首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the incorporation of tiron as a substrate for tyrosinase enzyme into a polypyrrole film deposited on indium titanium oxide (ITO) glass. The presence of tiron in the polypyrrole film is verified by cyclic voltammetry (CV). The enzyme activity using the polypyrrole-tiron film is confirmed by the catalytic conversion of immobilised substrate to quinones by the enzyme. The use of both potentiometric and optical methods for the detection of the catalytic activity of the polypyrrole-tiron film and their potential use for the determination of monophenolase activity of apple polyphenol oxidase is described. This is the first report of this kind whereby tiron has been immobilised in a polypyrrole matrix for the enzyme activity determination.  相似文献   

2.
This article reports the characterization of the biochemical behavior of glucose oxidase entrapped in polypyrrole. The immobilization of glucose oxidase in a polypyrrole film was performed by entrapment during the electropolymerization of pyrrole at a platinum electrode poised at 0.65 V vs. SCE in aqueous solution in a one-compartment electrochemical cell. Thin films of polypyrrole (0.11 mum) were obtained and the entrapped enzyme obeyed Michaelis kinetics, indicating no diffusional constraints of the substrate. Our results indicate that the entrapped glucose oxidase is more resistant to denaturation conditions such as alkaline pH and temperature (50 and 60 degrees C) than the soluble form of the enzyme. The autoinactivation constant for the entrapped enzyme was also determined in presence of 0.25M of glucose and was 6.19 x 10(-4) min(-1), i.e., corresponding to a half-life value of 20 h. The results reported here show clearly that polypyrrole matrix has a strong stabilizing effect on the stucture and on the activity of glucose oxidase.  相似文献   

3.
Using monomers that polymerize to form electrically conducting polymers, one can control the thickness of the polymer film and the amount of enzyme that can be immobilized in the films. First, an investigation of the major variables that influence the immobilization of glucose oxidase by entrapment in polypyrrole films, prepared by electropolymerization from aqueous solutions containing the enzyme and monomer, was carried out. Then the optimized conditions were used to assess the effects of film thickness on the activity and stability of immobilized enzyme. For the films ranged in thickness from 0.1 mum to 1.6 mum, the resulting apparent activity and stability of the immobilized enzyme were found to be a strong function of the polymer film thickness. Above a thickness of 1.0 mum, the apparent activity of the immobilized enzyme increases linearly with increasing film thickness. The nonlinearity observed for films of thickness less than 1.0 mum can be attributed to the changes observed in the morphology of the resulting polypyrrole films. Furthermore, it was noted that when the glucose oxidase/polypyrrole films are stored in phosphate buffer, at 4 degrees C, the observed rate of loss in apparent activity of the immobilized enzyme is highest for the first few days, also being higher for the thinner films. However, after the loosely entrapped enzyme is leached from the polymer film, the rate of loss in activity is very low indicating that the well-entrapped enzyme, as well as the polypyrrole films, exhibit good stability. Finally, the reproducibility of the immobilization technique is excellent. (c) 1993 John Wiley & Sons, Inc.  相似文献   

4.
Direct current (DC) stimulation has been used to promote bone repair and osteogenesis, but problems associated with the implanted metal electrodes may limit its application and compromise the therapeutic results. The replacement of the metal electrodes with a biodegradable conductive polymer film can potentially overcome these problems. In our work, polypyrrole/chitosan films comprising polypyrrole nanoparticles dispersed in a chitosan matrix were prepared. The polypyrrole/chitosan film meets the requirements for DC delivery, as indicated by its electrical conductivity, biodegradability, and mechanical properties. The film supports osteoblast growth to the same degree as dentine discs (a bone‐like mineralized substrate), confirming that it is non‐cytotoxic. Our results showed that optimal DC stimulation was achieved with 200 µA for 4 h per day, and under this condition, osteoblast metabolic activity on Day 7 increased by 1.8‐fold over that without DC stimulation. To further improve osteogenesis on the polypyrrole/chitosan film, bone morphogenetic protein‐2 (BMP‐2) was covalently immobilized on the film surface. Osteoblasts cultured on the BMP‐2‐functionalized polypyrrole/chitosan film and subjected to the optimal DC stimulation exhibited a significant increase in cellular metabolic activity (2.3‐fold on Day 7), ALP activity (1.7‐fold on Day 21) and mineralization (twofold on Day 21) over those cultured on polypyrrole/chitosan film without DC stimulation. Osteogenic gene expression results showed that BMP‐2 and DC stimulation by itself enhanced osteoblast differentiation, and a combination of these two factors resulted in synergistic effects on osteoblast differentiation and maturation. Biotechnol. Bioeng. 2013; 110: 1466–1475. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Immobilization of tyrosinase in polysiloxane/polypyrrole copolymer matrices   总被引:1,自引:0,他引:1  
Immobilization of tyrosinase in conducting copolymer matrices of pyrrole functionalized polydimethylsiloxane/polypyrrole (PDMS/PPy) was achieved by electrochemical polymerization. The polysiloxane/polypyrrole/tyrosinase electrode was constructed by the entrapment of enzyme in conducting matrices during electrochemical copolymerization. Maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) were investigated for immobilized enzyme. Enzyme electrodes were prepared in two different electrolyte/solvent systems. The effect of supporting electrolytes, p-toluene sulfonic acid and sodium dodecyl sulfate on the enzyme activity and film morphology were determined. Temperature and pH optimization, operational stability and shelf-life of enzyme electrodes were also examined. Phenolic contents of green and black tea were determined by using enzyme electrodes.  相似文献   

6.
An amperometric glucose biosensor was fabricated by the electrochemical polymerization of pyrrole onto a platinum electrode in the presence of the enzyme glucose oxidase in a KCl solution at a potential of + 0·65 V versus SCE. The enzyme was entrapped into the polypyrrole film during the electropolymerization process. Glucose responses were measured by potentio-statting the enzyme electrode at a potential of + 0·7 V versus SCE in order to oxidize the hydrogen generated by the oxidation of glucose by the enzyme in the presence of oxygen. Experiments were performed to determined the optimal conditions of the polypyrrole glucose oxidase film preparation (pyrrole and glucose oxidase concentrations in the plating solution) and the response to glucose from such electrodes was evaluated as a function of film thickness, pH and temperature. It was found that a concentration of 0·3 M pyrrole in the presence of 65 U/ml of glucose oxidase in 0·01 M KCl were the optimal parameters for the fabrication of the biosensor. The optimal response was obtained for a film thickness of 0·17 μm (75 mC/cm2) at pH 6 and at a temperature of 313 K. The temperature dependence of the amperometric response indicated an activation energy of 41 kJ/mole. The linearity of the enzyme electrode response ranged from 1·0 mM to 7·5 mM glucose and kinetic parameters determined for the optimized biosensors were 33·4 mM for the Km and 7·2 μA for the Imax. It was demonstrated that the internal diffusion of hydrogen peroxide through the polypyrrole layer to the platinum surface was the main limiting factor controlling the magnitude of the response of the biosensor to glucose. The response was directly related to the enzyme loading in the polypyrrole film. The shelf life and the operational stability of the optimized biosensor exceed 500 days and 175 assays, respectively. The substrate specificity of the entrapped glucose oxidase was not altered by the immobilization procedure.  相似文献   

7.
A fructose dehydrogenase (FDH) modified electrode is produced by the electroadsorption of a layer of FDH on a platinum electrode followed by the electropolymerization of a polypyrrole (PPy) film around and over the enzyme. This immobilizes and stabilizes the enzyme as well as providing an electron transfer pathway to the electrode. The amperometric response to fructose and the enzymatic activity are measured as a function of PPy film thickness. The electrode is shown to have a maximum response at a PPy thickness of approximately the thickness of the enzyme layer. A measure of the electrode efficiency is also obtained, this is the amperometric response to fructose as a percentage of that expected on the basis of the enzyme activity. The functioning of the electrode is also dependent on the counter-ion used for PPy polymerization. This is shown to be mainly related to the nucleation and growth of the PPy film in the interfacial region.  相似文献   

8.
Glucose oxidase was immobilized by electropolymerization into films of polyaniline, polyindole, polypyrrole, poly(o-phenylediamine), and polyaniline crosslinked with p-phenylenediamine. The kinetics and the behavior of the entrapped enzyme toward elevated temperature, organic solvent denaturation, and pH were investigated, along with the response of the films to electroactive species such as acetaminophen, ascorbate, cysteine, and uric acid. For most of the films, linearity to glucose extended from 7 to 10 mM. The poly(o-phenylenediamine)/glucose oxidase film gave the best signal/noise ratio and polypyrrole/glucose oxidase film gave the most reproducible current responses. No significant shift of the optimum reaction pH (5.5), except for polypyrrole (5.0), was observed after immobilization of glucose oxidase in the various films. Enzymatic activity decreased rapidly when pH was raised above 7.5. Thermodeactivation studies at 55 degrees , 60 degrees , and 65 degrees C have shown polypyrrole/and poly(o-phenylediamine)/glucose oxidase films to be the most resistant enzymatic films. Poly(o-phenylenediamine) films offered the best protection against glucose oxidase deactivation in hexane, chloroform, ether, THF, and acetonitrile when compared with the other electropolymerized films. All the enzymatic films exhibited permselection toward electroactive species. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
A novel amperometric biosensor based on polypyrrole (PPy) nanotube array deposited on a Pt plated nano-porous alumina substrate and its performances are described. Glucose oxidase (GOx) enzyme was selected as the model enzyme in this study. Commercially available nano-porous alumina discs were used to fabricate electrodes in order to study the feasibility of enzyme entrapment by physical adsorption. A PPy/PF6- film comprising of nanotube array was synthesized using a solution containing 0.05 M Pyrrole and 0.1 M NaPF6 at a current density of 0.3 mA/cm2 for 90 s. The immobilization was done by physical adsorption of 5 microL of GOx (from a stock solution of 2 mg/mL of 210 U/mg) on each electrode. A sensitivity of 7.4 mA cm(-2) M(-1) was observed with PPy nanotube array where the maximum tube diameter was 100 nm. A linear range of 500 microM-13 mM and a response time of about 3 s were observed with a nanotube array where the maximum tube diameter was 200 nm. The synthesized nanotube arrays were characterized by galvanostatic electrochemical technique. Calculated value of apparent Michaelis-Menten constant (Km) was 7.01 mM. The use of nano-porous template electrodes leads to an efficient enzyme loading and provides an increased surface area for sensing the reaction. These factors contribute to increase the characteristic performances of the novel biosensor.  相似文献   

10.
The enzyme horseradish peroxidase (HRP) has been entrapped in situ by electropolymerization of pyrrole onto a platinum electrode. The latter was previously coated by a polypyrrole layer for better adhesion of the biocatalyst film and in order to avoid the enzyme folding onto the Pt electrode. The biosensor allowed the determination of hydrogen peroxide in the concentration range comprised between 4.9 x 10(-7) and 6.3 x 10(-4) M. The biosensor retained more than 90% of its original activity after 35 days of use.  相似文献   

11.
In this study, we developed an automated strategy to manufacture an enzyme BFC powered by glucose/O(2). The bioanode consists of GOx enzyme and PQQ redox mediator adsorbed over night on MWCNTs then deposited by means of AC-electrophoresis at 30 Hz and 160 V(p-p) and, finally stabilized by electropolymerized polypyrrole. The biocathode is constructed from LAc enzyme and ABTS redox mediator adsorbed over night on MWCNTs, then electrophoretically deposited under AC-electric field at 30 Hz and 160 V(p-p) and, finally stabilized by electrodeposited polypyrrole. The BFC was studied under air in phosphate buffer solution pH 7.4 containing 10 mM glucose and in human serum with 5 mM glucose addition at the physiological temperature of 37°C. Under these conditions, the maximum power density reaches 1.1 μW · mm(-2) at a cell voltage of 0.167 V in buffer solution and 0.69 μW · mm(-2) at cell voltage of 0.151 V in human serum. Such automated BFCs have a great potential to be optimized, miniaturized to micro and nanoscale devices suitable for in vivo studies.  相似文献   

12.
Li Y  Wang P  Wang L  Lin X 《Biosensors & bioelectronics》2007,22(12):3120-3125
In this paper, the films of overoxidized polypyrrole (PPyox) directed single-walled carbon nanotubes (SWNTs) have been electrochemically coated onto glassy carbon electrode (GCE). Electroactive monomer pyrrole was added into the solution containing sodium dodecyl sulfate (SDS) and SWNTs. Then, electropolymerization was proceeded at the surface of GCE, and a novel kind of conducting polymer/carbon nanotubes (CNTs) composite film with the orientation of CNTs were obtained correspondingly. Finally, this obtained polypyrrole (PPy)/SWNTs film modified GCE was oxidized at a potential of +1.8 V. It can be found that this proposed PPyox/SWNTs composite film modified GCE exhibited excellent electrocatalytic properties for some species such as nitrite, ascorbic acid (AA), dopamine (DA) and uric acid (UA), and could be used as a new sensor for practical applications. Compared with previous CNTs modified electrodes, SWNTs were oriented towards the outside of modified layer by PPyox and SDS, which made the film easily conductive. Moreover, this proposed film modified electrode was more stable, selective and applicable.  相似文献   

13.
The surface functionalization of an electrically conductive polypyrrole film (PPY) with a viologen, (N-(2-carboxyl-ethyl)-N'-(4-vinyl-benzyl)-4,4'-bipyridinium dichloride, or CVV) for the covalent immobilization of glucose oxidase (GOD) has been carried out. The viologen was first synthesized and graft polymerized on PPY film. It then served as an anchor via its carboxyl groups for the covalent immobilization of GOD. The surface composition of the as-functionalized substrates was characterized by X-ray photoelectron spectroscopy (XPS). The effects of the CVV monomer concentration on the CVV-graft polymer concentration and the amount of GOD immobilized on the surface were investigated. The activity of the immobilized GOD was compared with that of free GOD and the kinetic effects were also obtained. The cyclic voltammetric (CV) response of the GOD-functionalized PPY substrates was studied in a phosphate buffer solution under an argon atmosphere. The CV results support the mechanism in which CVV acts as a mediator to transfer electron between the electrode and enzyme, and hence regenerating the enzyme in the enzymatic reaction with glucose. High sensitivity and linear response of the enzyme electrode was observed with glucose concentration ranging from 0 to 20 mM.  相似文献   

14.
A simple electropolymerisation process is described for the fabrication of an ultra-thin ( approximately 55 nm) polypyrrole (PPy)-glucose oxidase (GOD) film in a supporting electrolyte-free monomer solution for potentiometric biosensing of glucose. The optimum conditions for growing the ultra-thin film include 0.1 M pyrrole, 55-110 U/ml GOD, an applied current density of 0.05 mA/cm(2) and an electrical charge of 25 mC/cm(2). Long-term storage of the biosensor in acetate buffer improved the sensitivity of the biosensor by a factor of approximately two. The biosensor can also be used repeatedly for over 2 months with little or no loss in sensitivity. The interference effect of ascorbic acid was successfully reduced by inclusion of an outer PPy-Cl layer.  相似文献   

15.
This study investigated a new glucose sensor prepared by electrochemical polymerization of pyrrole with polyanion/poly(ethylene glycol) (PEG)/glucose oxidase (GOD) conjugate dopants. GOD was coupled to a strong polyanion, poly(2-acrylamido-2-methylpropane sulfonic acid) (AMPS) via PEG spacer to effectively and reproducibly immobilize GOD within a polypyrrole matrix onto a Pt electrode surface. PEGs with four different chain lengths (1000, 2000, 3000, and 4000) were used as spacers to study the spacer length effect on enzyme immobilization and electrode function. After conjugation, more than 90% of the GOD bioactivity was preserved and the bioactivity of the conjugated GOD increased with longer PEG spacers. The resulting polyanion/PEG/GOD conjugate was used as a dopant for electropolymerizing pyrrole. The activity of the immobilized enzyme on the electrode ranged from 119 to 209 mU cm(-2) and the bioactivity increased with the use of longer PEG spacers. The amperometric response of the enzyme electrode was linear up to 20 mM glucose concentration with a sensitivity ranging from 180 to 270 nA mM(-1) cm(-2). The kinetic parameters Michaelis-Menten constant (K(M)(app)) and maximum current density (j(max)) depended on the amount of active enzyme, level of substrate diffusion, and PEG spacer length. An increase in the electrical charge passed during polymerization (thus, increasing polypyrrole thickness) to 255 mC cm(-2) increased the sensitivity of the enzyme electrode because of the greater amount of incorporated enzyme. However, although the amount of incorporated GOD continued to increase when the charge increased above 255 mC cm(-2), the sensitivity began to decline gradually. The condition for preparing the enzyme electrode was optimized at 800 mV potential with a dopant concentration of 1 mg ml(-1).  相似文献   

16.
A novel in situ electrochemical surface plasmon resonance (EC-SPR) immunosensor is presented in this paper. The EC-SPR measurement can be used to in situ monitor the polymer formation, probe immobilization, antigen-antibody interaction and protein immunosensing process. A sandwich immunosensor based on permeable polypyrrole propylic acid (PPA) film is constructed using mouse IgG as a model analyte. The results show that the introduction of capture antibody conjugated enzyme not only enhances the current responses but also increases the SPR angle shift. The calibration curves of electrochemical (EC) and surface plasmon resonance (SPR) measurement exhibit a similar dependence on the bulk concentration of antigen. An approximate linear relationship can be obtained by plotting the data in semi-logarithmic reference frame. Compared with SPR, EC shows higher sensitivity with prolonged time. The in situ EC-SPR immunosensor described herein could have important potentials for diagnostics and medicine applications.  相似文献   

17.
Yeast cells (Saccharomyces cerevisiae) and invertase enzyme were immobilized in thiophene capped poly(ethyleneoxide)/polypyrrole (PEO-co-PPy) and 3-methylthienyl methacrylate-co-p-vinyl benzyloxy poly(ethyleneoxide)/polypyrrole (CP-co-PPy) matrices. Immobilization of the enzyme and yeast cells was performed via entrapment in conducting copolymers during electrochemical polymerization of pyrrole through the thiophene moiety of the polymers. Maximum reaction rates, Michaelis–Menten constants, optimum temperature and pH values, operational and storage stabilities of the enzyme and yeast cell electrodes were investigated.  相似文献   

18.
To develop conducting organic polymers (COPs) as luminescent sensors for determination of toxic heavy metals, a new benzene sulfonic acid‐doped polypyrrole (PPy‐BSA) thin film was electrochemically prepared by cyclic voltammetry (CV) on flexible indium tin oxide (ITO) electrode in aqueous solution. PPy‐BSA film was characterized by FTIR spectrometry, X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The optical properties of PPy‐BSA were investigated by ultraviolet (UV)‐visible absorption and fluorescence spectrometry in dimethylsulfoxide (DMSO) diluted solutions. PPy‐BSA fluorescence spectra were strongly quenched upon increasing copper(II) ion (Cu2+) and lead(II) ion (Pb2+) concentrations in aqueous medium, and linear Stern–Volmer relationships were obtained, which indicated the existence of a main dynamic fluorescence quenching mechanism. BSA‐PPy sensor showed a high sensitivity for detection of both metallic ions, Cu2+ and Pb2+, with very low limit of detection values of 3.1 and 18.0 nM, respectively. The proposed quenching‐fluorimetric sensor might be applied to the determination of traces of toxic heavy metallic ions in water samples.  相似文献   

19.
CuSbSe2 appears to be a promising absorber material for thin‐film solar cells due to its attractive optical and electrical properties, as well as earth‐abundant, low‐cost, and low‐toxic constituent elements. However, no systematic study on the fundamental properties of CuSbSe2 has been reported, such as defect physics, material, optical, and electrical properties, which are highly relevant for photovoltaic application. First, using density functional theory calculations, CuSbSe2 is shown to have benign defect properties, i.e., free of recombination‐center defects, and flexible defect and carrier concentration which can be tuned through the control of growth condition. Next, systematic material, optical, and electrical characterizations uncover many unexplored fundamental properties of CuSbSe2 including band position, temperature‐dependent band gap energy, Raman spectrum, and so on, thus providing a solid foundation for further photovoltaic research. Finally, a prototype CuSbSe2‐based thin film solar cell is fabricated by a hydrazine solution process. The systematic theoretical and experimental investigation, combined with the preliminary efficiency, confirms the great potential of CuSbSe2 for thin‐film solar cell applications.  相似文献   

20.
Glucose oxidase (GOD), horseradish peroxidase (HRP), and lactate oxidase (LOD) were covalently immobilized on special NH(2)-functionalized glass and on a novel NH(2)-cellulose film via 13 different coupling reagents. The properties of these immobilized enzymes, such as activity, storage stability, and thermostability, are strongly dependent on the coupling reagent. For example, GOD immobilized by cyanuric chloride on the NH(2)-cellulose film loses approximately half of its immobilized activity after 30 days of storage at 4 degrees C or after treatment at 65 degrees C for 30 min. In contrast, GOD immobilized by L-ascorbic acid onto the same NH(2)-cellulose film retains 90% of its initial activity after 1 year of storage at 4 degrees C and 92% after heat treatment at 65 degrees C for 30 min. Unlike GOD, in the case of LOD only immobilization on special NH(2)-functionalized glass, e.g., via cyanuric chloride, led to a stabilization of the enzyme activity in comparison to the native enzyme. The operational stability of immobilized HRP was up to 40 times higher than that of the native enzyme if coupling to the new NH(2)-cellulose film led to an amide or sulfonamide bond. Regarding the kinetics of the immobilized enzymes, the coupling reagent plays a minor role for the enzyme substrate affinity, which is characterized by the apparent Michaelis constant (K(M,app)). The NH(2)-functionalized support material as well as the immobilized density of the protein and/or immobilized activity has a strong influence on the K(M,app) value. In all cases, K(M,app) decreases with increasing immobilized enzyme protein density and particularly drastically for GOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号