首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pregnant CBA mice were given a single injection of 3H-thymidine (3H-T) (10 microCi/g) on days 11-19 of pregnancy. The mouse progeny was sacrificed on the first day of postnatal life. Brain was embedded into paraffin and durcupan. Radioautographs of paraffin and semithin sections were prepared and employed for mapping the site of intensely labeled neurons (ILN) in the CAI area of the hippocampus (H). ILN appeared in the CAI area after 3H-T injection, namely on embryonic day 12 (E 12). The ILN number reached a maximum after isotope injection on 2 14-15 and then dramatically fell down. The neurogenesis in the suprapyramidal layer of the CAI area slightly outstripped the neurogenesis in the pyramidal and infrapyramidal layers. At early times of the experiment the CAI area exhibited the predominance of single ILN, whereas at late times paired ILN prevailed. That fact might be linked with the replacement during the neurogenesis of asymmetric critical mitoses of the germinative neuronal precursors by symmetric critical mitoses. Analysis of the ILN distribution in the CAL area revealed mosaic clusters of ILN alternating with unlabeled or mildly labeled neurons. Those groups were most remarkable in mice injected with 3H-T on E 14 and E 15. The mosaicism of the neurogenesis in the H is regarded as the result of heterochronous neuronal production by local parts of the germinative zone, each of which builds up a separate radial segment of the H.  相似文献   

2.
In the embryonic neocortex, neuronal precursors are generated in the ventricular zone (VZ) and accumulate in the cortical plate. Recently, the subventricular zone (SVZ) of the embryonic neocortex was recognized as an additional neurogenic site for both principal excitatory neurons and GABAergic inhibitory neurons. To gain insight into the neurogenesis of GABAergic neurons in the SVZ, we investigated the characteristics of intermediate progenitors of GABAergic neurons (IPGNs) in mouse neocortex by immunohistochemistry, immunocytochemistry, single-cell RT-PCR and single-cell array analysis. IPGNs were identified by their expression of some neuronal and cell cycle markers. Moreover, we investigated the origins of the neocortical IPGNs by Cre-loxP fate mapping in transgenic mice and the transduction of part of the telencephalic VZ by Cre-reporter plasmids, and found them in the medial and lateral ganglionic eminence. Therefore, they must migrate tangentially within the telencephalon to reach the neocortex. Cell-lineage analysis by simple-retrovirus transduction revealed that the neocortical IPGNs self-renew and give rise to a small number of neocortical GABAergic neurons and to a large number of granule and periglomerular cells in the olfactory bulb. IPGNs are maintained in the neocortex and may act as progenitors for adult neurogenesis.  相似文献   

3.
The migration, cytoarchitectonic segregation and neuritogenesis of the inferior olive (ION) and lateral reticular (LRN) neurons are described in the rat. Generated in the same primary precerebellar neuroepithelium, at embryonic days 12-13 (E12-E13) for the ION and E12-E14 for the LRN, the postmitotic cells take either the intraparenchymal (smms, for ION neurons) or the subpial migratory streams (mms, for LRN neurons and other populations, as those of the external cuneate nucleus, ECN). The ION neurons settle in their ultimate domain from E16 to E18, ipsilaterally to their proliferation side. The LRN (and ECN) neurons cross the midline at the "floor plate" (FP) level, and settle contralaterally to their birthplace between E17 and E19. In both cases, the acquisition of a mature dendritic tree is a late event when compared to the precocious axonogenesis. The FP structure may play a major role in i) attracting the axons of the precerebellar neurons, and ii) instructing these neurons whether to cross the midline or not. Thus, ultimately the FP may govern the pattern (crossed or uncrossed) of the projections of the ION and LRN to their common cerebellar target.  相似文献   

4.
Most cerebral cortical neurons are generated between embryonic days 11 and 17 (E11-17) in the mouse. Radial glial cells also proliferate during this time; they can give rise to neurons and many later transform into astrocytes. It is thought that most glial cells comprising the mature cortex, including additional astrocytes, are generated after neurogenesis is complete. Little is known about the cellular events that occur during the transition from the phase dominated by neurogenesis to that of gliogenesis. We labeled cells generated on E18 and E19 and the day of birth (P0) with bromodeoxyuridine and followed their fates over the following 20 days. Our results showed that, on E18-P0, cells divide throughout the ventricular zone, subventricular zone, intermediate zone, and to a lesser extent, the developing cortical plate, whereas neuronal precursors generated prior to E18 divide in the ventricular zone. Our results indicated that 30-40% of cells dividing on E18 give rise to neurons that migrate to the most superficial part of the cortex. The rest of the cells dividing on E18 and 76-94% of cells generated on E19 and P0 express the QKI RNA-binding protein, indicating that they either remain as multipotential progenitors or develop into glial cells. Nine to fifteen percent of cells generated on E18-P0 become glial fibrillary acidic protein-positive astrocytes. Many E19 and P0 labeled cells disappear between 2 and 20 days postlabeling, probably because they continue to divide. We conclude that the population of cells produced at the end of cortical neurogenesis is heterogeneous and comprises postmitotic neurons, glia (including astrocytes), and possibly multipotential progenitors.  相似文献   

5.
To determine the role of brain-derived neurotrophic factor (BDNF) in the enhancement of hippocampal neurogenesis resulting from dietary restriction (DR), heterozygous BDNF knockout (BDNF +/-) mice and wild-type mice were maintained for 3 months on DR or ad libitum (AL) diets. Mice were then injected with bromodeoxyuridine (BrdU) and killed either 1 day or 4 weeks later. Levels of BDNF protein in neurons throughout the hippocampus were decreased in BDNF +/- mice, but were increased by DR in wild-type mice and to a lesser amount in BDNF +/- mice. One day after BrdU injection the number of BrdU-labeled cells in the dentate gyrus of the hippocampus was significantly decreased in BDNF +/- mice maintained on the AL diet, suggesting that BDNF signaling is important for proliferation of neural stem cells. DR had no effect on the proliferation of neural stem cells in wild-type or BDNF +/- mice. Four weeks after BrdU injection, numbers of surviving labeled cells were decreased in BDNF +/- mice maintained on either AL or DR diets. DR significantly improved survival of newly generated cells in wild-type mice, and also improved their survival in BDNF +/- mice, albeit to a lesser extent. The majority of BrdU-labeled cells in the dentate gyrus exhibited a neuronal phenotype at the 4-week time point. The reduced neurogenesis in BDNF +/- mice was associated with a significant reduction in the volume of the dentate gyrus. These findings suggest that BDNF plays an important role in the regulation of the basal level of neurogenesis in dentate gyrus of adult mice, and that by promoting the survival of newly generated neurons BDNF contributes to the enhancement of neurogenesis induced by DR.  相似文献   

6.
7.
The objective of the present study was to determine if destruction of ovarian antral follicles by laser-cauterization affects CL lifespan during the estrous cycle of the gilt. Cyclic gilts were randomly assigned to either SHAM, laser (L) or laser-estradiol (L-E2) treatment groups, with the L-E2 group receiving a 5-mg intramuscular (i.m.) injection of estradiol-17beta cypionate at the time of the first surgery. Ovarian antral follicles were laser-cauterized on either Days 12 and 14 (L12) or Days 14 and 17 (L14) of the estrous cycle. In the L12-E2 group, 3 of 4 gilts had extended mean interestrus intervals of more than 22 days compared with 0 of 4, 0 of 6, 0 of 7 and 1 of 5 gilts in the SHAM, L12, L14 and L14-E2 groups, respectively. The L12-E2 gilts had a longer (P<0.05) mean interestrus interval (23.5+/-1.3 days) than the L12 (20.0+/-1.1 days), L14 (20.7+/-1.0 days) and SHAM (20.5+/-1.3 days). The mean interestrus interval of L14-E2 gilts (21.8+/-1.2 days) did not differ from those of the L12-E2 group or the L12, L14 and SHAM group gilts. Six additional gilts were injected with 5 mg estradiol cypionate-17beta to serve as nonsurgical controls for E2 treatment. Gilts (3 of 3) given an E2 injection on Day 12 had extended mean interestrus interval (26.0+/-2.6 days), while 2 of 3 gilts injected with E2 on day 14 had extended mean interestrus intervals (27.7+/-2.1 days). These results indicate that in cyclic gilts destruction of ovarian follicles by laser-cauterization did not affect CL lifespan, and that luteolysis is not dependent on the presence of antral follicles.  相似文献   

8.
Sex differences exist in the structure and function of the cholinergic septo-hippocampal system throughout the lifespan of mammals. How and when these sex differences originate is unclear. Because estrogen modulates sexual differentiation of several brain regions during development and influences neurogenesis in adult mammals, we hypothesized that sexual dimorphism of the cholinergic septo-hippocampal system would extend to its neurogenesis. A birthdating agent 5'-bromo-2'-deoxyuridine (BrdU) was injected into pregnant dams on one of eight gestational days, ranging from embryonic day (E)10 to E17. The offspring were euthanized at 2 months of age, and brains were processed for BrdU and choline acetyltransferase (ChAT) immunoreactivity to label cholinergic neurons that became postmitotic on a given embryonic day and survived to adulthood. Unbiased stereology was used to compare the number of double-labeled neurons in the medial septum (MS) of female and male offspring. Cholinergic neurons in the MS were generated primarily between E11 and E14, similar to other published reports. We found sex differences in the pattern of peak neurogenesis but not in the length of neurogenesis, or in total number of neurons generated in the MS. Additionally, in adult female and male mice, we estimated the total number of cholinergic neurons using unbiased stereology and found no sex differences in the number of cholinergic neurons or in the volume of the MS in adulthood. These results suggest that sex differences noted in the function of the postnatal cholinergic septo-hippocampal system may originate from its neurogenesis.  相似文献   

9.
10.
Labadie P  Peck M  Minier C  Hill EM 《Steroids》2007,72(1):41-49
Vertebrate-type sex steroids have been detected in a number of mollusk species and may play a role in the reproductive physiology of the animal. Mollusks are also exposed to exogenous estrogenic steroids that are present in sewage effluents, and these may add to the estrogenic burden of exposed animals. We investigated the uptake of estrogens in the blue mussel, Mytlius edulis and report for the first time the identity of estrogen fatty acid ester metabolites formed in vivo in an invertebrate. We exposed mussels to waterborne radiolabeled [(14)C]-17beta-estradiol (E2) or estrone (E1) and determined the nature of their metabolites using radio-HPLC and mass spectrometry (MS). After 13 days of exposure to 10ng/L E2, concentrations of radiolabeled residues were 2428-fold higher in M. edulis soft tissues compared with the ambient water concentration of E2. All the E2 residues in the mussel were present as a lipophilic ester which, in depuration studies, had a half-life of 8.3 days. Exposure of mussels to [(14)C]-E1 (70ng/L) resulted in formation of a similar lipophilic metabolite that after hydrolysis released [(14)C]-E2. Tandem MSMS analyses of the purified steroid ester fraction isolated from mussels exposed to either E2 or E1 revealed that they had the same composition and comprised C16:0, C16:1 and C16:2 esters of E2. This work reveals that in vivo E1 is rapidly metabolized to E2 in mussels prior to conjugation to C16 fatty acid esters, proving that C17-ketoreductase and C16 fatty acid acyl-CoA:E2 acyltransferase are important enzymes for the metabolism of estrogens in M. edulis.  相似文献   

11.
The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAM) has been used to identify immature neurons within canonical neurogenic niches. Additionally, DCX/PSA-NCAM+ immature neurons reside in cortical layer II of the paleocortex and in the paleo- and entorhinal cortex of mice and rats, respectively. These cells are also found in the neocortex of guinea pigs, rabbits, some afrotherian mammals, cats, dogs, non-human primates, and humans. The population of cortical DCX/PSA-NCAM+ immature neurons is generated prenatally as conclusively demonstrated in mice, rats, and guinea pigs. Thus, the majority of these cells do not appear to be the product of adult proliferative events. The immature neurons in cortical layer II are most abundant in the cortices of young individuals, while very few DCX/PSA-NCAM + cortical neurons can be detected in aged mammals. Maturation of DCX/PSA-NCAM+ cells into glutamatergic and GABAergic neurons has been proposed as an explanation for the age-dependent reduction in their population over time. In this review, we compile the recent information regarding the age-related decrease in the number of cortical DCX/PSA-NCAM+ neurons. We compare the distribution and fates of DCX/PSA-NCAM + neurons among mammalian species and speculate their impact on cognitive function. To respond to the diversity of adult neurogenesis research produced over the last number of decades, we close this review by discussing the use and precision of the term “adult non-canonical neurogenesis.”  相似文献   

12.
Adequate plasma volume (PV) and extracellular fluid (ECF) volume are essential for blood pressure and fluid regulation. We tested the hypotheses that combined progesterone (P(4))-estrogen (E(2)) administration would increase ECF volume with proportional increases in PV, but that P(4) would have little independent effect on either PV or ECF volume. We further hypothesized that this P(4)-E(2)-induced fluid expansion would be a function of renin-angiotensin-aldosterone system stimulation. We suppressed P(4) and E(2) with a gonadotropin-releasing hormone (GnRH) antagonist in eight women (25 +/- 2 yr) for 16 days; P(4) (200 mg/day) was added for days 5-16 (P(4)) and 17beta-estradiol (2 x 0.1 mg/day patches) for days 13-16 (P(4)-E(2)). On days 2 (GnRH antagonist), 9 (P(4)), and 16 (P(4)-E(2)), we estimated ECF and PV. To determine the rate of protein and thus water movement across the ECF, we also measured transcapillary escape rate of albumin. In P(4), P([P(4)]) increased from 2.5 +/- 1.3 to 12.0 +/- 2.8 ng/ml (P < 0.05) with no change in P([E(2)]) (21.5 +/- 9.4 to 8.6 +/- 2.0 pg/ml). In P(4)-E(2), plasma concentration of P(4) remained elevated (11.3 +/- 2.7 ng/ml) and plasma concentration of E(2) increased to 254.1 +/- 52.7 pg/ml (P < 0.05). PV increased during P(4) (46.6 +/- 2.5 ml/kg) and P(4)-E(2) (48.4 +/- 3.9 ml/kg) compared with GnRH antagonist (43.3 +/- 3.2 ml/kg; P < 0.05), as did ECF (206 +/- 19, 244 +/- 25, and 239 +/- 27 ml/kg for GnRH antagonist, P(4), and P(4)-E(2), respectively; P < 0.05). Transcapillary escape rate of albumin was lowest during P(4)-E(2) (5.8 +/- 1.3, 3.5 +/- 1.7, and 2.2 +/- 0.4%/h for GnRH antagonist, P(4), and P(4)-E(2), respectively; P < 0.05). Serum aldosterone increased during P(4) and P(4)-E(2) compared with GnRH antagonist (79 +/- 17, 127 +/- 13, and 171 +/- 25 pg/ml for GnRH antagonist, P(4), and P(4)-E(2), respectively; P < 0.05), but plasma renin activity and plasma concentration of ANG II were only increased by P(4)-E(2). This study is the first to isolate P(4) effects on ECF; however, the mechanisms for the ECF and PV expansion have not been clearly defined.  相似文献   

13.
Despite increased neurogenic differentiation markers in the hippocampal CA1 in Alzheimer disease, neurons are not replaced in CA1 and the neocortex in the disease. beta-Amyloid (Abeta) might cause deterioration of the brain microenvironment supporting neurogenesis and the survival of immature neurons. To test this possibility, we examined whether Abeta alters the expression of cell fate determinants in cerebral cortical cultures and in an Alzheimer disease mouse model (PrP-APP(SW)). Up-regulation of Mash1 and down-regulation of Olig2 were found in cerebral cortical cultures treated with Abeta-(1-42). Mash1 was expressed in nestin-positive immature cells. The majority of Mash1-positive cells in untreated cortical culture co-expressed Olig2. Abeta increased the proportion of Olig2-negative/Mash1-positive cells. A decrease in Olig2+ cells was also observed in the cerebral cortex of adult PrP-APP(SW) mice. Cotransfection experiments with Mash1 cDNA and Olig2 siRNA revealed that overexpression of Mash1 in neurosphere cells retaining Olig2 expression enhanced neural differentiation but accelerated death of Olig2-depleted cells. Growth factor deprivation, which down-regulated Olig2, accelerated death of Mash1-overexpressing neurosphere cells. We conclude that cooperation between Mash1 and Olig2 is necessary for neural stem/progenitor cells to develop into fully mature neurons and that down-regulation of Olig2 by Abeta in Mash1-overexpressing cells switches the cell fate to death. Maintaining Olig2 expression in differentiating cells could have therapeutic potential.  相似文献   

14.
Involvement of gap junctions in the development of the neocortex   总被引:6,自引:0,他引:6  
Gap junctions play an important role during the development of the mammalian brain. In the neocortex, gap junctions are already expressed at very early stages of development and they seem to be involved in many processes like neurogenesis, migration and synapse formation. Gap junctions are found in all cell types including progenitor cells, glial cells and neurons. These direct cell-to-cell connections form clusters consisting of a distinct number of cells of a certain type. These clusters can be considered as communication compartments in which the information transfer is mediated electrically by ionic currents and/or chemically by, e.g., small second messenger molecules. Within the neocortex, four such communication compartments can be identified: (1) gap junction-coupled neuroblasts of the ventricular zone and gap junctions in migrating cells and radial glia, (2) gap junction-coupled glial cells (astrocytes and oligodendrocytes), (3) gap junction-coupled pyramidal cells (only during the first two postnatal weeks) and (4) gap junction-coupled inhibitory interneurons. These compartments can consist of sub-compartments and they may overlap to some degree. The compartments 1 and 3 disappear with ongoing develop, whereas compartments 2 and 4 persist in the mature neocortex. Gap junction-mediated coupling of glial cells seems to be important for stabilization of the extracellular ion homeostasis, uptake of neurotransmitters, migration of neurons and myelination of axons. Electrical synapses between inhibitory interneurons facilitate the synchronization of pyramidal cells. In this way, they contribute to the generation of oscillatory network activity correlated with higher cortical functions. The role of gap junctions present in neuroblasts of the ventricular zone as well as the role of gap junctions found in pyramidal cells during the early postnatal stages is less clear. It is assumed that they might help to form precursors of the functional columns observed in the mature neocortex. Although recent developments of new techniques led to the solution of many problems concerning gap junction-coupling between neurons and glial cells in the neocortex, there are many open questions which need to be answered before we can achieve a comprehensive understanding of the role of gap junctions in the development of the neocortex.  相似文献   

15.
Several days after the completion of the early phase of cell proliferation that generates most of the leech central nervous system, the pair of “sex ganglia” in the two reproductive segments of the midbody undergo a second period of neurogenesis that gives rise to several hundred peripherally induced central (PIC) neurons. This proliferative phase, which begins on embryonic day 17 (E17), is induced by the interaction of a few specific neurons in the sex ganglia with a peripheral target, the male genitalia, during a critical period that extends from E13 to E16. The central nervous system (CNS) determines the critical period, since the male genitalia have the capacity to induce PIC neurons beginning on E10 and continuing throughout embryogenesis. Here we first show, by injecting hydroxyurea into staged embryos to ablate dividing cells, that PIC neuron precursors begin to divide at a low rate before E17, during the critical period. Then, through a series of homochronic and heterochronic male organ transplantations combined with hydroxyurea treatment of hosts and/or donors, we show that cell proliferation is required in the target itself for it to be competent to induce PIC neurons. These observations demonstrate that a nerve connection can couple cell proliferation in a peripheral target to cell proliferation in the CNS, providing a novel means for size adjustment of a central neuronal population relative to a peripheral target. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 295–303, 1998  相似文献   

16.
Emx1 and Emx2, mouse orthologs of the Drosophila head gap gene, ems, are expressed during corticogenesis. Emx2 null mutants exhibit mild defects in cortical lamination. Segregation of differentiating neurons from proliferative cells is normal for the most part, however, reelin-positive Cajal-Retzius cells are lost by the late embryonic period. Additionally, late-born cortical plate neurons display abnormal position. These types of lamination defects are subtle in the Emx1 mutant cortex. In the present study we show that Emx1 and Emx2 double mutant neocortex is much more severely affected. Thickness of the cerebral wall was diminished with the decrease in cell number. Bromodeoxyuridine uptake in the germinal zone was nearly normal; moreover, no apparent increase in cell death or tetraploid cell number was observed. However, tangential migration of cells from the ganglionic eminence into the neocortex was greatly inhibited. The wild-type ganglionic eminence cells transplanted into Emx1/2-double mutant telencephalon did not move to the cortex. MAP2-positive neuronal bodies and RC2-positive radial glial cells emerged normally, but the laminar structure subsequently formed was completely abnormal. Furthermore, both corticofugal and corticopetal fibers were predominantly absent in the cortex. Most importantly, neither Cajal-Retzius cells nor subplate neurons were found throughout E11.5-E18.5. Thus, this investigation suggests that laminar organization in the cortex or the production of Cajal-Retzius cells and subplate neurons is interrelated to the tangential movement of cells from the ganglionic eminence under the control of Emx1 and Emx2.  相似文献   

17.
Liu JX  Pinnock SB  Herbert J 《PloS one》2011,6(3):e17562
The dentate gyrus is a site of continued neurogenesis in the adult brain. The CA3 region of the hippocampus is the major projection area from the dentate gyrus. CA3 sends reciprocal projections back to the dentate gyrus. Does this imply that CA3 exerts some control over neurogenesis? We studied the effects of lesions of CA3 on neurogenesis in the dentate gyrus, and on the ability of fluoxetine to stimulate mitotic activity in the progenitor cells. Unilateral ibotenic-acid generated lesions were made in CA3. Four days later there was no change on the number of either BrdU or Ki67-positive progenitor cells in the dentate gyrus. However, after 15 or 28 days, there was a marked reduction in surviving BrdU-labelled cells on the lesioned side (but no change in Ki-67+ cells). pCREB or Wnt3a did not co-localise with Ki-67 but with NeuN, a marker of mature neurons. Lesions had no effect on the basal expression of either pCREB or Wnt3a. Subcutaneous fluoxetine (10 mg/kg/day) for 14 days increased the number of Ki67+ cells as expected on the control (non-lesioned) side but not on that with a CA3 lesion. Nevertheless, the expected increase in BDNF, pCREB and Wnt3a still occurred on the lesioned side following fluoxetine treatment. Fluoxetine has been reported to decrease the number of “mature” calbindin-positive cells in the dentate gyrus; we found this still occurred on the side of a CA3 lesion. We then showed that the expression GAP-43 was reduced in the dentate gyrus on the lesioned side, confirming the existence of a synaptic connection between CA3 and the dentate gyrus. These results show that CA3 has a hitherto unsuspected role in regulating neurogenesis in the dentate gyrus of the adult rat.  相似文献   

18.
To characterize the axonal projections of 5'-bromodeoxyuridine (BrdU)-labeled neurons, we have combined retrograde tracer injection of Fluoro-Gold with the immunocytochemical detection of BrdU. Pregnant mice were labeled with pulses of BrdU at embryonic days E12, E13, E14, or E16. Young adult offspring were perfused with 4% paraformaldehyde 2 days after receiving a Fluoro-Gold injection into the cerebral cortex, thalamus, or hippocampus. Brain sections were processed for immunocytochemical visualization of BrdU using the peroxidase-anti-peroxidase method and a diaminobenzidine-nickel ammonium sulfate (DAB-Ni) reaction, and finally observed on a microscope equipped with brightfield and fluorescence optics. Both BrdU-immunoreactive nuclei and retrogradely labeled Fluoro-Gold-positive cells were detected. Double-labeled neurons were recognized by the presence of fluorescent particles in the cytoplasm and a black immunoreactive nucleus. Since both labelings occurred in different cell compartments, Fluoro-Gold granules were not obscured by the DAB-Ni precipitate. The method shown here permits a correlation of the neurogenesis of subsets of neurons identified by their BrdU content with the specific target into which such cells project.  相似文献   

19.
Although brain development abnormalities and brain cancer predisposition have been reported in some Fanconi patients, the possible role of Fanconi DNA repair pathway during neurogenesis is unclear. We thus addressed the role of fanca and fancg, which are involved in the activation of Fanconi pathway, in neural stem and progenitor cells during brain development and adult neurogenesis. Fanca(-/-) and fancg(-/-) mice presented with microcephalies and a decreased neuronal production in developing cortex and adult brain. Apoptosis of embryonic neural progenitors, but not that of postmitotic neurons, was increased in the neocortex of fanca(-/-) and fancg(-/-) mice and was correlated with chromosomal instability. In adult Fanconi mice, we showed a reduced proliferation of neural progenitor cells related to apoptosis and accentuated neural stem cells exhaustion with ageing. In addition, embryonic and adult Fanconi neural stem cells showed a reduced capacity to self-renew in vitro. Our study demonstrates a critical role for Fanconi pathway in neural stem and progenitor cells during developmental and adult neurogenesis.  相似文献   

20.
We investigated the postnatal alterations of neurons, astrocyte, oligodendrocyte, and microglia in the mouse hippocampal CA1 sector and dentate gyrus under the same conditions using immunohistochemistry. Neuronal nuclei (NeuN), Glial fibrillary acidic protein (GFAP), 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), and ionized calcium binding adaptor molecule 1 (Iba 1) immunoreactivity were measured in 1-, 2-, 4-, and 8-week-old mice. Total number of NeuN-positive neurons was unchanged in the mouse hippocampal CA1 sector and dentate gyrus from 1 to 8 weeks of birth. In contrast, a significant increase in the number of GFAP-positive astrocytes was observed only in the hippocampal CA1 sector of 1-week-old mice when compared with 8-week-old animals. Thereafter, total number of GFAP-positive astrocytes was unchanged in the hippocampal CA1 sector and dentate gyrus from 2 to 8 weeks of birth. For microglia, a significant increase in the number of Iba 1-positive microglia was observed in the hippocampal CA1 sector and dentate gyrus of 1-, 2-, and 4-week-old mice as compared with 8-week-old animals. On the other hand, a significant decrease in the area of expression of CNPase-positive fibers was observed in the hippocampal CA1 sector of 1- and 2-week-old mice as compared with 8-week-old animals. In dentate gyrus, a significant decrease in the area of expression of CNPase-positive fibers was found in 1-, 2-, and 4-week-old mice. Furthermore, our double-labeled immunostaining showed that brain-derived neurotrophic factor (BDNF) immunoreactivity was observed in GFAP-positive astrocytes and Iba 1-positive microglia in the hippocampal CA1 sector and dentate gyrus of 1- and 2-week-old mice. These results show that glial cells may play some role in the maintenance and neuronal functions of hippocampal CA1 pyramidal neurons and granule cells of dentate gyrus during postnatal development. Furthermore, our results demonstrate that glial BDNF may play an important role in the maturation of oligodendrocyte in the hippocampal CA1 sector and dentate gyrus during postnatal development. Thus, our findings provide valuable information on the developmental processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号