首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Aminopeptidase P (APPro) is a manganese-containing enzyme that catalyses the hydrolysis of the N-terminal residue of a polypeptide if the second residue is proline. Structures of APPro mutants with reduced or negligible activity have been determined in complex with the tripeptide substrate ValProLeu. In the complex of Glu383Ala APPro with ValProLeu one of the two metal sites is only partly occupied, indicating an essential role for Glu383 in metal binding in the presence of substrate. His361Ala APPro clearly possesses residual activity as the ValProLeu substrate has been cleaved in the crystals; difference electron density consistent with bound ProLeu dipeptide and a disordered Val amino acid is present at the active site. Contrary to previous suggestions, the His243Ala mutant is capable of binding substrate. The structure of the His243Ala APPro complex with ValProLeu shows that the peptide interacts with one of the active-site metal atoms via its terminal amino group. The implications of these complexes for the roles of the respective residues in APPro catalysis are discussed.  相似文献   

2.
大肠埃希菌连续分离株氨基糖苷类修饰酶基因研究   总被引:1,自引:0,他引:1  
目的了解临床分离的大肠埃希菌耐药性及氨基糖苷类修饰酶(AMEs)基因的存在状况。方法测定临床分离的60株大肠埃希菌对19种抗菌药物的敏感性,采用PCR技术检测氨基糖苷类修饰酶基因。结果60株大肠埃希菌呈现多重耐药,氨基糖苷类修饰酶基因aac(3)-Ⅱ、aac(6′)-Ⅰb、aac(6′)-Ⅱ、ant(3′′)-Ⅰ、ant(2′′)-Ⅰ的阳性率分别为36.7%、18.3%、0%、10%、1.6%。携带1种或1种以上基因的菌株有33株(55%)。结论临床分离的大肠埃希菌多重耐药严重,氨基糖苷类修饰酶基因携带率较高。  相似文献   

3.
This review covers enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infections, focusing on differences in their virulence factors and regulation. While Shiga-toxin expression from integrated bacteriophages sets EHEC apart from EPEC, EHEC infections often originate from asymptomatic carriage in ruminants whereas human EPEC are considered to be overt pathogens and more host-restricted. In part, these differences reflect variation in adhesin repertoire, type III-secreted effectors and the way in which these factors are regulated.  相似文献   

4.
Abstract A pap + Escherichia coli isolate from a turkey with colisepticemia expressed P fimbriae with a major subunit of an apparent molecular mass of 18 kDa which reacted with anti-F11 serum. This fimbriae was purified and polyclonal antiserum was produced in rabbits. The N-terminal amino acid sequence of the major fimbrial subunit of the avian P fimbriae was identical to that of F11. On immunoblotting, the antiserum against the avian P fimbriae strongly reacted with the major subunit of the homologous fimbriae, with F11, and with F1651 fimbriae. Some antigenic determinants on the major subunits of F13, F71, and F72 fimbriae, with a stronger reaction against F13 fimbriae, were also recognized. The F11 antiserum reacted similarly to the antiserum against avian P fimbriae although cross-reactions against F13, F71, and F72 fimbriae were equivalent. In a competitive enzyme-linked immunosorbent assay, serological differences were observed between the purified avian P fimbriae and F11. Thus, the avian P fimbriae is closely related but not identical to F11 fimbriae which are associated with E. coli isolated from human urinary tract infection.  相似文献   

5.
6.
真菌细胞色素P450在大肠杆菌中的表达   总被引:1,自引:0,他引:1  
麦婉莹  洪葵 《微生物学通报》2019,46(5):1092-1099
【背景】真菌细胞色素P450蛋白在大肠杆菌中表达水平低甚至不表达,近期研究发现通过对该类蛋白氨基端(N端)氨基酸序列的修饰可优化其表达水平。【目的】在大肠杆菌系统中表达预测功能为P450酶的焦曲霉094102菌株的Au8002蛋白,为真菌P450蛋白在大肠杆菌表达系统中的N端氨基酸序列修饰策略提供有效依据。【方法】对野生型P450蛋白Au8002的氨基酸序列进行分析,对其N端序列进行了3种序列修饰,并在诱导蛋白表达时添加P450生物合成前体5-氨基乙酰丙酸(5-ALA),研究N端氨基酸序列修饰策略及前体添加对真菌P450在大肠杆菌中蛋白表达的影响。【结果】SDS-PAGE和Westernblot检测结果显示,对目的蛋白进行的3种氨基酸序列修饰均使Au8002蛋白获得了表达,前体5-ALA的添加提高了目的蛋白表达量。其中对目的蛋白进行N端全长截短时可部分增加其可溶性,同时也验证了其特征性的CO结合能力。【结论】对预测为P450酶的菌株094102蛋白Au8002氨基端(N端)氨基酸序列的修饰有效解决了其在大肠杆菌内不表达的难题,实现了其可溶性表达;另一方面P450生物合成前体5-ALA的添加也能有效提高该类蛋白的表达水平,上述策略对改善其它该类蛋白在大肠杆菌内的表达水平具有借鉴意义。  相似文献   

7.
Electron paramagnetic resonance (EPR) spectra and X-ray absorption (EXAFS and XANES) data have been recorded for the manganese enzyme aminopeptidase P (AMPP, PepP protein) from Escherichia coli. The biological function of the protein, a tetramer of 50-kDa subunits, is the hydrolysis of N-terminal Xaa-Pro peptide bonds. Activity assays confirm that the enzyme is activated by treatment with Mn2+. The EPR spectrum of Mn2+–activated AMPP at liquid-He temperature is characteristic of an exchange-coupled dinuclear Mn(II) site, the Mn-Mn separation calculated from the zero-field splitting D of the quintet state being 3.5?(±0.1)?Å. In the X-ray absorption spectrum of Mn2+–activated AMPP at the Mn K edge, the near-edge features are consistent with octahedrally coordinated Mn atoms in oxidation state +2. EXAFS data, limited to k≤12?Å–1 by traces of Fe in the protein, are consistent with a single coordination shell occupied predominantly by O donor atoms at an average Mn-ligand distance of 2.15?Å, but the possibility of a mixture of O and N donor atoms is not excluded. The Mn-Mn interaction at 3.5?Å is not detected in the EXAFS, probably due to destructive interference from light outer-shell atoms. The biological function, amino acid sequence and metal-ion dependence of E. coli AMPP are closely related to those of human prolidase, an enzyme that specifically cleaves Xaa-Pro dipeptides. Mutations that lead to human prolidase deficiency and clinical symptoms have been identified. Several known inhibitors of prolidase also inhibit AMPP. When these inhibitors are added to Mn2+–activated AMPP, the EPR spectrum and EXAFS remain unchanged. It can be inferred that the inhibitors either do not bind directly to the Mn centres, or substitute for existing Mn ligands without a significant change in donor atoms or coordination geometry. The conclusions from the spectroscopic measurements on AMPP have been verified by, and complement, a recent crystal structure analysis.  相似文献   

8.
The effects of hydrogen peroxide treatments on Escherichia coli KS400 and AB1157 cells were assessed by monitoring the accumulation of oxidative damage products, carbonyl proteins and thiobarbituric acid-reactive substances (TBARS), as well as the activities of selected antioxidant enzymes. H(2)O(2) treatment stimulated increases in both TBARS and carbonyl protein levels in dose- and time-dependent manners in KS400 cells. The accumulation of TBARS was much more variable with H(2)O(2) treatment; TBARS content was significantly increased in response to 5 microM H(2)O(2), whereas a significant increase in carbonyl protein content occurred at 100 microM H(2)O(2). Similarly, treatment with 20 microM hydrogen peroxide for different lengths of time resulted in peak TBARS accumulation by 20 min, whereas carbonyl protein levels were significantly elevated only after 60 min. In AB1157 cells, treatment with 20 microM hydrogen peroxide for 20 min led to strong increases in both carbonyl protein and TBARS levels. This treatment also triggered increased activities of enzymes of the oxyR regulon (catalase, peroxidase, and glutathione reductase) in both strains. In the AB1157 strain, H(2)O(2) exposure also increased the activities of two enzymes of the soxRS regulon (superoxide dismutase and glucose-6-phosphate dehydrogenase) by 50-60%. The data show differential variability of lipids versus proteins to oxidative damage induced by H(2)O(2,) as well as strain-specific differences in the accumulation of damage products and the responses by antioxidant enzymes to H(2)O(2) stress.  相似文献   

9.
Bacterial ribonuclease P RNA ribozyme can do the hyperprocessing reaction, the internal cleavage reaction of some floppy eukaryotic tRNAs. The hyperprocessing reaction can be used as a detection tool to examine the stability of the cloverleaf shape of tRNA. Until now, the hyperprocessing reaction has been observed in the heterologous combination of eukaryotic tRNAs and bacterial RNase P enzymes. In this paper, we examined the hyperprocessing reaction of Escherichia coli tRNAs by homologous E. coli RNase P, to find that these homologous tRNAs were resistant to the toxic hyperprocessing reaction. Our results display the evidence for molecular co-evolution between homologous tRNAs and RNase P in the bacterium E. coli.  相似文献   

10.
The gene from Escherichia coli encoding aminopeptidase N (PepN) was subcloned into pET-26b, and PepN was over-expressed in BL21(DE3) E. coli and purified using Q-Sepharose chromatography. This protocol yielded over 17 mg of purified, recombinant PepN per liter of growth culture under optimum conditions. Gel filtration chromatography revealed that recombinant PepN exists as a monomer. MALDI-TOF mass spectra showed that the enzyme has a molecular mass of 98,750 Da, and steady-state kinetic studies revealed that as-isolated, recombinant PepN exhibits a k(cat) of 354 +/- 11s(-1) and a K(m) of 376 +/- 39 microM when using L-alanine-p-nitroanilide as the substrate. Metal analyses demonstrated that as-isolated, recombinant PepN binds 0.5 and <0.1 equivalents of iron and zinc, respectively. The addition of Zn(II) to recombinant PepN inhibits catalytic activity, while the addition of iron causes a slight decrease or no change in activity. Further metal binding studies revealed that recombinant PepN tightly binds 5 equivalents of iron and <0.1 equivalents of Zn(II). By using this over-expression and purification system, E. coli PepN can now be obtained in quantities necessary for structural characterization and possibly inhibitor design efforts.  相似文献   

11.
果胶酸裂解酶P56在番茄花粉管伸长过程中起着重要的作用,为了制备番茄P56蛋白的抗体,进行番茄花粉管萌发过程中P56蛋白的免疫组织化学研究,对P56基因在大肠杆菌系统的重组表达进行了研究。先采用Overlap-PCR的方法,从番茄基因组DNA中克隆了成熟P56蛋白的cDNA序列(LAT56),再构建重组表达质粒pET28a( )-LAT56,转化大肠杆菌BL21-CodenPlus(DE3)-RIL,得到了重组表达工程菌pET-28a( )-LAT56-BL21-Co-denPlus(DE3)-RIL。在0.5 mmol/L IPTG、15℃和180 r/min条件下,经过60 h的诱导培养,重组蛋白表达量为细胞总蛋白的30%左右,主要以包涵体形式存在,重组蛋白经Ni2 -nitrilotriacetate-agrose亲和柱层析,得到了SDS-PAGE显示为单一蛋白带的纯化蛋白。  相似文献   

12.
产肠毒素大肠杆菌(ETEC)定植于仔猪肠道的第一步是通过987P菌毛与小肠上皮细胞表面刷状缘大分子(BBV)结合。对分离的BBV进行SDS-PAGE和Ligand blot分析表明, 在32~35KDa区域内有一条带能被987P菌毛探针所识别和结合, 所结合的条带经胰蛋白酶消化后, 通过微内径反相高效液相色谱(RP-HPLC)分离出多条主要峰带蛋白峰带, 采用衬质辅助激光解吸与电离质谱法(MALDI-MS)对主要峰带进行分析, 结合多肽氨基酸测序和Blast同源性比较, 得到3个氨基酸基序(AETAP、ALAAAGYDVEK和LGLK), 其序列与人和鼠源的组蛋白H1高度同源; 来源于仔猪小肠上皮细胞BBV的H1蛋白与BBV一样都能特异性结合纯化的987P菌毛蛋白。上述结果表明, 仔猪小肠上皮细胞BBV的组蛋白H1是987P菌毛蛋白的受体。  相似文献   

13.
产肠毒素大肠杆菌(ETEC)定植于仔猪肠道的第一步是通过987P菌毛与小肠上皮细胞表面刷状缘大分子(BBV)结合。对分离的BBV进行SDS-PAGE和Ligand blot分析表明, 在32~35KDa区域内有一条带能被987P菌毛探针所识别和结合, 所结合的条带经胰蛋白酶消化后, 通过微内径反相高效液相色谱(RP-HPLC)分离出多条主要峰带蛋白峰带, 采用衬质辅助激光解吸与电离质谱法(MALDI-MS)对主要峰带进行分析, 结合多肽氨基酸测序和Blast同源性比较, 得到3个氨基酸基序(AETAP、ALAAAGYDVEK和LGLK), 其序列与人和鼠源的组蛋白H1高度同源; 来源于仔猪小肠上皮细胞BBV的H1蛋白与BBV一样都能特异性结合纯化的987P菌毛蛋白。上述结果表明, 仔猪小肠上皮细胞BBV的组蛋白H1是987P菌毛蛋白的受体。  相似文献   

14.
Three different methods to standardize biofilm removal for in situ sanitary control of closed surfaces in the food industry have been developed and compared, i.e. sonication, enzymatic treatment and a combined treatment which involved the application of ultrasound to enzyme preparations. The biofilm studied was an Escherichia coli model biofilm, made with milk on stainless steel sheets. Plate counting and epifluorescence microscopy were used to assess the efficiency of each treatment. The results are expressed in percentages, 100% denoting total removal, obtained with a flat ultrasonic transducer (T1) developed and presented in a previous study. The application of ultrasound by a patented curved transducer, T2 (10 s, 40 kHz), specifically devised for closed surfaces, was not sufficient to completely remove the biofilm (30 ± 7%). This biofilm was dislodged by two proteolytic enzyme preparations tested by immersion, viz. a 15‐min application of protease (84±1%) and a 30‐min trypsin application (95±8%). Using a combined treatment, the results showed a synergism between ultrasonic waves and proteolytic or glycolytic enzyme preparations, with removal of a significant amount of biofilm, i.e. 61–96% depending on the conditions tested, i.e. two to three times greater compared to sonication alone (30%). This application was in agreement with an industrial control, i.e. a good reproducible recovery of the biofilm in 10 s compared with 30 or 15 min with the enzyme alone.  相似文献   

15.
AIMS: To understand the modification of C4-metabolism under anaerobic glycolysis condition by overexpressing anaplerotic enzymes, which mediating carboxylation of C3 into C4 metabolites, in Escherichia coli. METHODS AND RESULTS: Anaplerotic NADP-dependent malic enzyme (MaeB), as well as the other anaplerotic enzymes, including phosphoenolpyruvate carboxylase (Ppc), phosphoenolpyruvate carboxykinase (Pck) and NAD-dependent malic enzyme (MaeA), were artificially expressed and their C4 metabolism was compared in E. coli. Increasing MaeB expression enhanced the production of C4 metabolites by 2.4 times compared to the wild-type strain in anaerobic glucose medium with bicarbonate supplementation. In MaeB expression, C4 metabolism by supplementing 10 g l(-1) of NaHCO(3) was three times than that by no supplementation, which showed the greatest response to increased CO(2) availability among the tested anaplerotic enzyme expressions. CONCLUSIONS: The higher C4 metabolism was achieved in E. coli expressing increased levels of the NADPH-dependent MaeB. The greatest increase in the C4 metabolite ratio compared to the other tested enzymes were also found in E. coli with enhanced MaeB expression as CO(2) availability increased. SIGNIFICANCE AND IMPACT OF THE STUDY: The higher C4 metabolites and related biomolecule productions can be accomplished by MaeB overexpression in metabolically engineered E. coli.  相似文献   

16.
10-羟基-2-癸烯酸(10-HDA)是蜂王浆中的主要脂肪酸成分,具有抗菌、抗癌、延缓衰老等多种生理活性,但目前关于10-HDA生物合成的分子机制还不清楚。通过克隆蜜蜂NADPH-细胞色素P450还原酶(EC 1.6.2.4,NADPH-cytochrome P450 reductase,CPR),在大肠杆菌中异源表达,并对其酶学特性进行分析。结果表明重组菌经IPTG诱导后表达蛋白的分子量与预期一致,为86.29 kDa,Ni-NTA亲和纯化后测得其比活性为77.33(EU of CPR)/μg。酶学性质分析结果表明蜜蜂CPR酶最适温度与pH分别为40℃和8.0,并对一些金属离子及有机溶剂具有不同程度的耐受性。其对底物细胞色素C的动力学参数Km和kcat分别为76 μM和268/min。以上研究为探究CPR在10-HDA生物合成途径中的功能奠定理论基础。  相似文献   

17.
P450-dependent biotransformations in Escherichia coli are attractive for the selective oxidation of organic molecules using mild and sustainable procedures. The overall efficiency of these processes, however, relies on how effectively the NAD(P)H cofactors derived from oxidation of the carbon source are utilized inside the cell to support the heterologous P450-catalyzed reaction. In this work, we investigate the use of metabolic and protein engineering to enhance the product-per-glucose yield (Y(PPG)) in whole-cell reactions involving a proficient NADPH-dependent P450 propane monooxygenase prepared by directed evolution [P450(PMO)R2; Fasan et al. (2007); Angew Chem Int Ed 46:8414-8418]. Our studies revealed that the metabolism of E. coli (W3110) is able to support only a modest propanol: glucose molar ratio (YPPG ~ 0.5) under aerobic, nongrowing conditions. By altering key processes involved in NAD(P)H metabolism of the host, considerable improvements of this ratio could be achieved. A metabolically engineered E. coli strain featuring partial inactivation of the endogenous respiratory chain (Δndh) combined with removal of two fermentation pathways (ΔadhE, Δldh) provided the highest Y(PPG) (1.71) among the strains investigated, enabling a 230% more efficient utilization of the energy source (glucose) in the propane biotransformation compared to the native E. coli strain. Using an engineered P450(PMO)R2 variant which can utilize NADPH and NADH with equal efficiency, we also established that dual cofactor specificity of the P450 enzyme can provide an appreciable improvement in Y(PPG). Kinetic analyses suggest, however, that much more favorable parameters (K(M), k(cat)) for the NADH-driven reaction are required to effectively compete with the host's endogenous NADH-utilizing enzymes. Overall, the metabolic/protein engineering strategies described here can be of general value for improving the performance of NAD(P)H-dependent whole-cell biotransformations in E. coli.  相似文献   

18.
AIMS: To describe the occurrence and virulence gene pattern of shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) in healthy goats of Jammu and Kashmir, India. METHODS AND RESULTS: A total of 220 E. coli strains belonging to 60 different 'O' serogroups was isolated from 206 local (nonmigratory) and 69 migratory goats. All the 220 strains were screened for the presence of stx(1), stx(2), eaeA and hlyA genes. Twenty-eight E. coli (75.6%) strains from local and nine (24.3%) strains from migratory goats belonging to 18 different serogroups showed at least presence of one virulence gene studied. Twenty-eight strains (16.47%) (belonging to 13 different serogroups) from local goats carried stx(1) gene alone or in combination with stx(2) gene, while as only one strain (2%) from migratory goats possessed stx(2) gene alone. Interestingly in the present study none of the STEC strains carried eaeA gene. Similarly, none of the strains from local goats possessed eaeA and none of the migratory goats possessed stx(1) gene. Eight strains (16%) (belonging to four different serogroups) from migratory goats carried eaeA gene. Twenty-five (14.7%) and seven (14%) strains from local and migratory goats harboured hlyA gene respectively. CONCLUSIONS: Healthy goats of Jammu and Kashmir state serve as a reservoir of STEC and EPEC. Further studies in this direction are needed to work out whether or not they are transmitted to humans in this part of world. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first report of isolation of STEC and EPEC strains from healthy goats in Jammu and Kashmir State of India, which could be a source of infection to humans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号