首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A novel superfamily designated MAPEG (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism), including members of widespread origin with diversified biological functions is defined according to enzymatic activities, sequence motifs, and structural properties. Two of the members are crucial for leukotriene biosynthesis, and three are cytoprotective exhibiting glutathione S-transferase and peroxidase activities. Expression of the most recently recognized member is strongly induced by p53, and may therefore play a role in apoptosis or cancer development. In spite of the different biological functions, all six proteins demonstrate common structural characteristics typical of membrane proteins. In addition, homologues are identified in plants, fungi, and bacteria, demonstrating this superfamily to be generally occurring.  相似文献   

2.
Previously, we reported, alterations in glucose metabolism in a 4 day model of chronic coronary stenosis similar to those described in patients with hibernating hearts. The purpose of this study was 2 fold: (1) to identify whether an acute model of mild, sustained ischemia could effect similar changes, and (2) to determine the effects of pharmacological inhibition of glycolysis. In the first group, extracorporeally perfused, intact pig hearts were subjected to 85 min of a 40% reduction in left anterior descending (LAD) coronary arterial blood flow. A second group was subjected to the same protocol, except after 40 min of LAD regional ischemia, iodoacetate (IAA) was administered to block glycolysis. Ischemia reduced MVO2 by 10% in both groups with a further 20% reduction noted following IAA treatment. Regional systolic shortening was reduced nearly 50% by ischemia and decreased an additional 40% following treatment with IAA. Glycolysis was increased by over 700% with ischemia in the first group. IAA caused a 3 fold reduction in glycolysis as compared to the preceding ischemic period and inhibited lactate production. Fatty acid metabolism was significantly reduced by ischemia in the first group, but was not reduced in the IAA group. Activity of creatine kinase associated with myofibrils was reduced and may have contributed to the contractile dysfunction. In conclusion, this acute model of short-term hibernation demonstrates several metabolic changes previously reported in chronic hibernation and may prove useful in determining mechanisms of substrate utilization in simulated conditions of chronic coronary stenosis and hibernation.  相似文献   

3.
The study examined the effect of insulin on glucose metabolism in freshly isolated calcium-tolerant heart myocytes from adult rats. The uptake of 2-deoxyglucose demonstrated an initial lag in response to insulin and the maximal insulin effect was not attained until after 3 min preincubation with the hormone. A dose-response study of 14CO2 production from [14C]glucose revealed that the maximum insulin stimulation of glucose utilization occurred with 5 mU/ml. Both the uptake and the oxidation of glucose proceeded at a linear rate in the absence and presence of insulin. However, insulin exerted a greater effect on the uptake (42-54%) than on the oxidation (17-22%) of exogenous glucose. Incorporation of glucose into glycogen was markedly increased by insulin and resulted in the myocyte glycogen concentration returning to in vivo levels. In the absence of insulin, glucose incorporation plateaued within 10 min of incubation and the glycogen concentration was not altered. Our findings also indicate that at equilibrium, insulin-treated cells exhibited a higher glycogen turnover rate. It thus appears that insulin exerts a differential effect on the different pathways in glucose metabolism in the isolated cardiac cells. This may be related in part to their quiescent state and lower energy demand.  相似文献   

4.
Adaptation of myocardial energy substrate utilization may contribute to the cardioprotective effects of regular exercise, a possibility supported by evidence showing that pharmacological metabolic modulation is beneficial to ischemic hearts during reperfusion. Thus we tested the hypothesis that the beneficial effect of regular physical exercise on recovery from ischemia-reperfusion is associated with a protective metabolic phenotype. Function, glycolysis, and oxidation of glucose, lactate, and palmitate were measured in isolated working hearts from sedentary control (C) and treadmill-trained (T: 10 wk, 4 days/wk) female Sprague-Dawley rats submitted to 20 min ischemia and 40 min reperfusion. Training resulted in myocardial hypertrophy (1.65 +/- 0.05 vs. 1.30 +/- 0.03 g heart wet wt, P < 0.001) and improved recovery of function after ischemia by nearly 50% (P < 0.05). Glycolysis was 25-30% lower in T hearts before and after ischemia (P < 0.05), whereas rates of glucose oxidation were 45% higher before ischemia (P < 0.01). As a result, the fraction of glucose oxidized before and after ischemia was, respectively, twofold and 25% greater in T hearts (P < 0.05). Palmitate oxidation was 50-65% greater in T than in C before and after ischemia (P < 0.05), whereas lactate oxidation did not differ between groups. Alteration in content of selected enzymes and proteins, as assessed by immunoblot analysis, could not account for the reduction in glycolysis or increase in glucose and palmitate oxidation observed. Combined with the studies on the beneficial effect of pharmacological modulation of energy metabolism, the present results provide support for a role of metabolic adaptations in protecting the trained heart against ischemia-reperfusion injury.  相似文献   

5.
Glucose appearance and utilization before and during glucose infusions were examined in insulin treated alloxan-diabetic (ITA) and intact sheep. During hyperglycaemia in ITA sheep glucose appearance was reduced to 35% of the preinfusion values whereas in intact sheep it was 17% of preinfusion values. Hyperglycaemia per se appears to inhibit glucose appearance. The utilization of glucose was not proportional to glucose concentrations in ITA sheep, but was in intact sheep where insulin concentrations increased during hyperglycaemia.  相似文献   

6.
7.
We have used [2-13C]d-glucose and carbon-13 nuclear magnetic resonance (NMR) spectroscopy to investigate metabolic fluxes through the major pathways of glucose metabolism in intact human erythrocytes and to determine the interactions among these pathways under conditions that perturb metabolism. Using the method described, we have been able to measure fluxes through the pentose phosphate pathway, phosphofructokinase, the 2,3-diphosphoglycerate bypass, and phosphoglycerate kinase, as well as glucose uptake, concurrently and in a single experiment. We have measured these fluxes in normal human erythrocytes under the following conditions: (1) fully oxygenated; (2) treated with methylene blue; and (3) deoxygenated. This method makes it possible to monitor various metabolic effects of stresses in normal and pathological states. Not only has 13C-NMR spectroscopy proved to be a useful method for measuring in vivo flux through the pentose phosphate pathway, but it has also provided additional information about the cycling of metabolites through the non-oxidative portion of the pentose phosphate pathway. Our evidence from experiments with [1-13C]-, [2-13C]-, and [3-13C]d-glucoses indicates that there is an observable reverse flux of fructose 6-phosphate through the reactions catalyzed by transketolase and transaldolase, even in the presence of a net flux through the pentose phosphate pathway.  相似文献   

8.
The influence of different maternal plasma progesterone concentrations on embryonic glucose metabolism was studied. Uterine flushes were obtained after treating ovariectomized mares (n = 3) with 0 (control), 100 or 200 mg progesterone daily for 7 d. A group of progesterone-induced proteins (PIP) of Mr approximately 20,000 were identified in flushes from progesterone treatments by SDS-PAGE but were not observed in control flushes. Progesterone-induced proteins were removed from half the pooled flush in each treatment group by Sepharose blue CL-6B. In a 3 x 2 factorial (progesterone treatments, progesterone-induced proteins) experiment, 6 groups of Day 7 equine embryos (n = 6 per group) were incubated in culture media (MEM:DPBS; 1:3) containing radioactively-labeled glucose. Contributions of the Embden-Meyerhof pathway (EMP) and the pentose-phosphate pathway (PPP) to the total metabolism of glucose in early equine embryos were assessed separately. In the 200 mg progesterone treatment group, the presence of progesterone-induced proteins in the culture medium resulted in a 4-to 5-fold increase in the activities of the Embden-Meyerhof pathway and the pentose-phosphate pathway. These results lead to the following conclusions: 1)Addition of progesterone-induced uterine proteins from mares with high levels of circulating progesterone enhance the metabolic activities of the Embden-Meyerhof pathway and the pentose-phosphate pathway in Day 7.5 equine embryos in culture. 2)Uterine secretion of progesterone-induced proteins which is quantitatively and/or qualitatively adequate to modify embryonic glucose metabolism in vitro is dependent on a minimal concentration of maternal plasma progesterone.  相似文献   

9.
10.
11.
Muscle insulin resistance in the chronic high-fat-fed rat is associated with increased membrane translocation and activation of the novel, lipid-responsive, protein kinase C (nPKC) isozymes PKC-theta and -epsilon. Surprisingly, fat-induced insulin resistance can be readily reversed by one high-glucose low-fat meal, but the underlying mechanism is unclear. Here, we have used this model to determine whether changes in the translocation of PKC-theta and -epsilon are associated with the acute reversal of insulin resistance. We measured cytosol and particulate PKC-alpha and nPKC-theta and -epsilon in muscle in control chow-fed Wistar rats (C) and 3-wk high-fat-fed rats with (HF-G) or without (HF-F) a single high-glucose meal. PKC-theta and -epsilon were translocated to the membrane in muscle of insulin-resistant HF-F rats. However, only membrane PKC-theta was reduced to the level of chow-fed controls when insulin resistance was reversed in HF-G rats [% PKC-theta at membrane, 23.0 +/- 4.4% (C); 39.7 +/- 3.4% (HF-F, P < 0.01 vs. C); 22.5 +/- 2.7% (HF-G, P < 0.01 vs. HF-F), by ANOVA]. We conclude that, although muscle localization of both PKC-epsilon and PKC-theta are influenced by chronic dietary lipid oversupply, PKC-epsilon and PKC-theta localization are differentially influenced by acute withdrawal of dietary lipid. These results provide further support for an association between PKC-theta muscle cellular localization and lipid-induced muscle insulin resistance and stress the labile nature of high-fat diet-induced insulin resistance in the rat.  相似文献   

12.
Anantharaman V  Aravind L 《Genome biology》2002,3(11):research0061.1-research00619

Background

The H subunit of the purple bacterial photosynthetic reaction center (PRC-H) is important for the assembly of the photosynthetic reaction center and appears to regulate electron transfer during the reduction of the secondary quinone. It contains a distinct cytoplasmic β-barrel domain whose fold has no close structural relationship to any other well known β-barrel domain.

Results

We show that the PRC-H β-barrel domain is the prototype of a novel superfamily of protein domains, the PRC-barrels, approximately 80 residues long, which is widely represented in bacteria, archaea and plants. This domain is also present at the carboxyl terminus of the pan-bacterial protein RimM, which is involved in ribosomal maturation and processing of 16S rRNA. A family of small proteins conserved in all known euryarchaea are composed entirely of a single stand-alone copy of the domain. Versions of this domain from photosynthetic proteobacteria contain a conserved acidic residue that is thought to regulate the reduction of quinones in the light-induced electron-transfer reaction. Closely related forms containing this acidic residue are also found in several non-photosynthetic bacteria, as well as in cyanobacteria, which have reaction centers with a different organization. We also show that the domain contains several determinants that could mediate specific protein-protein interactions.

Conclusions

The PRC-barrel is a widespread, ancient domain that appears to have been recruited to a variety of biological systems, ranging from RNA processing to photosynthesis. Identification of this versatile domain in numerous proteins could aid investigation of unexplored aspects of their biology.
  相似文献   

13.
SOL1, the founding member of the S. cerevisiae SOL family, was previously identified as a multi-copy suppressor of the los1 defect in tRNA-mediated nonsense suppression. Here we report that the four-member SOL family is not essential and that individual family members appear to have distinct functions. SOL1-SOL4 are homologous to genes encoding 6-phosphogluconolactonase (6Pgl) involved in the pentose phosphate pathway. Both Sol3p and Sol4p affect this activity. However, Sol4p does not act as a los1 multi-copy suppressor. In contrast, neither Sol1p nor Sol2p, both of which correct the los1 defect in nonsense suppression, possess detectable 6Pgl activity. Rather, Sol1p and Sol2p appear to function in tRNA nuclear export as sol1 and sol2 mutants possess elevated levels of nuclear tRNA. Members of the Sol protein family appear to have different subcellular distributions. Thus, Sol3p and Sol4p likely function in carbohydrate metabolism, while Sol1p and Sol2p appear to have roles in tRNA function and nuclear export, thereby defining an unusual protein family whose individual members are biochemically distinct and spatially dispersed.  相似文献   

14.
Recent studies suggest that mutations in the LGI1/Epitempin gene cause autosomal dominant lateral temporal epilepsy. This gene encodes a protein of unknown function, which we postulate is secreted. The LGI1 protein has leucine-rich repeats in the N-terminal sequence and a tandem repeat (which we named EPTP) in its C-terminal region. A redefinition of the C-terminal repeat and the application of sensitive sequence analysis methods enabled us to define a new superfamily of proteins carrying varying numbers of the novel EPTP repeats in combination with various extracellular domains. Genes encoding proteins of this family are located in genomic regions associated with epilepsy and other neurological disorders.  相似文献   

15.
The effect on various caecal bacteria and their metabolic activities of feeding diet containing transgalactosylated oligosaccharides (TOS) with or without Bifidobacterium breve (administered in the drinking water) was investigated in rats colonized with a human faecal microflora. TOS (5% w/w in diet) or TOS plus B. breve, given for 4 weeks, induced increases in caecal concentration of total anaerobic bacteria, lactobacilli and bifidobacteria, and decreases in numbers of enterobacteria. Caecal pH was significantly reduced by feeding TOS, as were the activities of β-glucuronidase and nitrate reductase. In contrast, β-glucosidase activity was increased in TOS-fed rats.
Dietary TOS was also associated with decreased conversion, by caecal contents, of the dietary carcinogen 2-amino-3-methyl-3H-imidazo[4, 5- f ] quinoline (IQ) to its genotoxic 7-hydroxy derivative.  相似文献   

16.
The effect of infection of pigs with Ascaris suum on the microbial composition in the proximal colon and fecal matter was investigated using 16S rRNA gene sequencing. The infection significantly decreased various microbial diversity indices including Chao1 richness, but the effect on Chao1 in the colon luminal contents was worm burden-independent. The abundance of 49 genera present in colon contents, such as Prevotella and Faecalibacterium, and 179 operational taxonomic units was significantly changed as a result of infection. Notably, infection was also associated with a significant shift in the metabolic potential of the proximal colon microbiome, where the relative abundance of at least 30 metabolic pathways including carbohydrate metabolism and amino acid metabolism was reduced, while the abundance of 28 pathways was increased by infection. Furthermore, the microbial co-occurrence network in infected pigs was highly modular. Two of 52 modules or subnetworks were negatively correlated with fecal butyrate concentrations (r?<??0.7; P?<?0.05) while one module with 18 members was negatively correlated with fecal acetate, propionate and total short-chain fatty acids. A partial Mantel test identified a strong positive correlation between node connectivity of the operational taxonomic units assigned to β-Proteobacteria (especially the family Alcaligenaceae) and fecal acetate and propionate levels (r?=?0.82 and 0.74, respectively), while that of the family Porphyromonadaceae was positively correlated with fecal egg counts. Overall, Ascaris infection was associated with a profound change in the gut microbiome, especially in the proximity of the initial site of larval infection, and should facilitate our understanding of the pathophysiological consequence of gastrointestinal nematode infections.  相似文献   

17.
18.
19.
20.
Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O2. While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1–10 mM) ± mitochondrial toxin; 1-methyl-4-phenylpyridinium (MPP+) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pHex) from neutral to 6.7 ± 0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5 ± 0.5 mM; +GLU 12.35 ± 1.3 mM; +GLU + MPP 18.1 ± 1.8 mM), acetate (Ctrl 0.84 ± 0.13 mM: +GLU 1.3 ± 0.15 mM; +GLU + MPP 2.7 ± 0.4 mM), fumarate, and a-ketoglutarate (<10 μM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection–LC show accumulation of l-alanine (1.6 ± .052 mM), l-glutamate (285 ± 9.7 μM), l-asparagine (202 ± 2.1 μM), and l-aspartate (84.2 ± 4.9 μM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde, aldehydes, or ketones (Purpald/2,4-dinitrophenylhydrazine—Brady's reagent), acetoin (Voges–Proskauer test), or alcohols (NAD+-linked alcohol dehydrogenase). In conclusion, these results provide preliminary evidence to suggest the existence of an active pyruvate–alanine transaminase or phosphotransacetylase/acetyl-CoA synthetase pathway to be involved with anaerobic energy metabolism of cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号