarum, suggesting they encode functional proteins. Treatment of R. salmoninarum with phenyl vinyl sulfone (PVS) significantly reduced bacterial adherence to Chinook salmon fibronectin. In addition, the ability of the PVS-treated bacteria to adhere to Chinook salmon embryo cells (CHSE-214) in vitro was dramatically reduced compared to that of untreated bacteria. More importantly, PVS-treated bacteria were unable to invade and replicate within CHSE-214 cells (demonstrated by an intracellular growth assay and by light microscopy). When treated with PVS, R. salmoninarum was not cytopathic to CHSE-214 cells, whereas untreated bacteria produced cytopathology within a few days. These findings clearly show that PVS, a small molecule drug and a known sortase inhibitor, can interfere with the ability of R. salmoninarum to adhere and colonize fish cells, with a corresponding decrease in virulence.  相似文献   

11.
The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used.  相似文献   

12.
In Gram-positive bacteria, sortase-dependent pili mediate the adhesion of bacteria to host epithelial cells and play a pivotal role in colonization, host signaling, and biofilm formation. Lactobacillus rhamnosus strain GG, a well known probiotic bacterium, also displays on its cell surface mucus-binding pilus structures, along with other LPXTG surface proteins, which are processed by sortases upon specific recognition of a highly conserved LPXTG motif. Bioinformatic analysis of all predicted LPXTG proteins encoded by the L. rhamnosus GG genome revealed a remarkable conservation of glycine residues juxtaposed to the canonical LPXTG motif. Here, we investigated and defined the role of this so-called triple glycine (TG) motif in determining sortase specificity during the pilus assembly and anchoring. Mutagenesis of the TG motif resulted in a lack or an alteration of the L. rhamnosus GG pilus structures, indicating that the TG motif is critical in pilus assembly and that they govern the pilin-specific and housekeeping sortase specificity. This allowed us to propose a regulatory model of the L. rhamnosus GG pilus biogenesis. Remarkably, the TG motif was identified in multiple pilus gene clusters of other Gram-positive bacteria, suggesting that similar signaling mechanisms occur in other, mainly pathogenic, species.  相似文献   

13.
The twin-arginine translocation (TAT) system secretes fully folded proteins that contain a twin-arginine motif within their signal sequence across the cytoplasmic membrane in bacteria. Using a green fluorescent protein fused with a TAT signal sequence, we demonstrated that Mycobacterium smegmatis contains a TAT system. By inactivating individual genes, we showed that three genes (tatA, tatB, and tatC) are required for a functional TAT system in M. smegmatis. The tat mutants exhibited a decreased growth rate and altered colony morphology compared to the parent strain. Comparison of the secreted proteins of the deltatatC and parent strain by two-dimensional polyacrylamide gel electrophoresis revealed an alteration in the secretion of at least five proteins, and one of the major TAT-dependent secreted proteins was identified as beta-lactamase (BlaS). The genome of M. smegmatis was analyzed with the TATFIND program, and 49 putative TAT substrates were identified, including the succinate transporter DctP. Because disruption of the TAT secretion system has a direct effect on the physiology of M. smegmatis and homologs of the TAT proteins are also present in the genome of Mycobacterium tuberculosis, the TAT secretion system or its substrates may be good candidates for drug or vaccine development.  相似文献   

14.
Wang C  Ye M  Han G  Chen R  Zhang M  Jiang X  Cheng K  Wang F  Zou H 《Proteomics》2011,11(17):3578-3581
Multiple residues with consensus sequence, i.e. motif, on proteins are closely related to protein function. However, there is no effective method for targeted analysis of such proteins. The challenge for analysis of these classes of proteins by MS is how to selectively enrich peptides containing consensus sequence from protein digest. Although enrichment of peptides containing one type of amino acid residue was successfully achieved by chemically labeling followed by chromatographic isolation, however, it is almost impossible to label and isolate signature peptides containing multiple residues with consensus sequence by chemical approach. Herein, we developed an enzymatic approach based on the specific recognition between enzyme and its substrates to enrich such peptides. This approach was realized by modification of a residue in the consensus sequence via enzyme that can recognize the sequence followed by the isolation of the modified peptides. cAMP-dependent protein kinase was used to validate this approach and 168 peptides containing consensus motif were identified with selectivity of 67.2%. Those peptides resulted in the identification of 88 proteins with consensus sequence from serum sample. As this motif-oriented peptide enrichment approach allows targeted analysis of a subset of proteins with consensus sequence, it will have broad application in biological studies.  相似文献   

15.
16.
During infection of their hosts, Gram-positive bacteria express surface proteins that serve multiple biological functions. Surface proteins harbouring a C-terminal sorting signal with an LPXTG motif are covalently linked to the cell wall peptidoglycan by a transamidase named sortase. Two genes encoding putative sortases, termed srtA and srtB, were identified in the genome of the intracellular pathogenic bacterium Listeria monocytogenes. Inactivation of srtA abolishes anchoring of the invasion protein InlA to the bacterial surface. It also prevents the proper sorting of several other peptidoglycan-associated LPXTG proteins. Three were identified by a mass spectrometry approach. The DeltasrtA mutant strain is defective in entering epithelial cells, similar to a DeltainlA mutant. In contrast to a DeltainlA mutant, the DeltasrtA mutant is impaired for colonization of the liver and spleen after oral inoculation in mice. Thus, L. monocytogenes srtA is required for the cell wall anchoring of InlA and, presumably, for the anchoring of other LPXTG-containing proteins that are involved in listerial infections.  相似文献   

17.
Surface proteins in Gram-positive bacteria are frequently implicated in virulence. We have focused on a group of extracellular cell wall-attached proteins (CWPs), containing an LPXTG motif for cleavage and covalent coupling to peptidoglycan by sortase enzymes. A hidden Markov model (HMM) approach for predicting the LPXTG-anchored cell wall proteins of Gram-positive bacteria was developed and compared against existing methods. The HMM model is parsimonious in terms of the number of freely estimated parameters, and it has proved to be very sensitive and specific in a training set of 55 experimentally verified LPXTG-anchored cell wall proteins as well as in reliable data sets of globular and transmembrane proteins. In order to identify such proteins in Gram-positive bacteria, a comprehensive analysis of 94 completely sequenced genomes has been performed. We identified, in total, 860 LPXTG-anchored cell wall proteins, a number that is significantly higher compared to those obtained by other available methods. Of these proteins, 237 are hypothetical proteins according to the annotation of SwissProt, and 88 had no homologs in the SwissProt database--this might be evidence that they are members of newly identified families of CWPs. The prediction tool, the database with the proteins identified in the genomes, and supplementary material are available online at http://bioinformatics.biol.uoa.gr/CW-PRED/.  相似文献   

18.
The precursors of most surface proteins on Gram-positive bacteria have a C-terminal hydrophobic domain and charged tail, preceded by a conserved LPXTG motif that signals the anchoring process. This motif is the substrate for an enzyme, termed sortase, which has transpeptidation activity resulting in the cleavage of the LPXTG sequence and ultimate attachment of the protein to the peptidoglycan. While screening a group A streptococcal membrane extract for cleavage activity of the LPXTG motif, we identified an enzyme (which we term "LPXTGase") that differs significantly from sortase but also cleaves this motif. The enzyme is heavily glycosylated, which is required for its activity. Amino acid composition and sequence analysis revealed that LPXTGase differs from other enzymes, in that the molecule, which is about 14 kDa in size, has no aromatic amino acids, is rich in alanine, and is 30% composed of uncommon amino acids, suggesting a nonribosomal construction. A similar enzyme found in the membrane extract of Staphylococcus aureus, indicates that this unusual molecule may be common among Gram-positive bacteria. Whereas peptide antibiotics have been reported from bacillus species that also contain unusual amino acids and are synthesized non-ribosomally on amino acid-activating polyenzyme templates, this would be the first reported enzyme that may be similarly synthesized.  相似文献   

19.
In search of RNase P RNA from microbial genomes   总被引:2,自引:0,他引:2       下载免费PDF全文
Li Y  Altman S 《RNA (New York, N.Y.)》2004,10(10):1533-1540
A simple procedure has been developed to quickly retrieve and validate the DNA sequence encoding the RNA subunit of ribonuclease P (RNase P RNA) from microbial genomes. RNase P RNA sequences were identified from 94% of bacterial and archaeal complete genomes where previously no RNase P RNA was annotated. A sequence was found in camelpox virus, highly conserved in all orthopoxviruses (including smallpox virus), which could fold into a putative RNase P RNA in terms of conserved primary features and secondary structure. New structure features of RNase P RNA that enable one to distinguish bacteria from archaea and eukarya were found. This RNA is yet another RNA that can be a molecular criterion to divide the living world into three domains (bacteria, archaea, and eukarya). The catalytic center of this RNA, and its detection from some environmental whole genome shotgun sequences, is also discussed.  相似文献   

20.
The amino acid sequence of the phage infection protein (Pip) of Lactococcus lactis predicts a multiple-membrane-spanning region, suggesting that Pip may be anchored to the plasma membrane. However, a near-consensus sortase recognition site and a cell wall anchoring motif may also be present near the carboxy terminus. If functional, this recognition site could lead to covalent linkage of Pip to the cell wall. Pip was detected in both plasma membranes and envelopes (plasma membrane plus peptidoglycan) isolated from the wild-type Pip strain LM2301. Pip was firmly attached to membrane and envelope preparations and was solubilized only by treatment with detergent. Three mutant Pip proteins were separately made in which the multiple-membrane-spanning region was deleted (Pip-Deltammsr), the sortase recognition site was converted to the consensus (Pip-H841G), or the sortase recognition site was deleted (Pip-Delta6). All three mutant Pip proteins co-purified with membranes and could not be solubilized except with detergent. When membranes containing Pip-Deltammsr were sonicated and re-isolated by sucrose density gradient centrifugation, Pip-Deltammsr remained associated with the membranes. Strains that expressed Pip-H841G or Pip-Delta6 formed plaques with near unit efficiency, whereas the strain that expressed Pip-Deltammsr did not form plaques of phage c2. Both membranes and cell-free culture supernatant from the strain expressing Pip-Deltammsr inactivated phage c2. These results suggest that Pip is an integral membrane protein that is not anchored to the cell wall and that the multiple-membrane-spanning region is required for productive phage infection but not phage inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号