首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsatellites or simple sequence repeats are highly variable DNA sequences that can be used as informative markers for the genetic analysis of plants and animals. For the development of microsatellite markers in Capsicum, microsatellites were isolated from two small-insert genomic libraries and the GenBank database. Using five types of oligonucleotides, (AT)15, (GA)15, (GT)15, (ATT)10 and (TTG)10, as probes, positive clones were isolated from the genomic libraries, and sequenced. Out of 130 positive clones, 77 clones showed microsatellite motifs, out of which 40 reliable microsatellite markers were developed. (GA) n and (GT) n sequences were found to occur most frequently in the pepper genome, followed by (TTG) n and (AT) n . Additional 36 microsatellite primers were also developed from GenBank and other published data. To measure the information content of these markers, the polymorphism information contents (PICs) were calculated. Capsicum microsatellite markers from the genomic libraries have shown a high level of PIC value, 0.76, twice the value for markers from GenBank data. Forty six microsatellite loci were placed on the SNU-RFLP linkage map, which had been derived from the interspecific cross between Capsicum annuum TF68 and Capsicum chinense Habanero. The current SNU2 pepper map with 333 markers in 15 linkage groups contains 46 SSR and 287 RFLP markers covering 1,761.5 cM with an average distance of 5.3 cM between markers.Communicated by J. Dvorak  相似文献   

2.
Summary Forty-eight yeast strains belonging to the genera Candida, Debaryomyces, Kluyveromyces and Pichia (obtained from the ARS Culture Collection, Peoria, IL) were screened for production of extracellular glucose tolerant and thermophilic -glucosidase activity using p-nitrophenyl--D-glucoside as substrate. Enzymes from 15 yeast strains showed very high glucose tolerance (<50 % inhibition at 30 %, w/v glucose). The optimal temperatures and pH for these -glucosidase activities varied from 30 to 65°C and pH 4.5 to 6.5. The -glucosidases from all these yeast strains hydrolyzed cellobiose.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

3.
Genetic study of -glucan content and -glucanase activity has been facilitated by recent developments in quantitative trait loci (QTL) analysis. QTL for barley and malt -glucan content and for green and finished malt -glucanase activity were mapped using a 123-point molecular marker linkage map from the cross of Steptoe/Morex. Three QTL for barley -glucan, 6 QTL for malt -glucan, 3 QTL for -glucanase in green malt and 5 QTL for -glucanase in finished malt were detected by interval mapping procedures. The QTL with the largest effects on barley -glucan, malt glucan, green malt -glucanase and finished malt glucanase were identified on chromosomes 2,1,4 and 7, respectively. A genome map-based approach allows for dissection of relationships among barley and malt glucan content, green and finished malt -glucanase activity, and other malting quality parameters.  相似文献   

4.
Carotenoids are a class of fat-soluble antioxidant vitamin compounds present in maize (Zea mays L.) that may provide health benefits to animals or humans. Four carotenoid compounds are predominant in maize grain: -carotene, -cryptoxanthin, zeaxanthin, and lutein. Although -carotene has the highest pro-vitamin A activity, it is present in a relatively low concentration in maize kernels. We set out to identify quantitative trait loci (QTL) affecting carotenoid accumulation in maize kernels. Two sets of segregating families were evaluated—a set of F2:3 lines derived from a cross of W64a x A632, and their testcross progeny with AE335. Molecular markers were evaluated on the F2:3 lines and a genetic linkage map created. High-performance liquid chromatography was performed to measure -carotene, -cryptoxanthin, zeaxanthin, and lutein on both sets of materials. Composite interval mapping identified chromosome regions with QTL for one or more individual carotenoids in the per se and testcross progenies. Notably QTL in the per se population map to regions with candidate genes, yellow 1 and viviparous 9, which may be responsible for quantitative variation in carotenoids. The yellow 1 gene maps to chromosome six and is associated with phytoene synthase, the enzyme catalyzing the first dedicated step in the carotenoid biosynthetic pathway. The viviparous 9 gene maps to chromosome seven and is associated with -carotene desaturase, an enzyme catalyzing an early step in the carotenoid biosynthetic pathway. If the QTL identified in this study are confirmed, particularly those associated with candidates genes, they could be used in an efficient marker-assisted selection program to facilitate increasing levels of carotenoids in maize grain.Communicated by P. Langridge  相似文献   

5.
A genetic linkage map for radiata pine (Pinus radiata D. Don) has been constructed using segregation data from a three-generation outbred pedigree. A total of 208 loci were analyzed including 165 restriction fragment length polymorphism (RFLP), 41 random amplified polymorphic DNA (RAPD) and 2 microsatellite markers. The markers were assembled into 22 linkage groups of 2 or more loci and covered a total distance of 1382 cM. Thirteen loci were unlinked to any other marker. Of the RFLP loci that were mapped, 93 were detected by loblolly pine (P. taeda L.) cDNA probes that had been previously mapped or evaluated in that species. The remaining 72 RFLP loci were detected by radiata pine probes from a PstI genomic DNA library. Two hundred and eighty RAPD primers were evaluated, and 41 loci which were segregating in a 11 ratio were mapped. Two microsatellite markers were also placed on the map. This map and the markers derived from it will have wide applicability to genetic studies in P. radiata and other pine species.  相似文献   

6.
As a result of earlier breeding efforts, portions of the genome of Basmati 370 have been introgressed into a rice breeding line, B8462T3-710. Cooked-kernel elongation was increased in this breeding line to a level equal to that of Basmati 370. The objective of this study was to identify and locate quantitative trait loci (QTLs) associated with cooked-kernel elongation in an F3 population derived from a cross between B8462T3710 and the reduced-elongation recurrent parent variety, Dellmont. DNA from the parental lines and Basmati 370 as a control, were screened for RFLPs using 170 clones chosen to cover the rice genome at intervals of 8 cM on average. Eighteen markers identified RFLPs common to Basmati 370 and B8462T3-710, but different from Dellmont, suggesting possible associations with kernel elongation. The B8462T3-710/Dellmont F3 population was analyzed for segregation of those RFLPs and for kernel elongation. Analysis of variance of the kernel elongation ratio revealed that two markers, 14.6 cM apart on chromosome 8, are significantly associated with this trait (RZ323 P 0.005, RZ562 P 0.05). Interval mapping suggests a single QTL with a close proximity to RZ323. This QTL was tested in F6 lines derived from the same cross and the presence of the B8462T3-710 segment detected by RZ323 caused a highly significant increase of the kernel elongation ratio (P 0.04). In addition, the QTL for kernel elongation and a gene for aroma, which are major components of the grain quality characteristics of Basmati-type rices, showed linkage. The availability of linked markers to the QTL may facilitate early selection for kernel elongation in rice breeding programs.  相似文献   

7.
The availability of suitable genetic markers is essential to efficiently select and breed apple varieties of high quality and with multiple disease resistances. Microsatellites (simple sequence repeats, SSR) are very useful in this respect since they are codominant, highly polymorphic, abundant and reliably reproducible. Over 140 new SSR markers have been developed in apple and tested on a panel of 7 cultivars and 1 breeding selection. Their high level of polymorphism is expressed with an average of 6.1 alleles per locus and an average heterozygosity (H) of 0.74. Of all SSR markers, 115 have been positioned on a genetic linkage map of the cross Fiesta × Discovery. As a result, all 17 linkage groups, corresponding to the 17 chromosomes of apple, were identified. Each chromosome carries at least two SSR markers, allowing the alignment of any apple molecular marker map both with regard to identification as well as to orientation of the linkage groups. To test the degree of conservation of the SSR flanking regions and the transferability of the SSR markers to other Rosaceae species, 15 primer pairs were tested on a series of Maloideae and Amygdaloideae species. The usefulness of the newly developed microsatellites in genetic mapping is demonstrated by means of the genetic linkage map. The possibility of constructing a global apple linkage map and the impact of such a number of microsatellite markers on gene and QTL mapping is discussed.  相似文献   

8.
Powdery mildew poses a serious problem for apple growers, and resistance to the disease is a major objective in breeding programmes for cultivar improvement. As selective pressure allows pathogens to overcome previously reliable resistances, there is a need for the introduction of novel resistance genes into new breeding lines. This investigation is concerned with the identification of the first set of molecular markers linked to the gene for mildew resistance, Pl-d, from the accession D12. As no prior information on the map position or markers for Pl-d were available, a bulked-segregant approach was used to test 49 microsatellite primers, 176 amplified fragment length polymorphism (AFLP) primers and 80 random amplified polymorphic DNA (RAPD) primers in a progeny segregating for Pl-d resistance, Fiesta (susceptible) × A871-14 (Worcester Pearmain × D12). The segregations of the markers identified in the resistant and susceptible bulks were scored in the progeny, then the recombination fractions between Pl-d and the most tightly linked markers were calculated and a map prepared. Three AFLP, one RAPD and two microsatellite markers were identified. One AFLP was developed into a sequence-characterised amplified region marker, while the microsatellites CH03C02 and CH01D03 were flanking markers, 7 and 11 recombination units, respectively, from Pl-d. Two more distant microsatellites on the same linkage group, CH01D09 and CH01G12, confirmed the orientation of the markers on the linkage group. These microsatellites place Pl-d on the bottom of linkage group 12 in published apple maps, a region where a number of other disease resistance genes have been identified.  相似文献   

9.
Genetic mapping of QTLs controlling horticultural traits in diploid roses   总被引:9,自引:0,他引:9  
A segregating progeny set of 96 F1 diploid hybrids (2n=2x=14) between Blush Noisette (D10), one of the first seedlings from the original Champneys Pink Cluster, and Rosa wichurana (E15), was used to construct a genetic linkage map of the rose genome following a pseudo-testcross mapping strategy. A total of 133 markers (130 RAPD, one morphological and two microsatellites) were located on the 14 linkage groups (LGs) of the D10 and E15 maps, covering total map lengths of 388 and 260 cM, respectively. Due to the presence of common biparental markers the homology of four LGs between parental maps (D10-1/E15-1 to D10-4/E15-4) could be inferred. Four horticulturally interesting quantitative traits, flower size (FS), days to flowering (DF), leaf size (LS), and resistance to powdery mildew (PM) were analysed in the progeny in order to map quantitative trait loci (QTLs) controlling these traits. A total of 13 putative QTLs (LOD>3.0) were identified, four for FS, two for flowering time, five for LS, and two for resistance to PM. Possible homologies between QTLs detected in the D10 and E15 maps could be established between Fs1 and Fs3, Fs2 and Fs4, and Ls1 and Ls3. Screening for pairwise epistatic interactions between loci revealed additional, epistatic QTLs (EQTLs) for DF and LS that were not detected in the original QTL analysis. The genetic maps developed in this study will be useful to add new markers and locate genes for important traits in the genus providing a practical resource for marker-assisted selection programs in roses.  相似文献   

10.
A significant level of root elongation was induced in rice (Oryza sativa) grown under phosphorus-deficient conditions. The root elongation clearly varied among a total of 62 varieties screened under two different phosphorus levels. Two contrasting varieties, Gimbozu, with a low elongating response and Kasalath, with a high elongating response, were chosen and crossed to produce a hybrid population for QTL analyses. QTLs for the phosphorus deficiency-induced root elongation were detected by two linkage maps, i.e., one with 82 F3 families constructed by 97 simple sequence repeat (SSR) and sequence-tag site markers and another with 97 F8 lines by 790 amplified fragment length polymorphism and SSR markers. A single QTL for the elongation response was detected on chromosome 6, with a LOD score of 4.5 in both maps and explained about 20% of total phenotypic variance. In addition, this QTL itself, or a region tightly linked with it, partly explained an ability to reduce accumulation of excess iron in the shoots. The identified QTL will be useful to improve rice varieties against a complex nutritional disorder caused by phosphorus deficiency and iron toxicity.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
Amplified fragment length polymorphisms (AFLPs) and microsatellite markers were used to examine genetic variation and divergence in 4 selected strains (DBH, NEH, FMF, and CTS) and 1 wild population (DBW) of the eastern oyster Crassostrea virginica Gmelin. Eighty-six AFLP markers (from 3 primer pairs) and 5 microsatellite loci were used for the analysis of 30 oysters from each of the 5 populations. Microsatellite loci were considerably more variable than AFLPs. The observed heterozygosity ranged from 0.560 to 0.640 across populations for microsatellites, and from 0.186 to 0.207 for AFLPs. Both Fst and PT of microsatellite data and PT statistics of AFLP data revealed significant divergence between all pairs of populations. There was no significant reduction in heterozygosity in all 4 selected strains; however, the number of alleles per locus was considerably lower in the selected strains than in the wild population. Two strains subjected to long-term selection for disease resistance shared frequency shifts at a few loci, which deserve further analysis to determine if they are linked to disease-resistance genes.  相似文献   

12.
The mh gene causing double-muscling in cattle maps to bovine Chromosome 2   总被引:1,自引:0,他引:1  
While the hereditary nature of the double-muscling phenotype (a generalized muscular hypertrophy documented in several cattle breeds) is well established, its precise segregation mode has remained controversial. Both monogenic models (autosomal dominant or recessive) and oligogenic models have been proposed. Using a panel of 213 bovine microsatellite markers, and an experimental pedigree obtained by backcrossing double-muscled (Belgian Blue)xconventional (Friesian) F1 dams to double-muscled sire, we have mapped a locus on bovine Chromosome (Chr) 2 that accounts for all the phenotypic variance in the backcross generation. This locus, referred to as mh (muscular hypertrophy), has been positioned with respect to a map composed of seven Chr 2-specific microsatellites, at 2 cM from the closest marker. This result confirms the validity in the Belgian Blue population of the monogenic model involving an autosomal mh locus, characterized by a wild-type + and a recessive mh allele, causing the double-muscling phenotype in the homozygous condition. The linkage relationship between the mh locus and the Chr 2 markers was confirmed in three informative pedigrees collected from the general Belgian Blue Cattle population, reinforcing the notion of genetic homogeneity of the double-muscling trait in this breed. This work paves the way towards marker-assisted selection for or against the double-muscling trait, and towards positional cloning of the corresponding gene.  相似文献   

13.
Genetic markers were mapped in segregating progeny from a cross between two soybean (Glycine max (L.) Merr.) cultivars: Minsoy (PI 27.890) and Noir 1 (PI 290.136). A genetic linkage map was constructed (LOD 3), consisting of 132 RFLP, isozyme, morphological, and biochemical markers. The map defined 1550cM of the soybean genome comprising 31 linkage groups. An additional 24 polymorphic markers remained unlinked. A family of RFLP markers, identified by a single probe (hybridizing to an interspersed repeated DNA sequence), extended the map, linking other markers and defining regions for which other markers were not available.  相似文献   

14.
A full-sibling F1 population comprising 153 individuals from the cross of Regent × Lemberger was employed to construct a genetic map based on 429 molecular markers. The newly-bred red grapevine variety Regent has multiple field-resistance to fungal diseases inherited as polygenic traits, while Lemberger is a traditional fungus-susceptible cultivar. The progeny segregate quantitatively for resistances to Plasmopara viticola and Uncinula necator, fungal pathogens that threaten viticulture in temperate areas. A double pseudo-testcross strategy was employed to construct the two parental maps under high statistical stringency for linkage to obtain a robust marker frame for subsequent quantitative trait locus (QTL) analysis. In total, 185 amplified fragment length polymorphism, 137 random amplified polymorphic DNA, 85 single sequence repeat and 22 sequence characterized amplified region or cleaved amplified polymorphic sequence markers were mapped. The maps were aligned by co-dominant or doubly heterozygous dominant anchor markers. Twelve pairs of homologous linkage groups could be integrated into consensus linkage groups. Resistance phenotypes and segregating characteristics were scored as quantitative traits in three or four growing seasons. Interval mapping reproducibly localized genetic factors that correlated with fungal disease resistances to specific regions on three linkage groups of the maternal Regent map. A QTL for resistance to Uncinula necator was identified on linkage group 16, and QTLs for endurance to Plasmopara viticola on linkage groups 9 and 10 of Regent. Additional QTLs for the onset of berry ripening (veraison), berry size and axillary shoot growth were identified. Berry color segregated as a simple trait in this cross of two red varieties and was mapped as a morphological marker. Six markers derived from functional genes could be localized. This dissection of polygenic fungus disease resistance in grapevine allows the development of marker-assisted selection for breeding, the characterization of genetic resources and the isolation of the corresponding genes.Communicated by H.C. Becker  相似文献   

15.
A major gene underlying quantitative resistance of barley against Pyrenophora graminea, a seedborne pathogen causing leaf stripe, was mapped with molecular markers in a barley doubled haploid (DH) population derived from the cross Proctor x Nudinka. This quantitative trait locus (QTL) accounts for r 2= 58.5% and was mapped on barley chromosome 1, tightly linked to the naked gene. A second resistance QTL accounting for 29.3% of the variation in the trait was identified on the P arm of barley chromosome 2. Another two minor QTLs were detected by further analysis. None of the QTLs was found in the barley chromosome 2 Vada region studied by Giese et al. (1993).  相似文献   

16.
Summary In this paper we have studied the linear correlation between a genetic distance index between two parent lines (based on marker loci information) and the heterosis observed in the F1 hybrid from the two lines, for a quantitative character (determined by several loci, or QTL). Theoretical computations of the correlation coefficient () between the distance index and the heterosis were made, assuming the biallelic model (defined by Fisher). When the alleles at both marker loci and QTL are equally distributed among the whole population of considered lines, the coefficient is a function of the squares of linkage disequilibria between alleles at marker loci and alleles at QTL. The QTL that are not marked by marker loci and marker loci that do not mark any QTL play symmetrical roles and can decrease greatly. We conclude that the prediction of F1 hybrid heterosis based on marker loci would be more efficient if these markers were selected for their relationship to the alleles implicated in the heterotic traits considered.  相似文献   

17.
Molecular marker-assisted selection for malting quality traits in barley   总被引:5,自引:1,他引:4  
Selection for malting quality in breeding programs by micromalting and micromashing is time-consuming, and resource-intensive. More efficient and feasible approaches for identifying genotypes with good malting quality would be highly desirable. With the advent of molecular markers, it is possible to map and tag the loci affecting malting quality. The objective of this study was to assess the effectiveness of molecular marker assisted selection for malting quality traits. Two major quantitative trait loci (QTL) regions in six-row barley for malt extract percentage, -amylase activity, diastatic power, and malt -glucan content on chromosomes 1 (QTL1) and 4 (QTL2) have been previously identified. The flanking markers, Brz and Amy2, and WG622 and BCD402B, for these two major QTL regions were used in marker-assisted selection. Four alternative selection strategies; phenotypic selection, genotypic selection, tandem genotypic and phenotypic selection, and combined phenotypic and genotypic selection, were compared for both single and multiple trait selection in a population consisting of 92 doubled haploid lines derived from Steptoe × Morex crosses. Marker assisted selection for QTL1 (tandem genotypic and phenotypic selection, and combined phenotypic and genotypic selection) was more effective than phenotypic selection, but for QTL2 was not as effective as phenotypic selection due to a lack of QTL2 effects in the selection population. The effectiveness of tandem genotypic and phenotypic selection makes marker assisted selection practical for traits which are extremely difficult or expensive to measure such as most malting quality traits. It can substantially eliminate undesirable genotypes by early genotyping and keeping only desirable genotypes for later phenotypic selection.  相似文献   

18.
We have used restriction fragment length polymorphisms (RFLPs) to map genes in mungbean (Vigna radiata) that confer partial resistance to the powdery mildew fungus, Erysiphe polygoni. DNA genotypes for 145 RFLP loci spanning 1570 centimorgans of the mungbean genome were assayed in a population of 58 F2 plants. This population was derived from a cross between a moderately powdery mildew resistant (VC3980A) and a susceptible (TC1966) mungbean parent. F3 lines derived from the F2 plants were assayed in the field for powdery mildew response and the results were compared to the RFLP genotype data, thereby identifying loci associated with powdery mildew response. A total of three genomic regions were found to have an effect on powdery mildew response, together explaining 58% of the total variation. At 65 days after planting, two genomic regions were significantly associated with powdery mildew resistance. For both loci, the allele from VC3890A was associated with increased resistance. At 85 days, a third genomic region was also associated with powdery mildew response. For this locus, the allele from the susceptible parent (TC1966) was the one associated with higher levels of powdery mildew resistance. These results indicate that putative partial resistance loci for powdery mildew in mungbean can be identified with DNA markers, even in a population of modest size analyzed at a single location in a single year.  相似文献   

19.
Earliness, an adaptative trait and factor of variation for agronomic characters, is a major trait in plant breeding. Its constituent traits, photoperiod sensitivity (PS), vernalization requirement (VR) and intrinsic earliness (IE), are largely under independent genetic controls. Mapping of major genes and quantitative trait loci (QTL) controlling these components is in progress. Most of the studies focusing on earliness considered it as a whole or through one (or two) of its components. The purpose of this study was to detect and map QTL for the three traits together through an experimental design combining field trials and controlled growth conditions. QTL were mapped in a population of F7 recombinant inbred lines derived by single-seed descent from a cross between two French varieties, Renan and Récital. A map was previously constructed, based on 194 lines and 254 markers, covering about 77% of the genome. Globally, 13 QTL with a LOD>2.5 were detected, of which four control PS, five control VR and four control IE. Two major photoperiod sensitive QTL, together explaining more than 31% of the phenotypic variation, were mapped on chromosomes 2B and 2D, at the same position as the two major genes Ppd-B1 and Ppd-D1. One major VR QTL explaining (depending on the year) 21.8–39.6% of the phenotypic variation was mapped on 5A. Among the other QTL, two QTL of PS and VR not referenced so far were detected on 5A and 6D, respectively. A VR QTL already detected on 2B in a connected population was confirmed.  相似文献   

20.
A novel approach was used to compare male and female recombination rates in wheat. Doubled haploid lines were developed from an F1 using two distinct approaches: the anther-culture technique and the Hordeum bulbosum system, from which sets of lines were developed from male and female meioses, respectively. The genotype of the lines was established at RFLP and isozyme markers polymorphic on chromosomes of homoeologous groups 6 and 7, and male and female linkage maps were calculated using this information. The markers in one segment of chromosome 6B exhibited disturbed segregation frequencies in the anther-culture population. The male and female maps differed significantly in recombination frequency between some markers on two chromosomes, and these were consistent in direction within chromosomes and inconsistent in direction between chromosomes. In two of the four chromosomes studied the male map was much longer than the female map. These results suggest that significant differences may exist in male and female recombination frequencies in bread wheat which are specific to certain chromosomal segments but are inconsistent in direction between chromosomes. Other factors, such as environmental influences, may also be important in creating differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号