首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Friedreich's ataxia (GAA)n repeats of various lengths were cloned into a Saccharymyces cerevisiae plasmid, and their effects on DNA replication were analyzed using two-dimensional electrophoresis of replication intermediates. We found that premutation- and disease-size repeats stalled the replication fork progression in vivo, while normal-size repeats did not affect replication. Remarkably, the observed threshold repeat length for replication stalling in yeast (approximately 40 repeats) closely matched the threshold length for repeat expansion in humans. Further, replication stalling was strikingly orientation dependent, being pronounced only when the repeat's homopurine strand served as the lagging strand template. Finally, it appeared that length polymorphism of the (GAA)n. (TTC)n repeat in both expansions and contractions drastically increases in the repeat's orientation that is responsible for the replication stalling. These data represent the first direct proof of the effects of (GAA)n repeats on DNA replication in vivo. We believe that repeat-caused replication attenuation in vivo is due to triplex formation. The apparent link between the replication stalling and length polymorphism of the repeat points to a new model for the repeat expansion.  相似文献   

2.
Friedreichs ataxia (FRDA) is an autosomal recessive neurodegenerative disorder commonly caused by large expansions of a GAA repeat in the first intron of the frataxin gene, FRDA. The expansion of the triplet repeat is localized within an Alu sequence. FRDA GAA-repeat alleles can be divided into three classes depending on their lengths: short normal alleles (SN), long normal alleles (LN) and expanded pathological alleles (E). We made an accurate analysis of the Alu sequence containing the GAA repeat. We found a new single-nucleotide polymorphism (SNP) that is the closest one to the GAA repeat. We studied this new SNP and the polymorphic polyA region contiguous to the GAA triplets in two populations with different frequencies of FRDA. We found that, while both E and LN alleles seem to be genetically homogeneous and likely related, SN represents a more heterogeneous class of alleles. Indeed, one SNP variation (T) was more frequently associated with (GAA)8 alleles, whereas the other one (C) with (GAA)9 repeat(s). The long normal and expanded alleles presented the C haplotype. The same correlation was described for polyA-tract polymorphisms. Thus, 14A was commonly associated with (GAA)8 alleles and 17A with (GAA)9 alleles. The long normal alleles more frequently showed the 17A haplotype. Our data seem to suggest that all the E alleles come from LN alleles, while LN alleles come from a defined subclass of SN alleles.  相似文献   

3.
Expansion of triplex-forming GAA/TTC repeats in the first intron of FXN gene results in Friedreich's ataxia. Besides FXN, there are a number of other polymorphic GAA/TTC loci in the human genome where the size variations thus far have been considered to be a neutral event. Using yeast as a model system, we demonstrate that expanded GAA/TTC repeats represent a threat to eukaryotic genome integrity by triggering double-strand breaks and gross chromosomal rearrangements. The fragility potential strongly depends on the length of the tracts and orientation of the repeats relative to the replication origin, which correlates with their propensity to adopt triplex structure and to block replication progression. We show that fragility is mediated by mismatch repair machinery and requires the MutSbeta and endonuclease activity of MutLalpha. We suggest that the mechanism of GAA/TTC-induced chromosomal aberrations defined in yeast can also operate in human carriers with expanded tracts.  相似文献   

4.
5.
We have shown that many of the Alu repeats found in the GenBank database are polymorphic and that this polymorphism can be detected by a simple technique, single-strand conformation polymorphism (SSCP) analysis, after polymerase chain reaction (PCR) amplification of each repeat from DNA of individuals. Here, we describe a method for collecting many anonymous Alu repeats and their flanks in a chromosome-specific phage library and cloning them into plasmids. The flanking single-copy sequences of each repeat in the plasmid were then determined, and 20mer to 30mer segments of these sequences were used as primers for the PCR-SSCP analysis. Many new polymorphic DNA markers on chromosome 11 were obtained with this method. These markers can also serve as sequence-tagged sites for physical mapping of the genome.  相似文献   

6.
Summary The haploid genomes of all known primates have two or more adult -globin genes contained within tandemly arranged duplication units. Although the tandem duplication event generating these -globin loci is believed to occur prior to the divergence of primates, a number of length polymorphisms exist within the loci among different primate species. In order to understand the molecular basis of these length polymorphisms, we have cloned and determined the nucleotide sequence of a major portion of the rhesus monkey adult -globin locus. Sequence comparison to human suggests that the length difference between the adult -globin loci of human and Old World monkey is the result of one or more DNA recombination processes, all of which appeared to be related to the transposition of Alu family repeats. First, the finding of a monomeric Alu family repeat at the junction between nonhomology block I and homology block Y of the 2 genecontaining unit in rhesus macaque suggests that the dimeric Alu family repeat, Alu 3, at the orthologous position in human was generated by insertion of a monomeric Alu family repeat into the 3 end of another preexisting Alu family repeat. Second, two Alu family repeats, Alu 1 and Alu 2, exist in human at the 3 end of each of the two X homology blocks, respectively. However, this pair of paralogous Alu family repeats is absent at the corresponding positions in rhesus macaques. This raises interesting questions regarding the evolutionary origin of Alu 1 and Alu 2. Finally, DNA sequences immediately downstream from the insertion site of Alu 2 are completely different between human and rhesus macaque. This last event is similar to DNA rearrangements occurring nearby transposable element(s) in the chromosomes of bacteria, yeast, and plant cells. Its possible role in accelerating the genomic evolution of noncoding or spacer DNA is discussed.  相似文献   

7.
Friedreich ataxia is caused by expansion of a GAA triplet repeat (GAA-TR) in the FRDA gene. Normal alleles contain <30 triplets, and disease-causing expansions (66-1700 triplets) arise via hyperexpansion of premutations (30-65 triplets). To gain insight into GAA-TR instability we analyzed all triplet repeats in the human genome. We identified 988 (GAA)(8+) repeats, 291 with >or=20 triplets, including 29 potential premutations (30-62 triplets). Most other triplet repeats were restricted to <20 triplets. We estimated the expected frequency of (GAA)(6+) repeats to be negligible, further indicating that GAA-TRs have undergone significant expansion. Eighty-nine percent of (GAA)(8+) sequences map within G/A islands, and 58% map within the poly(A) tails of Alu elements. Only two other (GAA)(8+) sequences shared the central Alu location seen at the FRDA locus. One showed allelic variation, including expansions analogous to short Friedreich ataxia mutations. Our data demonstrate that GAA-TRs have expanded throughout primate evolution with the generation of potential premutation alleles at multiple loci.  相似文献   

8.
Allele frequencies and genetic diversity in the population of Teleuts were assessed by the Alu repeat polymorphism at eight autosomal loci (ACE, APOA1, PLAT, F13, PV92, A25, CD4, D1). For comparison, the study included previously obtained data on the Alu polymorphism in 19 indigenous populations of Siberia. On the dendrogram of genetic distances, the Teleut population is located in the cluster of Siberian ethnic groups, which are similar in origin, geography, and cultural traditions.  相似文献   

9.
The association between normal alleles at the CTG repeat and two nearby polymorphisms in the myotonin protein kinase gene, the Alu insertion/deletion polymorphism and the myotonic dystrophy kinase (DMK)(G/T) intron 9/HinfI polymorphism, has been analyzed in South African Negroids, a population in which myotonic dystrophy (DM) has not been described. South African Negroids have a CTG allelic distribution that is significantly different from that in Caucasoids and Japanese: the CTG repeat lengths of > or = 19 are very rare. The striking linkage disequilibrium between specific alleles at the Alu polymorphism (Alu(ins) and Alu(del)), the HinfI polymorphism (HinfI-1 and HinfI-2), and the CTG repeat polymorphism seen in Caucasoid (Europeans and Canadians) populations was also found in the South African Negroid population. Numerous haplotypes, not previously described in Europeans, were, however, found. It thus seems likely that only a small number of these "African" chromosomes were present in the progenitors of all non-African peoples. These data provide support for the "out of Africa" model for the origin of modern humans and suggest that the rare ancestral DM mutation event may have occurred after the migration from Africa, hence the absence of DM in sub-Saharan Negroid peoples.  相似文献   

10.
Eight polymorphic markers were developed from South African isolates of Ophiostoma quercus. The genome was screened for repeat regions using the fast isolation by amplified fragment length polymorphism of sequences containing repeats protocol and 20 de novo primer pairs flanking putative microsatellite regions were designed. Eight loci were optimized and their polymorphisms evaluated by sequencing. The repeat and flanking regions were highly polymorphic containing both indels and base-pair substitutions revealing a total of 46 alleles in 14 isolates and an average heterozygosity of 0.68. Substantial sequence variability makes these markers useful for genotyping populations in order to calculate diversity and monitor global movement of O. quercus.  相似文献   

11.
More than 15 human genetic diseases have been associated with the expansion of trinucleotide DNA repeats, which may involve the formation of non-duplex DNA structures. The slipped-strand nucleation of duplex DNA within GC-rich trinucleotide repeats may result in the changes of repeat length; however, such a mechanism seems less likely for the AT-rich (GAA)n·(TTC)n repeats. Using two-dimensional agarose gels, chemical probing and atomic force microscopy, we characterized the formation of non-B-DNA structures in the Friedreich ataxia-associated (GAA)n·(TTC)n repeats from the FRDA gene that were cloned with flanking genomic sequences into plasmids. For the normal genomic repeat length (n = 9) our data are consistent with the formation of a very stable protonated intramolecular triplex (H-DNA). Its stability at pH 7.4 is likely due to the high proportion of the T·A·T triads which form within the repeats as well as in the immediately adjacent AT-rich sequences with a homopurine· homopyrimidine bias. At the long normal repeat length (n = 23), a family of H-DNAs of slightly different sizes has been detected. At the premutation repeat length (n = 42) and higher negative supercoiling, the formation of a single H-DNA structure becomes less favorable and the data are consistent with the formation of a bi-triplex structure.  相似文献   

12.
The PV subfamily of Alu repeats in human DNA is largely composed of recently inserted members. Here we document additional members of the PV subfamily that are found in chimpanzee but not in the orthologous loci of human and gorilla, confirming the relatively recent and independent expansion of this Alu subfamily in the chimpanzee lineage. As further evidence for the youth of this Alu subfamily, one PV Alu repeat is specific to Pan troglodytes, whereas others are present in Pan paniscus as well. The A-rich tails of these Alu repeats have different lengths in Pan paniscus and Pan troglodytes. The dimorphisms caused by the presence and absence of PV Alu repeats and the length polymorphisms attributed to their A-rich tails should provide valuable genetic markers for molecular-based studies of chimpanzee relationships. The existence of lineage-specific Alu repeats is a major sequence difference between human and chimpanzee DNAs. Correspondence to: C.W. Schmid  相似文献   

13.
A 300-bp EcoRV polymorphism, detected with P20 (DXS269) in intron 44 of the human dystrophin gene, is due to an insertion or deletion. To make this restriction fragment length polymorphism (RFLP) available for polymerase chain reaction (PCR) analysis, we sequenced both alleles of this polymorphism and synthesized primers flanking the mutation site. The origin of the mutation is a single Alu repeat insertion. The 300-bp polymorphism can now be successfully detected by PCR and provides an excellent tool to detect female carriers in this deletion prone region of the dystrophin gene.  相似文献   

14.
B Crouau-Roy  I Clisson 《Génome》2000,43(4):642-648
A 394-bp DNA fragment, which in human is on chromosome 6 near the MOG (myelin oligodendrocyte glycoprotein) gene and encompasses an Alu element and an associated tetranucleotide microsatellite, was sequenced from a large range of primate species to follow its evolutionary divergence and to understand the origin of the microsatellite. This Alu element is found at the same orthologous position in all primates sequenced, but the tetranucleotide repeat is present only in Catarrhini between the 3'-oligo(dA) of the Alu element and the 3' flanking direct repeat. Little intraspecific variation was found. Sequence identity values for this orthologous primate Alu averaged 90% (82-99%) with transitions comprising between 70% and 100% of the observed nucleotide substitutions. Although the insertion of the Alu element predates the separation of these species, the original sequence of the site of integration can still be identified. This identification of the direct repeats suggests an active role of the oligo(dA) of the Alu element in the origin of the tetranucleotide repeats. The microsatellite probably appeared after the insertion of the Alu element, early in the lineage leading to the common ancestor of the hominoids and the Old World monkeys.  相似文献   

15.
Summary Polymerase chain reaction and direct sequencing were used to investigate an amplified DNA fragment containing the suspected polymorphic site of all known intragenic restriction fragment length polymorphisms (RFLPs) within the human tissue-type plasminogen activator (TPA) gene. Sequence data obtained showed that these RFLPs were all generated by the presence or absence of one of the two Alu sequences located in intron h of the human TPA gene. Furthermore, one of the direct repeats flanking this Alu sequence was absent in the minor allele. In addition to indicating the presence of an Alu insertion in an ancestral human TPA gene, these findings suggest a slip-replication mechanism for the deletion of this Alu repeat, once inserted into the gene. As both alleles have been observed in similar frequencies among different ethnic groups, the insertion or subsequent deletion of this Alu sequence in the human TPA gene must have occurred early in human evolution.  相似文献   

16.
We have previously shown that GAA trinucleotide repeats have undergone significant expansion in the human genome. Here we present the analysis of the length distribution of all 10 nonredundant trinucleotide repeat motifs in 20 complete eukaryotic genomes (6 mammalian, 2 nonmammalian vertebrates, 4 arthropods, 4 fungi, and 1 each of nematode, amoebozoa, alveolate, and plant), which showed that the abundance of large expansions of GAA trinucleotide repeats is specific to mammals. Analysis of human-chimpanzee-gorilla orthologs revealed that loci with large expansions are species-specific and have occurred after divergence from the common ancestor. PCR analysis of human controls revealed large expansions at multiple human (GAA)(30+) loci; nine loci showed expanded alleles containing >65 triplets, analogous to disease-causing expansions in Friedreich ataxia, including two that are in introns of genes of unknown function. The abundance of long GAA trinucleotide repeat tracts in mammalian genomes represents a significant mutation potential and source of interindividual variability.  相似文献   

17.
We describe a new class of DNA length polymorphism that is due to a variation in the number of tandem repeats associated with Alu sequences (Alu sequence-related polymorphisms). The polymerase chain reaction was used to selectively amplify a (TTA)n repeat identified in the 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase gene from genomic DNA of 41 human subjects, and the size of the amplified products was determined by gel electrophoresis. Seven alleles were found that differed in size by integrals of three nucleotides. The allele frequencies ranged from 1.5% to 52%, and the overall heterozygosity index was 62%. The polymorphic TTA repeat was located adjacent to a repetitive sequence of the Alu family. A homology search of human genomic DNA sequences for the trinucleotide TTA (at least five members in length) revealed tandem repeats in six other genes. Three of the six (TTA)n repeats were located adjacent to Alu sequences, and two of the three (in the genes for beta-tubulin and interleukin-1 alpha) were found to be polymorphic in length. Tandemly repetitive sequences found in association with Alu sequences may be frequent sites of length polymorphism that can be used as genetic markers for gene mapping or linkage analysis.  相似文献   

18.
Friedreich's ataxia (FRDA) is a common hereditary degenerative neuro-muscular disorder caused by expansions of the (GAA)n repeat in the first intron of the frataxin gene. The expanded repeats from parents frequently undergo further significant length changes as they are passed on to progeny. Expanded repeats also show an age-dependent instability in somatic cells, albeit on a smaller scale than during intergenerational transmissions. Here we studied the effects of (GAA)n repeats of varying lengths and orientations on the episomal DNA replication in mammalian cells. We have recently shown that the very first round of the transfected DNA replication occurs in the lack of the mature chromatin, does not depend on the episomal replication origin and initiates at multiple single-stranded regions of plasmid DNA. We now found that expanded GAA repeats severely block this first replication round post plasmid transfection, while the subsequent replication cycles are only mildly affected. The fact that GAA repeats affect various replication modes in a different way might shed light on their differential expansions characteristic for FRDA.  相似文献   

19.
The MLL gene is involved in many chromosomal translocations leading to both acute myeloid and lymphoid leukemia. Some patients treated for primary malignancies with chemotherapeutic agents that inhibit DNA topoisomerase II (topo II) develop treatment-related leukemia (t-AML) caused by MLL gene rearrangement. Whether these patients are unusually susceptible to anti-topo II drugs, or whether this is a random adverse event is unknown. To discover genetic polymorphisms that may predispose patients to t-AML development, we sequenced the 8.3-kb MLL breakpoint cluster region (BCR) from 22 patients who had been treated with topo II inhibitors and who developed t-AML and from 37 patients who did not, and from eight infants and 20 normal individuals. Four polymorphic sites within Alu repetitive elements were identified; three affected the length of poly-A tracts and one altered the size of a trinucleotide repeat. The three poly-A tract polymorphisms occurred with equal frequency in leukemic patients and controls and hence are not predictors of risk. The trinucleotide GAA repeat has three alleles: (GAA)4, (GAA)5, and (GAA)6. The (GAA)6 allele is very rare. The adult t-AML patients are almost exclusively (GAA)4/5 heterozygotes (83%), whereas the normal population is only 55% (GAA)4/5 heterozygotic and is represented equally by (GAA)4 and (GAA)5 homozygotes (20% each). Only certain trends could be established because of the small sample size of these leukemic groups. Whereas adult t-AML patients are more likely to be (GAA)4/5 heterozygotes, this is not statistically significant, and this polymorphism within the MLL BCR has only a suggestive association with t-AML development.  相似文献   

20.
Myotonic dystrophy type 2 (DM2) is a subtype of the myotonic dystrophies, caused by expansion of a tetranucleotide CCTG repeat in intron 1 of the zinc finger protein 9 (ZNF9) gene. The expansions are extremely unstable and variable, ranging from 75-11,000 CCTG repeats. This unprecedented repeat size and somatic heterogeneity make molecular diagnosis of DM2 difficult, and yield variable clinical phenotypes. To better understand the mutational origin and instability of the ZNF9 CCTG repeat, we analyzed the repeat configuration and flanking regions in 26 primate species. The 3'-end of an AluSx element, flanked by target site duplications (5'-ACTRCCAR-3'or 5'-ACTRCCARTTA-3'), followed the CCTG repeat, suggesting that the repeat was originally derived from the Alu element insertion. In addition, our results revealed lineage-specific repetitive motifs: pyrimidine (CT)-rich repeat motifs in New World monkeys, dinucleotide (TG) repeat motifs in Old World monkeys and gibbons, and dinucleotide (TG) and tetranucleotide (TCTG and/or CCTG) repeat motifs in great apes and humans. Moreover, these di- and tetra-nucleotide repeat motifs arose from the poly (A) tail of the AluSx element, and evolved into unstable CCTG repeats during primate evolution. Alu elements are known to be the source of microsatellite repeats responsible for two other repeat expansion disorders: Friedreich ataxia and spinocerebellar ataxia type 10. Taken together, these findings raise questions as to the mechanism(s) by which Alu-mediated repeats developed into the large, extremely unstable expansions common to these three disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号