首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 533 毫秒
1.
Drought induces stomatal closure, a response that is associated with the activation of plasma membrane anion channels in guard cells, by the phytohormone abscisic acid (ABA). In several species, this response is associated with changes in the cytoplasmic free Ca(2+) concentration. In Vicia faba, however, guard cell anion channels activate in a Ca(2+)-independent manner. Because of potential differences between species, Nicotiana tabacum guard cells were studied in intact plants, with simultaneous recordings of the plasma membrane conductance and the cytoplasmic free Ca(2+) concentration. ABA triggered transient rises in cytoplasmic Ca(2+) in the majority of the guard cells (14 out of 19). In seven out of 14 guard cells, the change in cytoplasmic free Ca(2+) closely matched the activation of anion channels, while the Ca(2+) rise was delayed in seven other cells. In the remaining five cells, ABA stimulated anion channels without a change in the cytoplasmic Ca(2+) level. Even though ABA could activate anion channels in N. tabacum guard cells independent of a rise in the cytoplasmic Ca(2+) concentration, patch clamp experiments showed that anion channels in these cells are stimulated by elevated Ca(2+) in an ATP-dependent manner. Guard cells thus seem to have evolved both Ca(2+)-independent and -dependent ABA signaling pathways. Guard cells of N. tabacum apparently utilize both pathways, while ABA signaling in V. faba seems to be restricted to the Ca(2+)-independent pathway.  相似文献   

2.
Zhang W  Fan LM  Wu WH 《Plant physiology》2007,143(3):1140-1151
In responses to a number of environmental stimuli, changes of cytoplasmic [Ca(2+)](cyt) in stomatal guard cells play important roles in regulation of stomatal movements. In this study, the osmo-sensitive and stretch-activated (SA) Ca(2+) channels in the plasma membrane of Vicia faba guard cells are identified, and their regulation by osmotic changes and actin dynamics are characterized. The identified Ca(2+) channels were activated under hypotonic conditions at both whole-cell and single-channel levels. The channels were also activated by a stretch force directly applied to the membrane patches. The channel-mediated inward currents observed under hypotonic conditions or in the presence of a stretch force were blocked by the Ca(2+) channel inhibitor Gd(3+). Disruption of actin filaments activated SA Ca(2+) channels, whereas stabilization of actin filaments blocked the channel activation induced by stretch or hypotonic treatment, indicating that actin dynamics may mediate the stretch activation of these channels. In addition, [Ca(2+)](cyt) imaging demonstrated that both the hypotonic treatment and disruption of actin filaments induced significant Ca(2+) elevation in guard cell protoplasts, which is consistent with our electrophysiological results. It is concluded that stomatal guard cells may utilize SA Ca(2+) channels as osmo sensors, by which swelling of guard cells causes elevation of [Ca(2+)](cyt) and consequently inhibits overswelling of guard cells. This SA Ca(2+) channel-mediated negative feedback mechanism may coordinate with previously hypothesized positive feedback mechanisms and regulate stomatal movement in response to environmental changes.  相似文献   

3.
Stomatal guard cells control CO(2) uptake and water loss between plants and the atmosphere. Stomatal closure in response to the drought stress hormone, abscisic acid (ABA), results from anion and K(+) release from guard cells. Previous studies have shown that cytosolic Ca(2+) elevation and ABA activate S-type anion channels in the plasma membrane of guard cells, leading to stomatal closure. However, membrane-bound regulators of abscisic acid signaling and guard cell anion channels remain unknown. Here we show that the ATP binding cassette (ABC) protein AtMRP5 is localized to the plasma membrane. Mutation in the AtMRP5 ABC protein impairs abscisic acid and cytosolic Ca(2+) activation of slow (S-type) anion channels in the plasma membrane of guard cells. Interestingly, atmrp5 insertion mutant guard cells also show impairment in abscisic acid activation of Ca(2+)-permeable channel currents in the plasma membrane of guard cells. These data provide evidence that the AtMRP5 ABC transporter is a central regulator of guard cell ion channel during abscisic acid and Ca(2+) signal transduction in guard cells.  相似文献   

4.
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are important signalling agents in both animals and plants. In plants, G proteins modulate numerous responses, including abscisic acid (ABA) and pathogen-associated molecular pattern (PAMP) regulation of guard cell ion channels and stomatal apertures. Previous analyses of mutants deficient in the sole canonical Arabidopsis Gα subunit, GPA1, have shown that Gα-deficient guard cells are impaired in ABA inhibition of K(+) influx channels, and in pH-independent activation of anion efflux channels. ABA-induced Ca(2+) uptake through ROS-activated Ca(2+)-permeable channels in the plasma membrane is another key component of ABA signal transduction in guard cells, but the question of whether these channels are also dependent on Gα for their ABA response has not been evaluated previously. We used two independent Arabidopsis T-DNA null mutant lines, gpa1-3 and gpa1-4, to investigate this issue. We observed that gpa1 mutants are disrupted both in ABA-induced Ca(2+)-channel activation, and in production of reactive oxygen species (ROS) in response to ABA. However, in response to exogenous H(2)O(2) application, I(Ca) channels are activated normally in gpa1 guard cells. In addition, H(2)O(2) inhibition of stomatal opening and promotion of stomatal closure are not disrupted in gpa1 mutant guard cells. These data indicate that absence of GPA1 interrupts ABA signalling between ABA reception and ROS production, with a consequent impairment in Ca(2+)-channel activation.  相似文献   

5.
Two novel approaches for the study of Ca2+-mediated signal transduction in stomatal guard cells are described. Stimulus-induced changes in guard-cell cytosolic Ca2+ ([Ca2+]cyt) were monitored using viable stomata in epidermal strips of a transgenic line of Nicotiana plumbaginifolia expressing aequorin (the proteinous luminescent reporter of Ca2+) and in a new transgenic line in which aequorin expression was targeted specifically to the guard cells. The results indicated that abscisic acid (ABA)-induced stomatal closure was accompanied by increases in [Ca2+]cyt in epidermal strips. In addition to ABA, mechanical and low-temperature signals directly affected stomatal behaviour, promoting rapid closure. Elevations of guard-cell [Ca2+]cyt play a key role in the transduction of all three stimuli. However, there were striking differences in the magnitude and kinetics of the three responses. Studies using Ca2+ channel blockers and the Ca2+ chelator EGTA further suggested that mechanical and ABA signals primarily mobilize Ca2+ from intracellular store(s), whereas the influx of extracellular Ca2+ is a key component in the transduction of low-temperature signals. These results illustrate an aspect of Ca2+ signalling whereby the specificity of the response is encoded by different spatial or kinetic Ca2+ elevations.  相似文献   

6.
The stomatal complex of Zea mays is composed of two pore-forming guard cells and two adjacent subsidiary cells. For stomatal movement, potassium ions and anions are thought to shuttle between these two cell types. As potential cation transport pathways, K(+)-selective channels have already been identified and characterized in subsidiary cells and guard cells. However, so far the nature and regulation of anion channels in these cell types have remained unclear. In order to bridge this gap, we performed patch-clamp experiments with subsidiary cell and guard cell protoplasts. Voltage-independent anion channels were identified in both cell types which, surprisingly, exhibited different, cell-type specific dependencies on cytosolic Ca(2+) and pH. After impaling subsidiary cells of intact maize plants with microelectrodes and loading with BCECF [(2',7'-bis-(2-carboxyethyl)-5(and6)carboxyflurescein] as a fluorescent pH indicator, the regulation of ion channels by the cytosolic pH and the membrane voltage was further examined. Stomatal closure was found to be accompanied by an initial hyperpolarization and cytosolic acidification of subsidiary cells, while opposite responses were observed during stomatal opening. Our findings suggest that specific changes in membrane potential and cytosolic pH are likely to play a role in determining the direction and capacity of ion transport in subsidiary cells.  相似文献   

7.
In artery smooth muscle, adenylyl cyclase-coupled receptors such as beta-adrenoceptors evoke Ca(2+) signals, which open Ca(2+)-activated potassium (BK(Ca)) channels in the plasma membrane. Thus, blood pressure may be lowered, in part, through vasodilation due to membrane hyperpolarization. The Ca(2+) signal is evoked via ryanodine receptors (RyRs) in sarcoplasmic reticulum proximal to the plasma membrane. We show here that cyclic adenosine diphosphate-ribose (cADPR), by activating RyRs, mediates, in part, hyperpolarization and vasodilation by beta-adrenoceptors. Thus, intracellular dialysis of cADPR increased the cytoplasmic Ca(2+) concentration proximal to the plasma membrane in isolated arterial smooth muscle cells and induced a concomitant membrane hyperpolarization. Smooth muscle hyperpolarization mediated by cADPR, by beta-adrenoceptors, and by cAMP, respectively, was abolished by chelating intracellular Ca(2+) and by blocking RyRs, cADPR, and BK(Ca) channels with ryanodine, 8-amino-cADPR, and iberiotoxin, respectively. The cAMP-dependent protein kinase A antagonist N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride (H89) blocked hyperpolarization by isoprenaline and cAMP, respectively, but not hyperpolarization by cADPR. Thus, cADPR acts as a downstream element in this signaling cascade. Importantly, antagonists of cADPR and BK(Ca) channels, respectively, inhibited beta-adrenoreceptor-induced artery dilation. We conclude, therefore, that relaxation of arterial smooth muscle by adenylyl cyclase-coupled receptors results, in part, from a cAMP-dependent and protein kinase A-dependent increase in cADPR synthesis, and subsequent activation of sarcoplasmic reticulum Ca(2+) release via RyRs, which leads to activation of BK(Ca) channels and membrane hyperpolarization.  相似文献   

8.
A variety of stimuli, such as abscisic acid (ABA), reactive oxygen species (ROS), and elicitors of plant defense reactions, have been shown to induce stomatal closure. Our study addresses commonalities in the signaling pathways that these stimuli trigger. A recent report showed that both ABA and ROS stimulate an NADPH-dependent, hyperpolarization-activated Ca(2+) influx current in Arabidopsis guard cells termed "I(Ca)" (Z.M. Pei, Y. Murata, G. Benning, S. Thomine, B. Klüsener, G.J. Allen, E. Grill, J.I. Schroeder, Nature [2002] 406: 731-734). We found that yeast (Saccharomyces cerevisiae) elicitor and chitosan, both elicitors of plant defense responses, also activate this current and activation requires cytosolic NAD(P)H. These elicitors also induced elevations in the concentration of free cytosolic calcium ([Ca(2+)](cyt)) and stomatal closure in guard cells. ABA and ROS elicited [Ca(2+)](cyt) oscillations in guard cells only when extracellular Ca(2+) was present. In a 5 mM KCl extracellular buffer, 45% of guard cells exhibited spontaneous [Ca(2+)](cyt) oscillations that differed in their kinetic properties from ABA-induced Ca(2+) increases. These spontaneous [Ca(2+)](cyt) oscillations also required the availability of extracellular Ca(2+) and depended on the extracellular potassium concentration. Interestingly, when ABA was applied to spontaneously oscillating cells, ABA caused cessation of [Ca(2+)](cyt) elevations in 62 of 101 cells, revealing a new mode of ABA signaling. These data show that fungal elicitors activate a shared branch with ABA in the stress signal transduction pathway in guard cells that activates plasma membrane I(Ca) channels and support a requirement for extracellular Ca(2+) for elicitor and ABA signaling, as well as for cellular [Ca(2+)](cyt) oscillation maintenance.  相似文献   

9.
Methyl jasmonate (MeJA) elicits stomatal closing similar to abscisic acid (ABA), but whether the two compounds use similar or different signaling mechanisms in guard cells remains to be clarified. We investigated the effects of MeJA and ABA on second messenger production and ion channel activation in guard cells of wild-type Arabidopsis (Arabidopsis thaliana) and MeJA-insensitive coronatine-insensitive 1 (coi1) mutants. The coi1 mutation impaired MeJA-induced stomatal closing but not ABA-induced stomatal closing. MeJA as well as ABA induced production of reactive oxygen species (ROS) and nitric oxide (NO) in wild-type guard cells, whereas MeJA did not induce production of ROS and NO in coi1 guard cells. The experiments using an inhibitor and scavengers demonstrated that both ROS and NO are involved in MeJA-induced stomatal closing as well as ABA-induced stomatal closing. Not only ABA but also MeJA activated slow anion channels and Ca(2+) permeable cation channels in the plasma membrane of wild-type guard cell protoplasts. However, in coi1 guard cell protoplasts, MeJA did not elicit either slow anion currents or Ca(2+) permeable cation currents, but ABA activated both types of ion channels. Furthermore, to elucidate signaling interaction between ABA and MeJA in guard cells, we examined MeJA signaling in ABA-insensitive mutant ABA-insensitive 2 (abi2-1), whose ABA signal transduction cascade has some disruption downstream of ROS production and NO production. MeJA also did not induce stomatal closing but stimulated production of ROS and NO in abi2-1. These results suggest that MeJA triggers stomatal closing via a receptor distinct from the ABA receptor and that the coi1 mutation disrupts MeJA signaling upstream of the blanch point of ABA signaling and MeJA signaling in Arabidopsis guard cells.  相似文献   

10.
Recent genetic analysis showed that phototropins (phot1 and phot2) function as blue light receptors in stomatal opening of Arabidopsis thaliana, but no biochemical evidence was provided for this. We prepared a large quantity of guard cell protoplasts from Arabidopsis. The immunological method indicated that phot1 was present in guard cell protoplasts from the wild-type plant and the phot2 mutant, that phot2 was present in those from the wild-type plant and the phot1 mutant, and that neither phot1 nor phot2 was present in those from the phot1 phot2 double mutant. However, the same amounts of plasma membrane H+-ATPase were found in all of these plants. H+ pumping was induced by blue light in isolated guard cell protoplasts from the wild type, from the single mutants of phototropins (phot1-5 and phot2-1), and from the zeaxanthin-less mutant (npq1-2), but not from the phot1 phot2 double mutant. Moreover, increased ATP hydrolysis and the binding of 14-3-3 protein to the H+-ATPase were found in response to blue light in guard cell protoplasts from the wild type, but not from the phot1 phot2 double mutant. These results indicate that phot1 and phot2 mediate blue light-dependent activation of the plasma membrane H+-ATPase and illustrate that Arabidopsis guard cell protoplasts can be useful for biochemical analysis of stomatal functions. We determined isogenes of the plasma membrane H+-ATPase and found the expression of all isogenes of functional plasma membrane H+-ATPases (AHA1-11) in guard cell protoplasts.  相似文献   

11.
Protein phosphorylation and cytosolic-free [Ca2+] ([Ca2+]i) contribute to signalling cascades evoked by the water-stress hormone abscisic acid (ABA) that lead to stomatal closure in higher-plant leaves. ABA activates an inward-rectifying Ca2+ channel at the plasma membrane of stomatal guard cells, promoting Ca2+ entry by shifting the voltage-sensitivity of the channels. Because many of these effects could be mediated by kinase/phosphatase action at the membrane, we examined a role for protein (de-)phosphorylation in plasma membrane patches from Vicia guard cells. Ca2+ channel activity decayed rapidly in excised patches, and recovered on adding ATP (K1/2, 1.3 +/- 0.7 mm) but not the non-hydrolyzable analog ATPgammaS. ABA activation of the channel required the presence of ATP and like ABA, the 1/2 A-type protein phosphatase antagonists okadaic acid (OA) and calyculin A (CA) enhanced Ca2+ channel activity by increasing the open probability and number of active channels. Neither ATP nor the antagonists affected the mean open lifetime of the channel, suggesting an action through changes in closed lifetime distributions. Like ABA, OA and CA shifted the voltage-sensitivities of the Ca2+ current and [Ca2+]i increases in intact guard cells towards positive voltages. OA and CA also augmented the [Ca2+]i rise evoked by hyperpolarization and delayed its recovery. These results demonstrate a membrane-delimited interaction between 1/2 A-type protein phosphatase(s) and the Ca2+ channel or associated proteins, and they are consistent with a role for protein (de-)phosphorylation in ABA signalling mediated directly through Ca2+ channel gating that leads to [Ca2+]i increases in the guard cells.  相似文献   

12.
Urinary bladder smooth muscle (UBSM) elicits depolarizing action potentials, which underlie contractile events of the urinary bladder. The resting membrane potential of UBSM is approximately -40 mV and is critical for action potential generation, with hyperpolarization reducing action potential frequency. We hypothesized that a tonic, depolarizing conductance was present in UBSM, functioning to maintain the membrane potential significantly positive to the equilibrium potential for K(+) (E(K); -85 mV) and thereby facilitate action potentials. Under conditions eliminating the contribution of K(+) and voltage-dependent Ca(2+) channels, and with a clear separation of cation- and Cl(-)-selective conductances, we identified a novel background conductance (I(cat)) in mouse UBSM cells. I(cat) was mediated predominantly by the influx of Na(+), although a small inward Ca(2+) current was detectable with Ca(2+) as the sole cation in the bathing solution. Extracellular Ca(2+), Mg(2+), and Gd(3+) blocked I(cat) in a voltage-dependent manner, with K(i) values at -40 mV of 115, 133, and 1.3 microM, respectively. Although UBSM I(cat) is extensively blocked by physiological extracellular Ca(2+) and Mg(2+), a tonic, depolarizing I(cat) was detected at -40 mV. In addition, inhibition of I(cat) demonstrated a hyperpolarization of the UBSM membrane potential and decreased the amplitude of phasic contractions of isolated UBSM strips. We suggest that I(cat) contributes tonically to the depolarization of the UBSM resting membrane potential, facilitating action potential generation and thereby a maintenance of urinary bladder tone.  相似文献   

13.
The phytohormone abscisic acid (ABA) inhibits blue light‐induced apoplastic acidification of guard cells. The signal transduction pathway of ABA, mediating this response, was studied using ABA‐insensitive ( abi ) mutants of Arabidopsis thaliana . Apoplastic acidification was monitored with a flat tipped pH‐electrode placed on epidermal strips, in which only guard cells were viable. Blue light‐induced apoplastic acidification was reduced by vanadate and diethylstilbestrol (DES), indicating involvement of plasma membrane‐bound H+‐ATPases. In wild type epidermal strips, ABA reduced blue light‐induced acidification to 63%. The inhibition did not result from an increased cytoplasmic free Ca2+ concentration in guard cells, since factors that increase the Ca2+ concentration stimulated apoplastic acidification. Apoplastic acidification was not inhibited by ABA in abi1 and abi2 mutants. In abi1 epidermal strips ABA had no effect on the acidification rate, while it stimulated apoplastic acidification in abi2 . The ABA response in both mutants could be partially restored with protein kinase and phosphatase inhibitors. The abi1 guard cells became ABA responsive in the presence of okadaic acid, a protein phosphatase inhibitor. In abi2 guard cells the wild type ABA response was partially restored by K‐252a, a protein kinase inhibitor. Apoplastic inhibition is thus mediated through the protein phosphatases encoded by ABI1 and ABI2 . The results with protein kinase and protein phosphatase inhibitors indicate that ABI1 and ABI2 are involved in separate signal transduction pathways.  相似文献   

14.
Calcium channels in higher plants   总被引:30,自引:0,他引:30  
Calcium channels are involved principally in signal transduction. Their opening results in increased cytoplasmic Ca(2+) concentration, and the spatial and temporal variations in this are thought to elicit specific physiological responses to diverse biotic and abiotic stimuli. Calcium-permeable channels have been recorded in the plasma membrane, tonoplast, endoplasmic reticulum, chloroplast and nuclear membranes of plant cells. This article reviews their electrophysiological properties and discusses their physiological roles. Emphasis is placed on the voltage-dependent and elicitor-activated Ca(2+) channels of the plasma membrane and the depolarisation-activated (SV), hyperpolarisation-activated, IP(3)- and cADPR-dependent Ca(2+) channels of the tonoplast. The closing of stomatal guard cells in the presence of abscisic acid (ABA) is used to illustrate the co-ordination of Ca(2+) channel activities during a physiological response.  相似文献   

15.
Guard cells respond to light through two independent signalling pathways. The first pathway is initiated by photosynthetically active radiation and has been associated with changes in the intercellular CO(2) concentration, leading to inhibition of plasma membrane anion channels. The second response is blue-light-specific and so far has been restricted to the activation of plasma membrane H(+)-ATPases. In a search for interactions of both signalling pathways, guard cells of Vicia faba and Arabidopsis thaliana were studied in intact plants. Vicia faba guard cells recorded in CO(2)-free air responded to blue light with a transient outward plasma membrane current that had an average peak value of 17 pA. In line with previous reports, changes in the current-voltage relation of the plasma membrane indicate that this outward current is based on the activation of H(+)-ATPases. However, when V. faba guard cells were blue-light-stimulated in air with 700 microl l(-1) CO(2), the outward current increased to 56 pA. The increase in current was linked to inhibition of S-type anion channels. Blue light also inhibited plasma membrane anion channels in A. thaliana guard cells, but not in the phot1 phot2 double mutant. These results show that blue light inhibits plasma membrane anion channels through a pathway involving phototropins, in addition to the stimulation of guard cell plasma membrane H(+)-ATPases.  相似文献   

16.
BACKGROUND AND AIMS: Pistia stratiotes produces large amounts of calcium (Ca) oxalate crystals in specialized cells called crystal idioblasts. The potential involvement of Ca(2+) channels in Ca oxalate crystal formation by crystal idioblasts was investigated. METHODS: Anatomical, ultrastructural and physiological analyses were used on plants, fresh or fixed tissues, or protoplasts. Ca(2+) uptake by protoplasts was measured with (45)Ca(2+), and the effect of Ca(2+) channel blockers studied in intact plants. Labelled Ca(2+) channel blockers and a channel protein antibody were used to determine if Ca(2+) channels were associated with crystal idioblasts. KEY RESULTS: (45)Ca(2+) uptake was more than two orders of magnitude greater for crystal idioblast protoplasts than mesophyll protoplasts, and idioblast number increased when medium Ca was increased. Plants grown on media containing 1-50 microM of the Ca(2+) channel blockers, isradipine, nifedipine or fluspirilene, showed almost complete inhibition of crystal formation. When fresh tissue sections were treated with the fluorescent dihydropyridine-type Ca(2+) channel blocker, DM-Bodipy-DHP, crystal idioblasts were intensely labelled compared with surrounding mesophyll, and the label appeared to be associated with the plasma membrane and the endoplasmic reticulum, which is shown to be abundant in idioblasts. An antibody to a mammalian Ca(2+) channel alpha1 subunit recognized a single band in a microsomal protein fraction but not soluble protein fraction on western blots, and it selectively and heavily labelled developing crystal idioblasts in tissue sections. CONCLUSIONS: The results demonstrate that Ca oxalate crystal idioblasts are enriched, relative to mesophyll cells, in dihydropyridine-type Ca(2+) channels and that the activity of these channels is important to transport and accumulation of Ca(2+) required for crystal formation.  相似文献   

17.
Elevations in cytoplasmic calcium ([Ca(2)+](cyt)) are an important component of early abscisic acid (ABA) signal transduction. To determine whether defined mutations in ABA signal transduction affect [Ca(2)+](cyt) signaling, the Ca(2)+-sensitive fluorescent dye fura 2 was loaded into the cytoplasm of Arabidopsis guard cells. Oscillations in [Ca(2)+](cyt) could be induced when the external calcium concentration was increased, showing viable Ca(2)+ homeostasis in these dye-loaded cells. ABA-induced [Ca(2)+](cyt) elevations in wild-type stomata were either transient or sustained, with a mean increase of approximately 300 nM. Interestingly, ABA-induced [Ca(2)+](cyt) increases were significantly reduced but not abolished in guard cells of the ABA-insensitive protein phosphatase mutants abi1 and abi2. Plasma membrane slow anion currents were activated in wild-type, abi1, and abi2 guard cell protoplasts by increasing [Ca(2)+](cyt), demonstrating that the impairment in ABA activation of anion currents in the abi1 and abi2 mutants was bypassed by increasing [Ca(2)+](cyt). Furthermore, increases in external calcium alone (which elevate [Ca(2)+](cyt)) resulted in stomatal closing to the same extent in the abi1 and abi2 mutants as in the wild type. Conversely, stomatal opening assays indicated different interactions of abi1 and abi2, with Ca(2)+-dependent signal transduction pathways controlling stomatal closing versus stomatal opening. Together, [Ca(2)+](cyt) recordings, anion current activation, and stomatal closing assays demonstrate that the abi1 and abi2 mutations impair early ABA signaling events in guard cells upstream or close to ABA-induced [Ca(2)+](cyt) elevations. These results further demonstrate that the mutations can be bypassed during anion channel activation and stomatal closing by experimental elevation of [Ca(2)+](cyt).  相似文献   

18.
Numerous biological assays and pharmacological studies have led to the suggestion that depolarization-activated plasma membrane Ca2+ channels play prominent roles in signal perception and transduction processes during growth and development of higher plants. The recent application of patch-clamp techniques to isolated carrot protoplasts has led to direct voltage-clamp evidence for the existence of Ca2+ channels activated by physiological depolarizations in the plasma membrane of higher plant cells. However, these voltage-dependent Ca2+ channels were not stable and their activities decreased following the establishment of whole-cell recordings. We show here that large pre-depolarizing pulses positive to 0 mV induced not only the recovery of Ca2+ channel activities, but also the activation of initially quiescent voltage-dependent Ca2+ channels in the plasma membrane (recruitment). This recruitment was dependent on the intensity and duration of membrane depolarizations, i.e. the higher and longer the pre-depolarization, the greater the recruitment. Pre-depolarizing pulses to +118 mV during 30 s increased the initial calcium currents 5- to 10-fold. The recruited channels were permeable to Ba2+ and Sr2+ ions. The data suggested that voltage-dependent Ca(2+)-permeable channels are regulated by biological mechanisms which might be induced by large pre-depolarizations of the plasma membrane. In addition, this study provides evidence for the existence in the plasma membrane of higher plant cells of a large number of voltage-dependent Ca2+ channels of which a major part are inactive and quiescent. It is suggested that quiescent Ca2+ channels can be rapidly recruited for Ca(2+)-dependent signal transduction.  相似文献   

19.
Trafficking of K+ inward (Kin+) rectifying channels was analyzed in guard cells of Vicia faba transfected with the Kin+ rectifier from Arabidopsis thaliana KAT1 fused to the green fluorescent protein (GFP). Confocal images and whole-cell patch-clamp measurements confirmed the incorporation of active KAT1 channels into the plasma membrane of transfected guard cell protoplasts. The Kin+ rectifier current density of the plasma membrane was much larger in transfected protoplasts than in wild-type (wt) protoplasts. This shows a coupling between K+ channel synthesis and incorporation of the channel into the plasma membrane. Pressure-driven increase and decrease in surface area led to the incorporation and removal of vesicular membrane carrying active Kin+ rectifier in wt and transfected protoplasts. These vesicular membranes revealed a higher channel density than the plasma membrane, suggesting that Kin+ rectifier remains in clusters during trafficking to and from the plasma membrane. The observed results can be explained by a model illustrating that vesicles of a pre-plasma membrane pool carry K+ channels preferentially in clusters during constitutive and pressure-driven exo- and endocytosis.  相似文献   

20.
Numerous biological assays and pharmacological studies on various higher plant tissues have led to the suggestion that voltage-dependent plasma membrane Ca2+ channels play prominent roles in initiating signal transduction processes during plant growth and development. However, to date no direct evidence has been obtained for the existence of such depolarization-activated Ca2+ channels in the plasma membrane of higher plant cells. Carrot suspension cells (Daucus carota L.) provide a well-suited system to determine whether voltage-dependent Ca2+ channels are present in the plasma membrane of higher plants and to characterize the properties of putative Ca2+ channels. It is known that both depolarization, caused by raising extracellular K+, and exposure to fungal toxins or oligogalacturonides induce Ca2+ influx into carrot cells. By direct application of patch-clamp techniques to isolated carrot protoplasts, we show here that depolarization of the plasma membrane positive to -135 mV activates Ca(2+)-permeable channels. These voltage-dependent ion channels were more permeable to Ca2+ than K+, while displaying large permeabilities to Ba2+ and Mg2+ ions. Ca(2+)-permeable channels showed slow and reversible inactivation. The single-channel conductance was 13 pS in 40 mM CaCl2. These data provide direct evidence for the existence of voltage-dependent Ca2+ channels in the plasma membrane of a higher plant cell and point to physiological mechanisms for plant Ca2+ channel regulation. The depolarization-activated Ca(2+)-permeable channels identified here could constitute a regulated pathway for Ca2+ influx in response to physiologically occurring stimulus-induced depolarizations in higher plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号