首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca2+ concentration and release of diverse metabolites (e.g., NAD+ and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.  相似文献   

2.
《FEBS letters》2014,588(8):1372-1378
Connexin hemichannels are postulated to form a cell permeabilization pore for the uptake of fluorescent dyes and release of cellular ATP. Connexin hemichannel activity is enhanced by low external [Ca2+]o, membrane depolarization, metabolic inhibition, and some disease-causing gain-of-function connexin mutations. This paper briefly reviews the electrophysiological channel conductance, permeability, and pharmacology properties of connexin hemichannels, pannexin 1 channels, and purinergic P2X7 receptor channels as studied in exogenous expression systems including Xenopus oocytes and mammalian cell lines such as HEK293 cells. Overlapping pharmacological inhibitory and channel conductance and permeability profiles makes distinguishing between these channel types sometimes difficult. Selective pharmacology for Cx43 hemichannels (Gap19 peptide), probenecid or FD&C Blue #1 (Brilliant Blue FCF, BB FCF) for Panx1, and A740003, A438079, or oxidized ATP (oATP) for P2X7 channels may be the best way to distinguish between these three cell permeabilizing channel types. Endogenous connexin, pannexin, and P2X7 expression should be considered when performing exogenous cellular expression channel studies. Cell pair electrophysiological assays permit the relative assessment of the connexin hemichannel/gap junction channel ratio not often considered when performing isolated cell hemichannel studies.  相似文献   

3.
Pannexins, which contain three subtypes: pannexin‐1, ‐2, and ‐3, are vertebrate glycoproteins that form non‐junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
  相似文献   

4.
Pannexins, a class of membrane channels, bear significant sequence homology with the invertebrate gap junction proteins, innexins and more distant similarities in their membrane topologies and pharmacological sensitivities with the gap junction proteins, connexins. However, the functional role for the pannexin oligomers, or pannexons, is different from connexin oligomers, the connexons. Many pannexin publications have used the term "hemichannels" to describe pannexin oligomers while others use the term "channels" instead. This has led to confusion within the literature about the function of pannexins that promotes the idea that pannexons serve as gap junction hemichannels and thus have an assembly and functional state as gap junctional intercellular channels. Here we present the case that unlike the connexin gap junction intercellular channels, so far, pannexin oligomers have repeatedly been shown to be channels that are functional in single membranes, but not as intercellular channel in appositional membranes. Hence, they should be referred to as channels and not hemichannels. Thus, we advocate that in the absence of firm evidence that pannexins form gap junctions, the use of the term "hemichannel" be discontinued within the pannexin literature.  相似文献   

5.
ATP released from airway epithelial cells promotes purinergic receptor-regulated mucociliary clearance activities necessary for innate lung defense. Cell swelling-induced membrane stretch/strain is a common stimulus that promotes airway epithelial ATP release, but the mechanisms transducing cell swelling into ATP release are incompletely understood. Using knockdown and knockout approaches, we tested the hypothesis that pannexin 1 mediates ATP release from hypotonically swollen airway epithelia and investigated mechanisms regulating this activity. Well differentiated primary cultures of human bronchial epithelial cells subjected to hypotonic challenge exhibited enhanced ATP release, which was paralleled by the uptake of the pannexin probe propidium iodide. Both responses were reduced by pannexin 1 inhibitors and by knocking down pannexin 1. Importantly, hypotonicity-evoked ATP release from freshly excised tracheas and dye uptake in primary tracheal epithelial cells were impaired in pannexin 1 knockout mice. Hypotonicity-promoted ATP release and dye uptake in primary well differentiated human bronchial epithelial cells was accompanied by RhoA activation and myosin light chain phosphorylation and was reduced by the RhoA dominant negative mutant RhoA(T19N) and Rho and myosin light chain kinase inhibitors. ATP release and Rho activation were reduced by highly selective inhibitors of transient receptor potential vanilloid 4 (TRPV4). Lastly, knocking down TRPV4 impaired hypotonicity-evoked airway epithelial ATP release. Our data suggest that TRPV4 and Rho transduce cell membrane stretch/strain into pannexin 1-mediated ATP release in airway epithelia.  相似文献   

6.
The molecular identity of the protein forming "hemichannels" at non-junctional membranes is disputed. The family of gap junction proteins, innexins, connexins, and pannexins share several common features, including permeability characteristics and sensitivity to blocking agents. Such overlap in properties renders the identification of which of these protein species actually establishes the non-junctional membrane conductance and permeability quite complicated, especially because in vertebrates pannexins and connexins have largely overlapping distributions in tissues. Recently, attempts to establish criteria to identify events that are "hemichannel" mediated and those to allow the distinction between connexin- from pannexin-mediated events have been proposed. Here, I present an update on that topic and discuss the most recent findings related to the nature of functional "hemichannels" focusing on connexin43 and pannexin1. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

7.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

8.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1?/? mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1?/? mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

9.
In mammalian taste buds, ionotropic P2X receptors operate in gustatory nerve endings to mediate afferent inputs. Thus, ATP secretion represents a key aspect of taste transduction. Here, we characterized individual vallate taste cells electrophysiologically and assayed their secretion of ATP with a biosensor. Among electrophysiologically distinguishable taste cells, a population was found that released ATP in a manner that was Ca(2+) independent but voltage-dependent. Data from physiological and pharmacological experiments suggested that ATP was released from taste cells via specific channels, likely to be connexin or pannexin hemichannels. A small fraction of ATP-secreting taste cells responded to bitter compounds, indicating that they express taste receptors, their G-protein-coupled and downstream transduction elements. Single cell RT-PCR revealed that ATP-secreting taste cells expressed gustducin, TRPM5, PLCbeta2, multiple connexins and pannexin 1. Altogether, our data indicate that tastant-responsive taste cells release the neurotransmitter ATP via a non-exocytotic mechanism dependent upon the generation of an action potential.  相似文献   

10.
Connexins and pannexins are vertebrate transmembrane proteins that form hexameric conduits termed hemichannels. Functional hemichannels allow the diffusional transport of ions and small molecules across the plasma membrane and serve as paracrine and autocrine communication pathways. During the last decade, interest in the hemichannel field increased substantially. Today, there is evidence for the existence of connexin hemichannels in vertebrate cells and bulk of information supports their function in diverse physiological and pathological responses. Controversy regarding the molecular identity of the hemichannel type mediating many responses arose recently with the identification of pannexin-based hemichannels. Here, the authors describe the most frequently used methods for studying hemichannels in living mammalian cells and focus on those with which they have more experience. Although the available in vitro evidence is substantial, further studies and possibly new experimental approaches are required to understand the role and properties of connexin and pannexin hemichannels in vivo.  相似文献   

11.
Voltage Dependence of ATP Secretion in Mammalian Taste Cells   总被引:1,自引:0,他引:1       下载免费PDF全文
Mammalian type II taste cells release the afferent neurotransmitter adenosine triphosphate (ATP) through ATP-permeable ion channels, most likely to be connexin (Cx) and/or pannexin hemichannels. Here, we show that ion channels responsible for voltage-gated (VG) outward currents in type II cells are ATP permeable and demonstrate a strong correlation between the magnitude of the VG current and the intensity of ATP release. These findings suggest that slowly deactivating ion channels transporting the VG outward currents can also mediate ATP secretion in type II cells. In line with this inference, we studied a dependence of ATP secretion on membrane voltage with a cellular ATP sensor using different pulse protocols. These were designed on the basis of predictions of a model of voltage-dependent transient ATP efflux. Consistently with curves that were simulated for ATP release mediated by ATP-permeable channels deactivating slowly, the bell-like and Langmuir isotherm–like potential dependencies were characteristic of ATP secretion obtained for prolonged and short electrical stimulations of taste cells, respectively. These observations strongly support the idea that ATP is primarily released via slowly deactivating channels. Depolarizing voltage pulses produced negligible Ca2+ transients in the cytoplasm of cells releasing ATP, suggesting that ATP secretion is mainly governed by membrane voltage under our recording conditions. With the proviso that natural connexons and pannexons are kinetically similar to exogenously expressed hemichannels, our findings suggest that VG ATP release in type II cells is primarily mediated by Cx hemichannels.  相似文献   

12.
ATP and its degradation products play an important role as signaling molecules in the vascular system, and endothelial cells are considered to be an important source of nucleotide release. To investigate the mechanism and physiological significance of endothelial ATP release, we compared different pharmacological stimuli for their ability to evoke ATP release from first passage cultivated human umbilical vein endothelial cells (HUVECs). Agonists known to increase intracellular Ca(2+) levels (A23187, histamine, thrombin) induced a stable, non-lytic ATP release. Since thrombin proved to be the most robust and reproducible stimulus, the molecular mechanism of thrombin-mediated ATP release from HUVECs was further investigated. ATP rapidly increased with thrombin (1 U/ml) and reached a steady-state level after 4 min. Loading the cells with BAPTA-AM to capture intracellular calcium suppressed ATP release. The thrombin-specific, protease-activated receptor 1 (PAR-1)-specific agonist peptide TFLLRN (10 μM) fully mimicked thrombin action on ATP release. To identify the nature of the ATP-permeable pathway, we tested various inhibitors of potential ATP channels for their ability to inhibit the thrombin response. Carbenoxolone, an inhibitor of connexin hemichannels and pannexin channels, as well as Gd(3+) were highly effective in blocking the thrombin-mediated ATP release. Specifically targeting connexin43 (Cx43) and pannexin1 (Panx1) revealed that reducing Panx1 expression significantly reduced ATP release, while downregulating Cx43 was ineffective. Our study demonstrates that thrombin at physiological concentrations is a potent stimulus of endothelial ATP release involving PAR-1 receptor activation and intracellular calcium mobilization. ATP is released by a carbenoxolone- and Gd(3+)- sensitive pathway, most likely involving Panx1 channels.  相似文献   

13.
Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.  相似文献   

14.
The pannexin proteins represent a new gap junction family. However, the cellular functions of pannexins remain largely unknown. Here, we demonstrate that pannexin 3 (Panx3) promotes differentiation of osteoblasts and ex vivo growth of metatarsals. Panx3 expression was induced during osteogenic differentiation of C2C12 cells and primary calvarial cells, and suppression of this endogenous expression inhibited differentiation. Panx3 functioned as a unique Ca(2+) channel in the endoplasmic reticulum (ER), which was activated by purinergic receptor/phosphoinositide 3-kinase (PI3K)/Akt signaling, followed by activation of calmodulin signaling for differentiation. Panx3 also formed hemichannels that allowed release of ATP into the extracellular space and activation of purinergic receptors with the subsequent activation of PI3K-Akt signaling. Panx3 also formed gap junctions and propagated Ca(2+) waves between cells. Blocking the Panx3 Ca(2+) channel and gap junction activities inhibited osteoblast differentiation. Thus, Panx3 appears to be a new regulator that promotes osteoblast differentiation by functioning as an ER Ca(2+) channel and a hemichannel, and by forming gap junctions.  相似文献   

15.
Mammalian taste cells of the type II release ATP, an afferent neurotransmitter, by employing unselective ATP-permeable ion channels. The molecular identity of these channels is not known with confidence, although evidence implicates certain channel proteins from the connexin and pannexin families as most likely candidates. Here we carried out the comparative analysis of biophysical features and pharmacological profiles of unselective channels operative in type II cells and recombinant pannexin 1 (Panx1), which was cloned from the taste tissue and heterologously expressed in eukaryotic cells of several lines, including HEK-293, CHO, and neuroblastoma SK-N-SH. Integral currents mediated by Panx1 hemichannels were recorded to elucidate their kinetics characteristics, such as activation and deactivation, voltage dependence, and sensitivity to a variety of blockers, including carbenoxolone, DIDS, and NPPB. It was shown that the heterologous expression of Panx1 in cells of each type induced specific conductance, which exhibited outward rectification and was effectively blockable with carbenoxolone and anionic channel blockers DIDS and NPPB. Panx1 activity was studied at the single channel level as well. As was found, transfection of HEK-293 cells with the plasmid harboring cDNA encoding Panx1 gave rise to single channel current-like events in excised patches that were inhibited by 20 μM carbenoxolone, the relatively specific blocker of Panx1. These carbenoxolone-sensitive channels were peculiar in that single-channel current versus membrane voltage was not linear but exhibited outward rectification. In addition, the open-channel probability strongly increased with membrane voltage. Taken together, the data obtained here and earlier demonstrate clearly that by their biophysical and pharmacological features, ATP-permeable channels operative in type II cells are rather distinct from recombinant Panx1 hemichannels, thus arguing against Panx1 as the main conduit of ATP release in taste cells.  相似文献   

16.
Jiang  Jean X.  Penuela  Silvia 《BMC cell biology》2016,17(1):105-120

Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.

  相似文献   

17.
ATP release by nonpigmented (NPE) and pigmented (PE) ciliary epithelial cells is the enabling step in purinergic regulation of aqueous humor formation, but the release pathways are unknown. We measured ATP release from primary cultures of bovine mixed NPE and PE (bCE) cells and transformed bovine NPE and PE cells, using the luciferin-luciferase reaction. Hypotonicity-triggered bCE ATP release was inhibited by the relatively selective blocker of pannexin-1 (PX1) hemichannels (probenecid, 1 mM, 47 ± 2%), by a connexin inhibitor (heptanol, 1 mM, 49 ± 4%), and by an inhibitor of vesicular release (bafilomycin A1, 25 ± 2%), but not by the P2X(7) receptor (P2RX(7)) antagonist KN-62. Bafilomycin A1 acts by reducing the driving force for uptake of ATP from the cytosol into vesicles. The reducing agent dithiothreitol reduced probenecid-blockable ATP release. Similar results were obtained with NPE and PE cell lines. Pannexins PX1-3, connexins Cx43 and Cx40, and P2RX(7) were identified in native cells and cell lines by RT-PCR. PX1 mRNA expression was confirmed by Northern blots; its quantitative expression was comparable to that of Cx43 by real-time PCR. Heterologous expression of bovine PX1 in HEK293T cells enhanced swelling-activated ATP release, inhibitable by probenecid. We conclude that P2RX(7)-independent PX1 hemichannels, Cx hemichannels, and vesicular release contribute comparably to swelling-triggered ATP release. The relatively large response to dithiothreitol raises the possibility that the oxidation-reduction state is a substantial regulator of PX1-mediated ATP release from bovine ciliary epithelial cells.  相似文献   

18.
Pannexin 1 forms a large membrane channel that, based on its biophysical properties and its expression pattern, is a prime candidate to represent an ATP release channel. Pannexin 1 channel activity is potentially deleterious for cells as indicated by its involvement in the P2X7 death complex. Here we describe a negative feedback loop controlling pannexin 1 channel activity. ATP, permeant to pannexin 1 channels, was found to inhibit its permeation pathway when applied extracellularly to oocytes expressing pannexin 1 exogenously. ATP analogues, including benzoylbenzoyl-ATP, suramin, and brilliant blue G were even more effective inhibitors of pannexin 1 currents than ATP. These compounds also attenuated the uptake of dyes by erythrocytes, which express pannexin 1. The rank order of the compounds in attenuation of pannexin 1 currents was similar to their binding affinities to the P2X7 receptor, except that receptor agonists and antagonists both were inhibitory to the channel. Mutational analysis identified R75 in pannexin 1 to be critical for ATP inhibition of pannexin 1 currents.  相似文献   

19.
Astroglial release of molecules is thought to actively modulate neuronal activity, but the nature, release pathway, and cellular targets of these neuroactive molecules are still unclear. Pannexin 1, expressed by neurons and astrocytes, form nonselective large pore channels that mediate extracellular exchange of molecules. The functional relevance of these channels has been mostly studied in brain tissues, without considering their specific role in different cell types, or in neurons. Thus, our knowledge of astroglial pannexin 1 regulation and its control of neuronal activity remains very limited, largely due to the lack of tools targeting these channels in a cell-specific way. We here show that astroglial pannexin 1 expression in mice is developmentally regulated and that its activation is activity-dependent. Using astrocyte-specific molecular tools, we found that astroglial-specific pannexin 1 channel activation, in contrast to pannexin 1 activation in all cell types, selectively and negatively regulates hippocampal networks, with their disruption inducing a drastic switch from bursts to paroxysmal activity. This decrease in neuronal excitability occurs via an unconventional astroglial mechanism whereby pannexin 1 channel activity drives purinergic signaling-mediated regulation of hyperpolarisation-activated cyclic nucleotide (HCN)-gated channels. Our findings suggest that astroglial pannexin 1 channel activation serves as a negative feedback mechanism crucial for the inhibition of hippocampal neuronal networks.

Astrocytes have mostly been shown to boost neuronal activity. This study reveals that activity-dependent activation of astroglial pannexin 1 channels inhibits hippocampal neuronal networks by decreasing neuronal excitability via purinergic signaling, uncovering a novel astroglial negative feedback loop mechanism.  相似文献   

20.
Our guiding hypothesis is that ecto-enzymatic conversion of extracellular ATP to adenosine activates A(1) adenosine receptors, reducing resistance to aqueous humor outflow and intraocular pressure. The initial step in this purinergic regulation is ATP release from outflow-pathway cells by mechanisms unknown. We measured similar ATP release from human explant-derived primary trabecular meshwork (TM) cells (HTM) and a human TM cell line (TM5). Responses to 21 inhibitors indicated that pannexin-1 (PX1) and connexin (Cx) hemichannels and P2X(7) receptors (P2RX(7) ) were comparably important in modulating ATP release induced by hypotonic swelling, whereas vesicular release was insignificant. Consistent with prior studies of PX1 activity in certain other cells, ATP release was lowered by the reducing agent dithiothreitol. Overexpressing PX1 in HEK293T cells promoted, while partial knockdown (KD) in both HEK293T and TM5 cells inhibited hypotonicity-activated ATP release. Additionally, KD reduced the pharmacologically defined contribution of PX1 and enhanced those of Cx and P2RX(7) . ATP release was also triggered by raising intracellular Ca(2+) activity with ionomycin after a prolonged lag time and was unaffected by the PX1 blocker probenecid, but nearly abolished by P2RX(7) antagonists. We conclude that swelling-stimulated ATP release from human TM cells is physiologically mediated by PX1 and Cx hemichannels and P2X(7) receptors, but not by vesicular release. PX1 appears not to be stimulated by intracellular Ca(2+) in TM cells, but can be modulated by oxidation-reduction state. The P2RX(7) -dependent component of swelling-activated release may be mediated by PX1 hemichannels or reflect apoptotic magnification of ATP release, either through itself and/or hemichannels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号