首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gap junction communication in some cells has been shown to be inhibited by pp60v-src, a protein tyrosine kinase encoded by the viral oncogene v-src. The gap junction protein connexin43 (Cx43) has been shown to be phosphorylated on serine in the absence of pp60v-src and on both serine and tyrosine in cells expressing pp60v-src. However, it is not known if the effect of v-src expression on communication results directly from tyrosine phosphorylation of the Cx43 or indirectly, for example, by activation of other second-messenger systems. In addition, the effect of v-src expression on communication based on other connexins has not been examined. We have used a functional expression system consisting of paired Xenopus oocytes to examine the effect of v-src expression on the regulation of communication by gap junctions comprised of different connexins. Expression of pp60v-src completely blocked the communication induced by Cx43 but had only a modest effect on communication induced by connexin32 (Cx32). Phosphoamino acid analysis showed that pp60v-src induced tyrosine phosphorylation of Cx43, but not Cx32. A mutation replacing tyrosine 265 of Cx43 with phenylalanine abolished both the inhibition of communication and the tyrosine phosphorylation induced by pp60v-src without affecting the ability of this protein to form gap junctions. These data show that the effect of pp60v-src on gap junctional communication is connexin specific and that the inhibition of Cx43-mediated junctional communication by pp60v-src requires tyrosine phosphorylation of Cx43.  相似文献   

2.
Cell-to-cell communication is achieved by passage of small molecules through gap junction membrane channels. The expression of the transforming gene from Rous sarcoma virus, v-src, induces a rapid and dramatic reduction in cell-to-cell communication in cultured cells. To determine whether connexin43, a major gap junction protein expressed in fibroblasts, is a target for the v-src protein tyrosine kinase activity, we examined the phosphorylation state of connexin43 in cells expressing variants of src. Using an antipeptide serum that recognizes connexin43, we demonstrate that this protein is phosphorylated on serine and tyrosine residues in avian and mammalian cells expressing activated src proteins. Connexin43 from control cells and cells expressing nonactivated variants of the src protein was phosphorylated solely on serine residues. In lysates from v-src-transformed cells, all phosphorylated connexin43 molecules were cleared from the lysate by sequential immunoprecipitations using the phosphotyrosine antibodies, suggesting that each molecule of phosphorylated connexin43 contains both phosphoserine and phosphotyrosine. We have also examined junctional permeability in cells expressing src variants and find that loss of cell-to-cell communication correlates with tyrosine phosphorylation of connexin43.  相似文献   

3.
Cx43 is a widely expressed gap junction protein that mediates communication between many cell types. In general, tumor cells display less intercellular communication than their nontransformed precursors. The Src tyrosine kinase has been implicated in progression of a wide variety of cancers. Src can phosphorylate Cx43, and this event is associated with the suppression of gap junction communication. However, Src activates multiple signaling pathways that can also affect intercellular communication. For example, serine kinases including PKC and MAPK are downstream effectors of Src that can also phosphorylate Cx43 and disrupt gap junctional communication. In addition, Src can affect the expression of other proteins that may affect intercellular communication. Indeed, disruption of gap junctions by Src appears to be complex. It has become clear that Src can affect Cx43 activity by multiple mechanisms. Here, we review how Src may orchestrate events that regulate intercellular communication mediated by Cx43.  相似文献   

4.
Gap junctions (GJs) exhibit a complex modus of assembly and degradation to maintain balanced intercellular communication (GJIC). Several growth factors, including vascular endothelial growth factor (VEGF), have been reported to disrupt cell–cell junctions and abolish GJIC. VEGF directly stimulates VEGF-receptor tyrosine kinases on endothelial cell surfaces. Exposing primary porcine pulmonary artery endothelial cells (PAECs) to VEGF for 15 min resulted in a rapid and almost complete loss of connexin43 (Cx43) GJs at cell–cell appositions and a concomitant increase in cytoplasmic, vesicular Cx43. After prolonged incubation periods (60 min), Cx43 GJs reformed and intracellular Cx43 were restored to levels observed before treatment. GJ internalization correlated with efficient inhibition of GJIC, up to 2.8-fold increased phosphorylation of Cx43 serine residues 255, 262, 279/282, and 368, and appeared to be clathrin driven. Phosphorylation of serines 255, 262, and 279/282 was mediated by MAPK, whereas serine 368 phosphorylation was mediated by PKC. Pharmacological inhibition of both signaling pathways significantly reduced Cx43 phosphorylation and GJ internalization. Together, our results indicate that growth factors such as VEGF activate a hierarchical kinase program—including PKC and MAPK—that induces GJ internalization via phosphorylation of well-known regulatory amino acid residues located in the Cx43 C-terminal tail.  相似文献   

5.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in tissues and are important in development, tissue/cellular homeostasis, and carcinogenesis. Genome databases indicate that there are at least 20 connexins in the mouse and human. Connexin phosphorylation has been implicated in connexin assembly into gap junctions, gap junction turnover, and cell signaling events that occur in response to tumor promoters and oncogenes. Connexin43 (Cx43), the most widely expressed and abundant gap junction protein, can be phosphorylated at several different serine and tyrosine residues. Here, we focus on the dynamic regulation of Cx43 phosphorylation in tissue and how these regulatory events are affected during development, wound healing, and carcinogenesis. The activation of several kinases, including protein kinase A, protein kinase C, p34cdc2/cyclin B kinase, casein kinase 1, mitogen-activated protein kinase, and pp60src kinase, can lead to the phosphorylation of different residues in the C-terminal region of Cx43. The use of antibodies specific for phosphorylation at defined residues has allowed the examination of specific phosphorylation events both in tissue culture and in vivo. These new antibody tools and those under development will allow us to correlate specific phosphorylation events with changes in connexin function.  相似文献   

6.
《FEBS letters》2014,588(8):1423-1429
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially “unzip” and be internalized/endocytosed into the cell that produced each connexin.  相似文献   

7.
Growth factors regulate cellular proliferation and differentiation by activating plasma membrane tyrosine kinase receptors and triggering a cascade of events mediated by intracellular signaling proteins. The mechanism underlying growth factor modification of cellular functions, such as gap-junctional communication (gjc), has not been established clearly. Addition of epidermal growth factor (EGF) to T51B rat liver epithelial cells resulted in the rapid activation of EGF receptor tyrosine kinase activity followed by a transient dose-dependent disruption of gjc. This change did not result from the gross disturbance of membrane gap junction plaques as measured by immunofluorescence microscopy, but instead correlated with markedly elevated phosphorylation of the connexin43 (cx43) gap junction protein, a profound shift to predominantly phosphorylated forms of cx43, and the appearance of a novel phosphorylated cx43 protein. These changes in cx43 phosphorylation involved only serine residues. On restoration of gjc, these alterations in cx43 phosphorylation reverted to the pre-EGF treatment state. Both events were inhibited by the serine/threonine protein phosphatase inhibitor, okadaic acid. Therefore, unlike the case for pp60v-src, EGF-induced disruption of gjc is not associated with tyrosine phosphorylation of cx43, but instead may result from phosphorylation of cx43 by activated intracellular signaling serine protein kinase(s).  相似文献   

8.
Suppression of gap-junctional communication by various protein kinases, growth factors, and oncogenes frequently correlates with enhanced mitogenesis. The oncogene v-src appears to cause acute closure of gap junction channels. Tyr265 in the COOH-terminal tail of connexin 43 (Cx43) has been implicated as a potential target of v-src, although v-src action has also been associated with changes in serine phosphorylation. We have investigated the mechanism of this acute regulation through mutagenesis of Cx43 expressed in Xenopus laevis oocyte pairs. Truncations of the COOH-terminal domain led to an almost complete loss of response of Cx43 to v-src, but this was restored by coexpression of the independent COOH-terminal polypeptide. This suggests a ball and chain gating mechanism, similar to the mechanism proposed for pH gating of Cx43, and K+ channel inactivation. Surprisingly, we found that v-src mediated gating of Cx43 did not require the tyrosine site, but did seem to depend on the presence of two potential SH3 binding domains and the mitogen-activated protein (MAP) kinase phosphorylation sites within them. Further point mutagenesis and pharmacological studies in normal rat kidney (NRK) cells implicated MAP kinase in the gating response to v-src, while the stable binding of v-src to Cx43 (in part mediated by SH3 domains) did not correlate with its ability to mediate channel closure. This suggests a common link between closure of gap junctions by v-src and other mitogens, such as EGF and lysophosphatidic acid (LPA).  相似文献   

9.
Previously we showed a rapid and transient inhibition of gap junctional communication (GJC) by platelet-derived growth factor (PDGF) in T51B rat liver epithelial cells expressing wild-type platelet-derived growth factor β receptors (PDGFrβ). This action of PDGF correlated with the hyperphosphorylation of the gap junction protein connexin43 (Cx43) and required PDGFrβ tyrosine kinase activity, suggesting the participation of protein kinases and phosphatases many of which are activated by PDGF treatment. In the present study, two such kinases, namely protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), are investigated for their possible involvement in PDGF-induced closure of junctional channels and Cx43-phosphorylation. Down-regulation of PKC-isoforms by 12-O-tetradecanoylphorbol-13-acetate or pretreatment with the PKC inhibitor calphostin C, completely blocked PDGF action on GJC and Cx43. Activation of MAPK correlated with PDGF-induced Cx43 phosphorylation, and prevention of MAPK activation by PD98059 eliminated the PDGF effects. Interestingly, elimination of GJC recovery by cycloheximide was associated with a sustained activated-MAPK level. Based on these results we postulate that the activation of PKC and MAPK are required in PDGF-mediated Cx43 phosphorylation and junctional closure. J. Cell. Physiol. 176:332–341, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells and are important in development and maintenance of cell homeostasis. Phosphorylation has been implicated in the regulation of gap junctional communication at several stages of the cell cycle and the connexin “lifecycle”, such as trafficking, assembly/disassembly, degradation, as well as in the gating of “hemi” channels or intact gap junction channels. This review focuses on how phosphorylation can regulate the early stages of the connexin life cycle through assembly of functional gap junctional channels. The availability of sequences from the human genome databases has indicated that the number of connexins in the gene family is approximately 20, but we know mostly about how connexin43 (Cx43) is regulated. Recent technologies and investigations of interacting proteins have shown that activation of several kinases including protein kinase A, protein kinase C (PKC), p34cdc2/cyclin B kinase, casein kinase 1 (CK1), mitogen-activated protein kinase (MAPK) and pp60src kinase can lead to phosphorylation of the majority of the 21 serine and two of the tyrosine residues in the C-terminal region of Cx43. While many studies have correlated changes in kinase activity with changes in gap junctional communication, further research is needed to directly link specific phosphorylation events with changes in connexin oligomerization and gap junction assembly.  相似文献   

11.
Gap junction channels are made of a family proteins called connexins. The best-studied type of connexin, Connexin43 (Cx43), is phosphorylated at several sites in its C-terminus. The tumor-promoting phorbol ester TPA strongly inhibits Cx43 gap junction channels. In this study we have investigated mechanisms involved in TPA-induced phosphorylation of Cx43 and inhibition of gap junction channels. The data show that TPA-induced inhibition of gap junction intercellular communication (GJIC) is dependent on both PKC and the MAP kinase pathway. The data suggest that PKC-induced activation of MAP kinase partly involves Src-independent trans-activation of the EGF receptor, and that TPA-induced shift in SDS-PAGE gel mobility of Cx43 is caused by MAP kinase phosphorylation, whereas phosphorylation of S368 by PKC does not alter gel migration of Cx43. We also show that TPA, in addition to phosphorylation of S368, also induces phosphorylation of S255 and S262, in a MAP kinase-dependent manner. The data add to our understanding of the molecular mechanisms involved in the interplay between signaling pathways in regulation of GJIC.  相似文献   

12.
Disruption of gap junctional communication (GJC) by various compounds, including growth factors and tumor promoters, is believed to be modulated by the phosphorylation of a gap junctional protein, connexin43 (Cx43). We have previously demonstrated a platelet-derived growth factor (PDGF)-induced blockade of GJC and phosphorylation of Cx43 in T51B rat liver epithelial cells expressing wild-type PDGF receptor beta (PDGFr beta). Both of these actions of PDGF required participation of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). Similar requirements of MAPK were suggested in the modulation of GJC by other agents, including epidermal growth factor (EGF) and lysophosphatidic acid (LPA). Since many of these agents activate additional protein kinases, our present study examined whether activation of MAPK was sufficient for Cx43 phosphorylation and GJC blockade. By utilizing a variety of MAPK activators, we now show that activation of MAPK is not always associated with either Cx43 phosphorylation or disruption of GJC, which suggests a requirement for additional factors. Furthermore, pretreatment with hydrogen peroxide (H2O2), a potent MAPK activator but inefficient GJC/Cx43 modulator, abrogated PDGF- or TPA-induced disruption of GJC. While a 5 min H2O2 pretreatment abolished both PDGF- and TPA-induced Cx43 phosphorylation and GJC blockade, a simultaneous H2O2 treatment interfered only with GJC closure but not with the phosphorylation of Cx43 induced by PDGF and TPA. This finding indicates that, in addition to the Cx43 phosphorylation step, inhibition of GJC requires interaction with other components. H2O2-mediated abrogation of PDGF/TPA signaling can be neutralized by the antioxidant N-acetylcysteine (NAC) or by the tyrosine kinase inhibitor genistein. Taken together, our results suggest that disruption of GJC is not solely mediated by either activated MAPK or Cx43 phosphorylation but requires the participation of additional kinases and regulatory components. This complex mode of regulation is perhaps essential for the proposed functional role of GJC.  相似文献   

13.
Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.  相似文献   

14.
15.
Connexin 43 (Cx43), the most widely expressed and abundant vertebrate gap junction protein, is phosphorylated at multiple different serine residues during its life cycle. Cx43 is phosphorylated soon after synthesis and phosphorylation changes as it traffics through the endoplasmic reticulum and Golgi to the plasma membrane, ultimately forming a gap junction structure. The electrophoretic mobility of Cx43 changes as the protein proceeds through its life cycle, with prominent bands often labeled P0, P1 and P2. Many reports have indicated changes in “phosphorylation” based on these mobility shifts and others that occur in response to growth factors or other biological effectors. Here, we indicate how phosphospecific and epitope-specific antibodies can be utilized to show when and where certain phosphorylation events occur during the Cx43 life cycle. These reagents show that phosphorylation at S364 and/or S365 is involved in forming the P1 isoform, an event that apparently regulates trafficking to or within the plasma membrane. Phosphorylation at S325, S328 and/or S330 is necessary to form a P2 isoform; and this phosphorylation event is present only in gap junctions. Treatment with protein kinase C activators led to phosphorylation at S368, S279/S282 and S262 with a shift in mobility in CHO, but not MDCK, cells. The shift was dependent on mitogen-activated protein kinase activity but not phosphorylation at S279/S282. However, phosphorylation at S262 could explain the shift. By defining these phosphorylation events, we have begun to sort out the critical signaling pathways that regulate gap junction function.  相似文献   

16.
Phosphorylation affects several biological functions of connexin43 (Cx43), although its role on Cx43-mediated inhibition of DNA synthesis is not known. Previous studies showed increased Cx43 phosphorylation on serine in response to growth factor stimulation of cardiomyocytes, mediated by protein kinase C-epsilon (PKCε). Here we report that activation of PKCε is also necessary for stimulation of cardiomyocyte DNA synthesis and mitosis. We have investigated the participation of specific serine residues that are putative PKC targets in producing phosphorylated Cx43 species and also in regulating DNA synthesis in cardiomyocytes. Interference with the PKC signaling system and/or the phosphorylation of specific amino-acids of Cx43 may allow regulation of the mitogenic response.  相似文献   

17.
Epidermal growth factor (EGF) has been found to induce enhanced gap junctional intercellular communication (GJIC) in the human kidney epithelial cell line K7. This is in contrast to what is reported for other cell types, which all show decreased GJIC in response to EGF. In the present study it is shown that 12-O-tetradecanoylphorbol-13-acetate (TPA) and EGF induce similar phosphorylation pattern of the gap junction protein connexin43 (Cx43) in K7 cells, although their effects on GJIC are opposite. Tyrosine phosphorylation of a 42 kD protein was observed to be induced concomitantly with phosphorylation of Cx43. EGF was however found to induce only serine phosphorylation of Cx43, indicating that the tyrosine kinase activity of the EGF receptor was not directly affecting the gap junction protein. The 42 kD protein phosphorylated on tyrosine was identified to be a mitogen activated protein (MAP) kinase. Both EGF and TPA was found to activate MAP kinase in these cells. Phosphorylation of Cx43 and enhancement of GJIC in response to EGF occurred with difference in time course. Phosphorylation of Cx43 was completed within 15 min, while the enhanced GJIC appeared 2-3 h later. It is therefore possible that regulation of synthesis or transport of Cx43 is responsible for the increase in GJIC, rather than direct involvement of Cx43 phosphorylation. This is in support of our previous finding that protein synthesis is necessary for EGF induced upregulation of GJIC in K7 cells.  相似文献   

18.
Gap junctions (GJs) traverse apposing membranes of neighboring cells to mediate intercellular communication by passive diffusion of signaling molecules. We have shown previously that cells endocytose GJs utilizing the clathrin machinery. Endocytosis generates cytoplasmic double-membrane vesicles termed annular gap junctions or connexosomes. However, the signaling pathways and protein modifications that trigger GJ endocytosis are largely unknown. Treating mouse embryonic stem cell colonies – endogenously expressing the GJ protein connexin43 (Cx43) – with epidermal growth factor (EGF) inhibited intercellular communication by 64% and activated both, MAPK and PKC signaling cascades to phosphorylate Cx43 on serines 262, 279/282, and 368. Upon EGF treatment Cx43 phosphorylation transiently increased up to 4-fold and induced efficient (66.4%) GJ endocytosis as evidenced by a 5.9-fold increase in Cx43/clathrin co-precipitation.  相似文献   

19.
Phosphorylation at unspecified sites is known to regulate the life cycle (assembly, gating, and turnover) of the gap junction protein, Cx43. In this paper, we show that Cx43 is phosphorylated on S365 in cultured cells and heart tissue. Nuclear magnetic resonance structural studies of the C-terminal region of Cx43 with an S365D mutation indicate that it forms a different stable conformation than unphosphorylated wild-type Cx43. Immunolabeling with an antibody specific for Cx43 phosphorylated at S365 shows staining on gap junction structures in heart tissue that is lost upon hypoxia when Cx43 is no longer specifically localized to the intercalated disk. Efficient phosphorylation at S368, an important Cx43 channel regulatory event that increases during ischemia or PKC activation, depends on S365 being unphosphorylated. Thus, phosphorylation at S365 can serve a “gatekeeper” function that may represent a mechanism to protect cells from ischemia and phorbol ester-induced down-regulation of channel conductance.  相似文献   

20.
Endothelin-1 (ET-1) is overexpressed in ovarian carcinoma and acts as an autocrine factor selectively through the ETA receptor (ETAR) to promote tumor cell proliferation, survival, neovascularization, and invasiveness. Loss of gap junctional intercellular communication (GJIC) is critical for tumor progression by allowing the cells to escape growth control. Exposure of HEY and OVCA 433 ovarian carcinoma cell lines to ET-1 led to a 50-75% inhibition in intercellular communication and to a decrease in the connexin 43 (Cx43)-based gap junction plaques. To investigate the phosphorylation state of Cx43, ovarian carcinoma cell lysates were immunoprecipitated and transient tyrosine phosphorylation of Cx43 was detected in ET-1-treated cells. BQ 123, a selective ETAR antagonist, blocked the ET-1-induced Cx43 phosphorylation and cellular uncoupling. Gap junction closure was prevented by tyrphostin 25 and by the selective c-Src inhibitor, PP2. Furthermore, the increased Cx43 tyrosine phosphorylation was correlated with ET-1-induced increase of c-Src activity, and PP2 suppressed the ET-1-induced Cx43 tyrosine phosphorylation, indicating that inhibition of Cx43-based GJIC is mainly mediated by the Src tyrosine kinase pathway. In vivo, the inhibition of human ovarian tumor growth in nude mice induced by the potent ETAR antagonist, ABT-627, was associated with a reduction of Cx43 phosphorylation. These findings indicate that the signaling mechanisms involved in GJIC disruption on ovarian carcinoma cells depend on ETAR activation, which leads to the Cx43 tyrosine phosphorylation mediated by c-Src, suggesting that ETAR blockade may contribute to the control of ovarian carcinoma growth and progression also by preventing the loss of GJIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号