首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate the mode of action of dominant mutant connexins in causing inherited skin diseases, transgenic mice were produced that express the true Vohwinkel syndrome-associated mutant Cx26 (D66H), from a keratin 10 promoter, specifically in the suprabasal epidermal keratinocytes. Following birth, the transgenic mice developed keratoderma similar to that of human carriers of Cx26 (D66H). Expression of the transgene resulted in a loss of Cx26 and Cx30 at intercellular junctions of epidermal keratinocytes and accumulation of these connexins in the cytoplasm. Injection of primary mouse keratinocytes with Lucifer Yellow showed no difference in terms of dye spreading between transgenic and non transgenic keratinocytes in vitro. Expression of the mutant Cx26 (D66H) did not interfere with the formation of the epidermal water barrier during late embryonic development. Attempts to produce transgenic mice expressing the wild type form of Cx26 from the K10 promoter failed to produce viable animals although transgenic embryos were recovered at days 9 and 12 of gestation, suggesting that the transgene might be embryonic lethal.  相似文献   

2.
Voltage-gated potassium channels are proteins composed of four subunits consisting of six membrane-spanning segments S1-S6, with S4 as the voltage sensor. The region between S5 and S6 forms the potassium-selective ion-conducting central α-pore. Recent studies showed that mutations in the voltage sensor of the Shaker channel could disclose another ion permeation pathway through the voltage-sensing domain (S1-S4) of the channel, the ω-pore. In our studies we used the voltage-gated hKv1.3 channel, and the insertion of a cysteine at position V388C (Shaker position 438) generated a current through the α-pore in high potassium outside and an inward current at hyperpolarizing potentials carried by different cations like Na(+), Li(+), Cs(+), and NH(4)(+). The observed inward current looked similar to the ω-current described for the R1C/S Shaker mutant channel and was not affected by some pore blockers like charybdotoxin and tetraethylammonium but was inhibited by a phenylalkylamine blocker (verapamil) that acts from the intracellular side. Therefore, we hypothesize that the hKv1.3_V388C mutation in the P-region generated a channel with two ion-conducting pathways. One, the α-pore allowing K(+) flux in the presence of K(+), and the second pathway, the σ-pore, functionally similar but physically distinct from the ω-pathway. The entry of this new pathway (σ-pore) is presumably located at the backside of Y395 (Shaker position 445), proceeds parallel to the α-pore in the S6-S6 interface gap, ending between S5 and S6 at the intracellular side of one α-subunit, and is blocked by verapamil.  相似文献   

3.
NMR spectroscopy is used to compare the structure of the EGF-like domain of heregulin-alpha and HT1, a mutated form of heregulin-alpha with significantly reduced activity. HT1 is a chimeric protein that has the first seven residues of transforming growth factor-alpha and the sequence of heregulin-alpha from the first cysteine through the next 58 residues. The results demonstrate that both proteins share the same fold, including the triple stranded beta-sheet formed by the N-terminus and the B-loop. Analysis of the chemical shifts indicates that there are perturbations to the side chain packing of the beta-sheet. The observed changes in the chemical shifts show an interesting correspondence to the results from the homologue scan presented in the previous paper. These results indicate that the binding epitope for the native receptor extends across the beta-sheet and includes residues Leu179, Lys181, Leu209, and Lys211.  相似文献   

4.
The crystal structure of a deletion mutant of tyrosyl-tRNA synthetase from Bacillus stearothermophilus has been determined at 2.5 A resolution using molecular replacement techniques. The genetically engineered molecule catalyses the activation of tyrosine with kinetic properties similar to those of the wild-type enzyme but no longer binds tRNATyr. It contains 319 residues corresponding to the region of the polypeptide chain for which interpretable electron density is present in crystals of the wild-type enzyme. The partly refined model of the wild-type enzyme was used as a starting point in determining the structure of the truncated mutant. The new crystals are of space group P2(1) and contain the molecular dimer within the asymmetric unit. The refined model has a crystallographic R-factor of 18.7% for all reflections between 8 and 2.5 A. Each subunit contains two structural domains: the alpha/beta domain (residues 1 to 220) containing a six-stranded beta-sheet and the alpha-helical domain (residues 248 to 319) containing five helices. The alpha/beta domains are related by a non-crystallographic dyad while the alpha-helical domains are in slightly different orientations in the two subunits. The tyrosine substrate binds in a slot at the bottom of a deep active site cleft in the middle of the alpha/beta domain. It is surrounded by polar side-chains and water molecules that are involved in an intricate hydrogen bonding network. Both the alpha-amino and hydroxyl groups of the substrate make good hydrogen bonds with the protein. The amino group forms hydrogen bonds with Tyr169-OH, Asp78-OD1 and Gln173-OE1. The phenolic hydroxyl group forms hydrogen bonds with Asp76-OD1 and Tyr34-OH. In contrast, the substrate carboxyl group makes no direct interactions with the enzyme. The results of both substrate inhibition studies and site-directed mutagenesis experiments have been examined in the light of the refined structure.  相似文献   

5.
The mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels. In that work, the smallest probe permeable through homomeric Cx26 and heteromeric Cx26-Cx32 channels was the PA-disaccharide, and the smallest probe permeable through homomeric Cx32 channels was the PA-trisaccharide. The larger impermeable probes did not block permeation of the smaller probes. Building on this work, a new set of glucosaccharide probes was developed in which the label was one of a homologous series of novel anthranilic acid derivatives (ABG) that carry negative or positive formal charge or remain neutral at physiological pH. When the PA-label of the smallest impermeant PA-derivatized oligosaccharides was replaced by ABG label, the resulting probes acted as reversible, high-affinity inhibitors of large molecule permeation through connexin pores in a size and connexin-specific manner.  相似文献   

6.
Connexins are the protein subunits of gap junction channels that allow a direct signaling pathway between networks of cells. The specific role of connexin channels in the homeostasis of different organs has been validated by the association of mutations in several human connexins with a variety of genetic diseases. Several connexins are present in the mammalian cochlea and at least four of them have been proposed as genes causing sensorineural hearing loss. We have started our functional analysis by selecting nine mutations in Cx26 that are associated with non-syndromic recessive deafness (DFNB1). We have observed that both human Cx26 wild-type (HCx26wt) and the F83L polymorphism, found in unaffected controls, generated electrical conductance between paired Xenopus oocytes, which was several orders of magnitude greater than that measured in water-injected controls. In contrast, most recessive Cx26 mutations (identified in DFNB1 patients) resulted in a simple loss of channel activity. In addition, the V37I mutation, originally identified as a polymorphism in heterozygous unaffected individuals, was devoid of function and thus may be pathologically significant. Unexpectedly, we have found that the recessive mutation V84L retained functional activity in both paired Xenopus oocytes and transfected HeLa cells. Furthermore, both the magnitude of macroscopic junctional conductance and its voltage-gating properties were indistinguishable from those of HCx26wt. The identification of functional differences of disease causing mutations may lead to define which permeation or gating properties of Cx26 are necessary for normal auditory function in humans and will be instrumental in identifying the molecular steps leading to DFNB1.  相似文献   

7.
We previously used electron cryo-crystallography to determine the three-dimensional structure of recombinant gap junction channels formed by a C-terminal truncation mutant of Cx43 (11). The dodecameric channel is formed by the end-to-end docking of two hexameric connexons, each comprised of 24 transmembrane alpha-helices. We have now generated two-dimensional crystals of the recombinant, full-length channel, as well as crystals in which the C-tail has been completely removed by trypsin digestion. Projection density maps at 7.5 A resolution closely resemble our previous analysis of the C-terminal truncation mutant (9). A difference map between the full length and trypsin-treated channels suggests that there are small but significant shifts in protein density upon removal of the C-tail.  相似文献   

8.
The FMRF-amide-activated sodium channel (FaNaC), a member of the ENaC/Degenerin family, is a homotetramer, each subunit containing two transmembrane segments. We changed independently every residue of the first transmembrane segment (TM1) into a cysteine and tested each position's accessibility to the cysteine covalent reagents MTSET and MTSES. Eleven mutants were accessible to the cationic MTSET, showing that TM1 faces the ion translocation pathway. This was confirmed by the accessibility of cysteines present in the acid-sensing ion channels and other mutations introduced in FaNaC TM1. Modification of accessibilities for positions 69, 71 and 72 in the open state shows that the gating mechanism consists of the opening of a constriction close to the intracellular side. The anionic MTSES did not penetrate into the channel, indicating the presence of a charge selectivity filter in the outer vestibule. Furthermore, amiloride inhibition resulted in the channel occlusion in the middle of the pore. Summarizing, the ionic pore of FaNaC includes a large aqueous cavity, with a charge selectivity filter in the outer vestibule and the gate close to the interior.  相似文献   

9.
The small conductance calcium-activated K+ channel gene SKCa3/KCNN3 maps to 1q21, a region strongly linked to schizophrenia. Recently, a 4-base pair deletion in SKCa3 was reported in a patient with schizophrenia, which truncates the protein at the end of the N-terminal cytoplasmic region (SKCa3Delta). We generated a green fluorescent protein-SKCa3 N-terminal construct (SKCa3-1/285) that is identical to SKCa3Delta except for the last two residues. Using confocal microscopy we demonstrate that SKCa3-1/285 localizes rapidly and exclusively to the nucleus of mammalian cells like several other pathogenic polyglutamine-containing proteins. This nuclear targeting is mediated in part by two polybasic sequences present at the C-terminal end of SKCa3-1/285. In contrast, full-length SKCa3, SKCa2, and IKCa1 polypeptides are all excluded from the nucleus and express as functional channels. When overexpressed in human Jurkat T cells, SKCa3-1/285 can suppress endogenous SKCa2 currents but not voltage-gated K+ currents. This dominant-negative suppression is most likely mediated through the co-assembly of SKCa3-1/285 with native subunits and the formation of non-functional tetramers. The nuclear localization of SKCa3-1/285 may alter neuronal architecture, and its ability to dominantly suppress endogenous small conductance K(Ca) currents may affect patterns of neuronal firing. Together, these two effects may play a part in the pathogenesis of schizophrenia and other neuropsychiatric disorders.  相似文献   

10.
Of the gap junction proteins characterized to date, Cx26 is unique in that it is usually expressed in conjunction with other members of the family, typically Cx32 (liver [Nicholson et al., Nature 329:732–734, 1987], pancreas, kidney, and stomach [J.-T. Zhang, B.J. Nicholson, J. Cell Biol. 109:3391–3410, 1989]), or Cx43 (leptomeninges [D.C. Spray et al., Brain Res. 568:1–14, 1991] and pineal gland [J.C. Sáez et al., Brain Res. 568:265–275,1991]). We have used specific antisera both to investigate the distribution of Cx32 and Cx26 in isolated liver gap junctions, and empirically establish the topological model of Cx26 suggested by its sequence and analogy to other connexins. Antipeptide antisera were prepared to four of the five hydrophilic domains which flank the four putative transmembrane spanning regions of Cx26. Antibodies to N-terminal residues 1–17 (αCx26-N), to residues 101–119 in the putative cytoplasmic loop (αCx26-CL), and to C-terminal residues 210–226 (αCx26-C) were all specific for Cx26. An antibody to residues 166–185 between hydrophobic domains 3 and 4 of Cx32 had affinity for both Cx26 and Cx32 (αCx32/26-E2). The antigenic sites Cx26-N, -CL and -C were each demonstrated to be cytoplasmically disposed, although the latter was conformationally hidden prior to partial proteolysis. The antigenic site for αCx32/26-E2 was only accessible after exposure of the extracellular face by separation of the junctional membranes in 8 m urea, pH 12.3. This treatment also served to reveal the region between residues 45 and 66 to Asp-N protease. The topology thus demonstrated for Cx26 is consistent with that deduced for other connexins (i.e., Cx32 and Cx43). Comparison of immunogold decorated gap junctions reacted with antibodies specific to Cx26 (αCx26-N and -CL), or to Cx32 [αCx32-CL], indicates that these connexins do not aggregate in subdomains within a junction, at least within the resolution provided by the labeling density (one antibody per 15–22 connexons). Although the presence of both connexins within a single channel could not be distinguished, possible interactions between channels is discussed.  相似文献   

11.
Using single particle electron cryomicroscopy, several helices in the membrane-spanning region of RyR1, including an inner transmembrane helix, a short pore helix, and a helix parallel to the membrane on the cytoplasmic side, have been clearly resolved. Our model places a highly conserved glycine (G4934) at the hinge position of the bent inner helix and two rings of negative charges at the luminal and cytoplasmic mouths of the pore. The kinked inner helix closely resembles the inner helix of the open MthK channel, suggesting that kinking alone does not open RyR1, as proposed for K+ channels.  相似文献   

12.
Genetic deficiency of Cx43 in vivo causes skeletal developmental defects, osteoblast dysfunction and perinatal lethality. To determine the role of Cx43 in the adult skeleton, we developed two models of osteoblast-specific Cx43 gene deletion using Cre mediated replacement of a "floxed" Cx43 allele with a LacZ reporter gene. Cre recombinase expression in osteoblasts was driven by either the osteocalcin OG2 promoter or the 2.3 kb fragment of the Colalpha1(I) promoter. Homozygous Cx43(fl/fl) mice, in which the Cx43 coding region is flanked by two loxP sites, were crossed with Cre expressing mice in a heterozygous Cx43-null background [Cx43(+/-); Colalpha1(I)-Cre or Cx43(+/-); OG2-Cre]. Cx43 gene ablation was demonstrated in tissues by selective X-gal staining of cells lining the endosteal surface, and in cultured osteoblastic cells from calvaria using different approaches. Although no LacZ expression was observed in proliferating calvaria cells, before osteoblast differentiation begins, post-proliferative cells isolated from conditional knockout mice [Cx43(fl/-); Colalpha1(I)-Cre or Cx43(fl/-); OG2-Cre] developed strong LacZ expression as they differentiated, in parallel to a progressive disappearance of Cx43 mRNA and protein abundance relative to controls. Selective Cre mediated Cx43 gene inactivation in bone forming cells will be useful to determine the role of Cx43 in adult skeletal homeostasis and overcome the perinatal lethality of the conventional null model.  相似文献   

13.
There is a need to develop rice plants with improved photosynthetic capacity and efficiency in order to enhance potential grain yield. Alterations in internal leaf morphology may be needed to underpin some of these improvements. One target is the production of a 'Kranz-like' anatomy, commonly considered to be required to achieve the desired levels of photosynthesis seen in C(4) crops. Kranz anatomy typically has two or three mesophyll cells interspersing adjacent veins. As a first step to determining the potential for such anatomical modifications in rice leaves, a population of rice deletion mutants was analysed for alterations in vein patterning and mesophyll cells in the interveinal regions. Significant variation is demonstrated in vein arrangement and the sequential distribution of major and minor veins across the leaf width, although there is a significant correlation between the total number of veins present and the width of the leaf. Thus the potential is demonstrated for modifying rice leaf structure. Six distinct rice mutant lines, termed altered leaf morphology (alm) mutants, were analysed for the architecture of their interveinal mesophyll cell arrangement. It is shown that in these mutant lines, the distance between adjacent minor veins and adjacent minor and major veins is essentially determined by the size of the interveinal mesophyll cells rather than changes in mesophyll cell number across this region, and hence interveinal distance changes as a result of cell expansion rather than cell division. This observation will be important when developing screens for traits relevant for the introduction of Kranz anatomy into rice. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details).  相似文献   

14.
15.
The most important entity of the selective behavior of the nuclear pore complex (NPC) is considered to be the matter called "barrier," "meshwork" or "sieve." This part of NPC has not been well elucidated by using electron microscopy methods to date. In the present study, we demonstrated the presence of a coherent transversal barrier in the central channel of NPC, using high resolution transmission electron microscopy. It was found that the barrier is located in the middle of the central channel, i.e. at the level where the outer and inner nuclear membranes fuse. The thickness of this layer is evidently different in various NPCs and usually varies between 20 and 30 nm and its diameter is approximately 40 nm. The cytoplasmic and nuclear surfaces of the barrier are roughly parallel and plane. Moreover we suggest that the barrier may not be interrupted by any channel(s), at least not with a diameter above 10 nm. Further various appearances of the central channel with different particles were observed, presumably cargos and karyopherins captured in transit. A different type of central channel barrier with lipid bilayer membrane-like appearance is also discussed.  相似文献   

16.
17.
The Ca2+ permeability properties of an N-methyl-D-aspartate (NMDA) channel pore mutant (NR1E603K-NR2A) were studied using whole-cell patch-clamp recordings in human embryonic kidney cells. Measurements of reversal potential shifts indicated that the relative permeability of Ca2+ over monovalent ions, P(Ca)/P(M), was 1.6, a value reduced by a factor of approximately 2 with respect to the wild-type channel. The ratio of Ca2+ current over total current (fractional Ca2+ current), however, was 19.7 +/- 1% at -50 mV and 2 mM external Ca2+ concentration, a value similar to that of the wild-type channel, but 2.3-fold larger than that predicted by simple permeation models for the corresponding P(Ca)/P(M) value. The deviation from predicted values gradually disappeared with membrane depolarization. Similar results were obtained for two cysteine mutations at asparagine residues of the NR1 and NR2A subunits. When interpreted in terms of a two-barrier one-site model for ion permeation, the results indicate that changes in the relative Ca2+ permeability occur close to an internal energy barrier limiting ion permeation.  相似文献   

18.
Protein kinase CK2 (formerly called: casein kinase 2) is a heterotetrameric enzyme composed of two separate catalytic chains (CK2alpha) and a stable dimer of two non-catalytic subunits (CK2beta). CK2alpha is a highly conserved member of the superfamily of eukaryotic protein kinases. The crystal structure of a C-terminal deletion mutant of human CK2alpha was solved and refined to 2.5A resolution. In the crystal the CK2alpha mutant exists as a monomer in agreement with the organization of the subunits in the CK2 holoenzyme. The refined structure shows the helix alphaC and the activation segment, two main regions of conformational plasticity and regulatory importance in eukaryotic protein kinases, in active conformations stabilized by extensive contacts to the N-terminal segment. This arrangement is in accordance with the constitutive activity of the enzyme. By structural superimposition of human CK2alpha in isolated form and embedded in the human CK2 holoenzyme the loop connecting the strands beta4 and beta5 and the ATP-binding loop were identified as elements of structural variability. This structural comparison suggests that the ATP-binding loop may be the key region by which the non-catalytic CK2beta dimer modulates the activity of CK2alpha. The beta4/beta5 loop was found in a closed conformation in contrast to the open conformation observed for the CK2alpha subunits of the CK2 holoenzyme. CK2alpha monomers with this closed beta4/beta5 loop conformation are unable to bind CK2beta dimers in the common way for sterical reasons, suggesting a mechanism to protect CK2alpha from integration into CK2 holoenzyme complexes. This observation is consistent with the growing evidence that CK2alpha monomers and CK2beta dimers can exist in vivo independently from the CK2 holoenzyme and may possess physiological roles of their own.  相似文献   

19.
Cx26 has been implicated in dominant (DFNA3) and recessive (DFNB1) forms of nonsyndromic sensorineural deafness. While most homozygous DFNB1 Cx26 mutations result in a simple loss of channel activity, it is less clear how heterozygous mutations in Cx26 linked to DFNA3 cause hearing loss. We have tested the ability of one dominant mutation (W44C) to interfere with wild-type human Cx26 (HCx26wt). HCx26wt induced robust electrical conductance between paired oocytes, and facilitated dye transfer between transfected HeLa cells. In contrast, oocyte pairs injected with only W44C were not electrically coupled above background levels, and W44C failed to dye couple transfected HeLa cells. Moreover, W44C dramatically inhibited intercellular conductance of HCx26wt when co-expressed in an equal ratio, and the low levels of residual conductance displayed altered gating properties. A nonfunctional recessive mutation (W77R) did not inhibit the ability of HCx26wt to form functional channels when co-injected in the same oocyte pairs, nor did it alter HCx26wt gating. These results provide evidence for a functional dominant negative effect of the W44C mutant on HCx26wt and explain how heterozygous Cx26 mutations could contribute to autosomal dominant deafness, by resulting in a net loss, and/or alteration, of Cx26 function.  相似文献   

20.
《Cell》2021,184(20):5151-5162.e11
  1. Download : Download high-res image (216KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号