首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variants of rhodopsin, a complex of 11-cis retinal and opsin, cause retinitis pigmentosa (RP), a degenerative disease of the retina. Trafficking defects due to rhodopsin misfolding have been proposed as the most likely basis of the disease, but other potentially overlapping mechanisms may also apply. Pharmacological therapies for RP must target the major disease mechanism and contend with overlap, if it occurs. To this end, we have explored the molecular basis of rhodopsin RP in the context of pharmacological rescue with 11-cis retinal. Stable inducible cell lines were constructed to express wild-type opsin; the pathogenic variants T4R, T17M, P23A, P23H, P23L, and C110Y; or the nonpathogenic variants F220L and A299S. Pharmacological rescue was measured as the fold increase in rhodopsin or opsin levels upon addition of 11-cis retinal during opsin expression. Only Pro23 and T17M variants were rescued significantly. C110Y opsin was produced at low levels and did not yield rhodopsin, whereas the T4R, F220L, and A299S proteins reached near-wild-type levels and changed little with 11-cis retinal. All of the mutant rhodopsins exhibited misfolding, which increased over a broad range in the order F220L, A299S, T4R, T17M, P23A, P23H, P23L, as determined by decreased thermal stability in the dark and increased hydroxylamine sensitivity. Pharmacological rescue increased as misfolding decreased, but was limited for the least misfolded variants. Significantly, pathogenic variants also showed abnormal photobleaching behavior, including an increased ratio of metarhodopsin-I-like species to metarhodopsin-II-like species and aberrant photoproduct accumulation with prolonged illumination. These results, combined with an analysis of published biochemical and clinical studies, suggest that many rhodopsin variants cause disease by affecting both biosynthesis and photoactivity. We conclude that pharmacological rescue is promising as a broadly effective therapy for rhodopsin RP, particularly if implemented in a way that minimizes the photoactivity of the mutant proteins.  相似文献   

2.
The structure in the extracellular, intradiscal domain of rhodopsin surrounding the Cys110–Cys187 disulfide bond has been shown to be important for correct folding of this receptor in vivo. Retinitis pigmentosa misfolding mutants of the apoprotein opsin (such as P23H) misfold, as defined by a deficiency in ability to bind 11-cis retinal and form rhodopsin. These mutants also possess an abnormal Cys185–Cys187 disulfide bond in the intradiscal domain. Here, by mutating Cys185 to alanine, we eliminate the possibility of forming this abnormal disulfide bond and investigate the effect of combining the C185A mutation with the retinitis pigmentosa mutation P23H. Both the P23H and P23H/C185A double mutant suffer from low expression and poor 11-cis retinal binding. Our data suggest that misfolding events occur that do not have an absolute requirement for abnormal Cys185–Cys187 disulfide bond formation. In the detergent-solubilised, purified state, the C185A mutation allows formation of rhodopsin at wild-type (WT) levels, but has interesting effects on protein stability. C185A rhodopsin is less thermally stable than WT, whereas C185A opsin shows the same ability to regenerate rhodopsin in detergent as WT. Purified C185A and WT opsins, however, have contrasting 11-cis retinal binding kinetics. A high proportion of C185A opsin binds 11-cis retinal with a slow rate that reflects a denatured state of opsin reverting to a fast-binding, open-pocket conformation. This slower rate is not observed in a stabilising lipid/detergent system, 1,2-dimyristoyl-sn-glycero-3-phosphocholine/Chaps, in which C185A exhibits WT (fast) retinal binding. We propose that the C185A mutation destabilises the open-pocket conformation of opsin in detergent resulting in an equilibrium between correctly folded and denatured states of the protein. This equilibrium can be driven towards the correctly folded rhodopsin state by the binding of 11-cis retinal.  相似文献   

3.
Autosomal dominant retinitis pigmentosa (ADRP) mutants (T4K, N15S, T17M, V20G, P23A/H/L, and Q28H) in the N-terminal cap of rhodopsin misfold when expressed in mammalian cells. To gain insight into the causes of misfolding and to define the contributions of specific residues to receptor stability and function, we evaluated the responses of these mutants to 11-cis-retinal pharmacological chaperone rescue or disulfide bond-mediated repair. Pharmacological rescue restored folding in all mutants, but the purified mutant pigments in all cases were thermo-unstable and exhibited abnormal photobleaching, metarhodopsin II decay, and G protein activation. As a complementary approach, we superimposed this panel of ADRP mutants onto a rhodopsin background containing a juxtaposed cysteine pair (N2C/D282C) that forms a disulfide bond. This approach restored folding in T4K, N15S, V20G, P23A, and Q28H but not T17M, P23H, or P23L. ADRP mutant pigments obtained by disulfide bond repair exhibited enhanced stability, and some also displayed markedly improved photobleaching and signal transduction properties. Our major conclusion is that the N-terminal cap stabilizes opsin during biosynthesis and contributes to the dark-state stability of rhodopsin. Comparison of these two restorative approaches revealed that the correct position of the cap relative to the extracellular loops is also required for optimal photochemistry and efficient G protein activation.  相似文献   

4.
In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of β-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor.  相似文献   

5.
Rhodopsin is a canonical class A photosensitive G protein–coupled receptor (GPCR), yet relatively few pharmaceutical agents targeting this visual receptor have been identified, in part due to the unique characteristics of its light-sensitive, covalently bound retinal ligands. Rhodopsin becomes activated when light isomerizes 11-cis-retinal into an agonist, all-trans-retinal (ATR), which enables the receptor to activate its G protein. We have previously demonstrated that, despite being covalently bound, ATR can display properties of equilibrium binding, yet how this is accomplished is unknown. Here, we describe a new approach for both identifying compounds that can activate and attenuate rhodopsin and testing the hypothesis that opsin binds retinal in equilibrium. Our method uses opsin-based fluorescent sensors, which directly report the formation of active receptor conformations by detecting the binding of G protein or arrestin fragments that have been fused onto the receptor''s C terminus. We show that these biosensors can be used to monitor equilibrium binding of the agonist, ATR, as well as the noncovalent binding of β-ionone, an antagonist for G protein activation. Finally, we use these novel biosensors to observe ATR release from an activated, unlabeled receptor and its subsequent transfer to the sensor in real time. Taken together, these data support the retinal equilibrium binding hypothesis. The approach we describe should prove directly translatable to other GPCRs, providing a new tool for ligand discovery and mutant characterization.  相似文献   

6.
The P23H opsin mutation is the most common cause of autosomal dominant retinitis pigmentosa. Even though the pathobiology of the resulting retinal degeneration has been characterized in several animal models, its complex molecular mechanism is not well understood. Here, we expressed P23H bovine rod opsin in the nervous system of Caenorhabditis elegans. Expression was low due to enhanced protein degradation. The mutant opsin was glycosylated, but the polysaccharide size differed from that of the normal protein. Although P23H opsin aggregated in the nervous system of C. elegans, the pharmacological chaperone 9-cis-retinal stabilized it during biogenesis, producing a variant of rhodopsin called P23H isorhodopsin. In vitro, P23H isorhodopsin folded correctly, formed the appropriate disulfide bond, could be photoactivated but with reduced sensitivity, and underwent Meta II decay at a rate similar to wild type isorhodopsin. In worm neurons, P23H isorhodopsin initiated phototransduction by coupling with the endogenous Gi/o signaling cascade that induced loss of locomotion. Using pharmacological interventions affecting protein synthesis and degradation, we showed that the chromophore could be incorporated either during or after mutant protein translation. However, regeneration of P23H isorhodopsin with chromophore was significantly slower than that of wild type isorhodopsin. This effect, combined with the inherent instability of P23H rhodopsin, could lead to the structural cellular changes and photoreceptor death found in autosomal dominant retinitis pigmentosa. These results also suggest that slow regeneration of P23H rhodopsin could prevent endogenous chromophore-mediated stabilization of rhodopsin in the retina.  相似文献   

7.
Despite extensive study, how retinal enters and exits the visual G protein-coupled receptor rhodopsin remains unclear. One clue may lie in two openings between transmembrane helix 1 (TM1) and TM7 and between TM5 and TM6 in the active receptor structure. Recently, retinal has been proposed to enter the inactive apoprotein opsin (ops) through these holes when the receptor transiently adopts the active opsin conformation (ops*). Here, we directly test this “transient activation” hypothesis using a fluorescence-based approach to measure rates of retinal binding to samples containing differing relative fractions of ops and ops*. In contrast to what the transient activation hypothesis model would predict, we found that binding for the inverse agonist, 11-cis-retinal (11CR), slowed when the sample contained more ops* (produced using M257Y, a constitutively activating mutation). Interestingly, the increased presence of ops* allowed for binding of the agonist, all-trans-retinal (ATR), whereas WT opsin showed no binding. Shifting the conformational equilibrium toward even more ops* using a G protein peptide mimic (either free in solution or fused to the receptor) accelerated the rate of ATR binding and slowed 11CR binding. An arrestin peptide mimic showed little effect on 11CR binding; however, it stabilized opsin·ATR complexes. The TM5/TM6 hole is apparently not involved in this conformational selection. Increasing its size by mutagenesis did not enable ATR binding but instead slowed 11CR binding, suggesting that it may play a role in trapping 11CR. In summary, our results indicate that conformational selection dictates stable retinal binding, which we propose involves ATR and 11CR binding to different states, the latter a previously unidentified, open-but-inactive conformation.  相似文献   

8.
We present active‐state structures of the G protein‐coupled receptor (GPCRs) rhodopsin carrying the disease‐causing mutation G90D. Mutations of G90 cause either retinitis pigmentosa (RP) or congenital stationary night blindness (CSNB), a milder, non‐progressive form of RP. Our analysis shows that the CSNB‐causing G90D mutation introduces a salt bridge with K296. The mutant thus interferes with the E113Q‐K296 activation switch and the covalent binding of the inverse agonist 11‐cis‐retinal, two interactions that are crucial for the deactivation of rhodopsin. Other mutations, including G90V causing RP, cannot promote similar interactions. We discuss our findings in context of a model in which CSNB is caused by constitutive activation of the visual signalling cascade.  相似文献   

9.
Retinitis pigmentosa (RP) is a group of inherited diseases that cause blindness due to the progressive death of rod and cone photoreceptors in the retina. There are currently no effective treatments for RP. Inherited mutations in rhodopsin, the light-sensing protein of rod photoreceptor cells, are the most common cause of autosomal-dominant RP. The majority of mutations in rhodopsin, including the common P23H substitution, lead to protein misfolding, which is a feature in many neurodegenerative disorders. Previous studies have shown that upregulating molecular chaperone expression can delay disease progression in models of neurodegeneration. Here, we have explored the potential of the heat-shock protein co-inducer arimoclomol to ameliorate rhodopsin RP. In a cell model of P23H rod opsin RP, arimoclomol reduced P23H rod opsin aggregation and improved viability of mutant rhodopsin-expressing cells. In P23H rhodopsin transgenic rat models, pharmacological potentiation of the stress response with arimoclomol improved electroretinogram responses and prolonged photoreceptor survival, as assessed by measuring outer nuclear layer thickness in the retina. Furthermore, treated animal retinae showed improved photoreceptor outer segment structure and reduced rhodopsin aggregation compared with vehicle-treated controls. The heat-shock response (HSR) was activated in P23H retinae, and this was enhanced with arimoclomol treatment. Furthermore, the unfolded protein response (UPR), which is induced in P23H transgenic rats, was also enhanced in the retinae of arimoclomol-treated animals, suggesting that arimoclomol can potentiate the UPR as well as the HSR. These data suggest that pharmacological enhancement of cellular stress responses may be a potential treatment for rhodopsin RP and that arimoclomol could benefit diseases where ER stress is a factor.  相似文献   

10.
The lectin chaperone calnexin (Cnx) is important for quality control of glycoproteins, and the chances of correct folding of a protein increase the longer the protein interacts with Cnx. Mutations in glycoproteins increase their association with Cnx, and these mutant proteins are retained in the endoplasmic reticulum. However, until now, the increased interaction with Cnx was not known to increase the folding of mutant glycoproteins. Because many human diseases result from glycoprotein misfolding, a Cnx-assisted folding of mutant glycoproteins could be beneficial. Mutations of rhodopsin, the glycoprotein pigment of rod photoreceptors, cause misfolding resulting in retinitis pigmentosa. Despite the critical role of Cnx in glycoprotein folding, surprisingly little is known about its interaction with rhodopsin or whether this interaction could be modulated to increase the folding of mutant rhodopsin. Here, we demonstrate that Cnx preferentially associates with misfolded mutant opsins associated with retinitis pigmentosa. Furthermore, the overexpression of Cnx leads to an increased accumulation of misfolded P23H opsin but not the correctly folded protein. Finally, we demonstrate that increased levels of Cnx in the presence of the pharmacological chaperone 11-cis-retinal increase the folding efficiency and result in an increase in correct folding of mutant rhodopsin. These results demonstrate that misfolded rather than correctly folded rhodopsin is a substrate for Cnx and that the interaction between Cnx and mutant, misfolded rhodopsin, can be targeted to increase the yield of folded mutant protein.  相似文献   

11.
Membrane protein variants with diminished conformational stability often exhibit enhanced cellular expression at reduced growth temperatures. The expression of “temperature-sensitive” variants is also typically sensitive to corrector molecules that bind and stabilize the native conformation. There are many examples of temperature-sensitive rhodopsin variants, the misfolding of which is associated with the molecular basis of retinitis pigmentosa. In this work, we employ deep mutational scanning to compare the effects of reduced growth temperature and 9-cis-retinal, an investigational corrector, on the plasma membrane expression of 700 rhodopsin variants in HEK293T cells. We find that the change in expression at reduced growth temperatures correlates with the response to 9-cis-retinal among variants bearing mutations within a hydrophobic transmembrane domain (TM2). The most sensitive variants appear to disrupt a native helical kink within this transmembrane domain. By comparison, mutants that alter the structure of a polar transmembrane domain (TM7) exhibit weaker responses to temperature and retinal that are poorly correlated. Statistical analyses suggest that this observed insensitivity cannot be attributed to a single variable, but likely arises from the composite effects of mutations on the energetics of membrane integration, the stability of the native conformation, and the integrity of the retinal-binding pocket. Finally, we show that the characteristics of purified temperature- and retinal-sensitive variants suggest that the proteostatic effects of retinal may be manifested during translation and cotranslational folding. Together, our findings highlight several biophysical constraints that appear to influence the sensitivity of genetic variants to temperature and small-molecule correctors.  相似文献   

12.
Rhodopsin, the photoreceptor of rod cells, absorbs light to mediate the first step of vision by activating the G protein transducin (Gt). Several human diseases, such as retinitis pigmentosa or congenital night blindness, are linked to rhodopsin malfunctions. Most of the corresponding in vivo studies and structure-function analyses (e.g. based on protein x-ray crystallography or spectroscopy) have been carried out on murine or bovine rhodopsin. Because these rhodopsins differ at several amino acid positions from human rhodopsin, we conducted a comprehensive spectroscopic characterization of human rhodopsin in combination with molecular dynamics simulations. We show by FTIR and UV-visible difference spectroscopy that the light-induced transformations of the early photointermediates are very similar. Significant differences between the pigments appear with formation of the still inactive Meta I state and the transition to active Meta II. However, the conformation of Meta II and its activity toward the G protein are essentially the same, presumably reflecting the evolutionary pressure under which the active state has developed. Altogether, our results show that although the basic activation pathways of human and bovine rhodopsin are similar, structural deviations exist in the inactive conformation and during receptor activation, even between closely related rhodopsins. These differences between the well studied bovine or murine rhodopsins and human rhodopsin have to be taken into account when the influence of point mutations on the activation pathway of human rhodopsin are investigated using the bovine or murine rhodopsin template sequences.  相似文献   

13.
Motoyuki Tsuda 《BBA》1978,502(3):495-506
In the photoregeneration process of squid rhodopsin, an intermediate has been found at neutral pH values (phosphate buffer) with a flash light (λ > 540 nm). An intermediate R430, with the 11-cis retinal as chromophore, is produced from metarhodopsin in light and is converted to rhodopsin through the processes R430 → P380 and P380 → rhodopsin. The pH dependence of the velocity of the conversions suggests that processes R430 → P380 and P380 → rhodopsin involve a protolytic reaction and that the ionized group is a histidine residue of opsin. Kinetic parameters show that the largest conformational change in opsin occurs in the conversion of R430 → P380.  相似文献   

14.
The ultraviolet absorbance of squid and octopus rhodopsin changes reversibly at 234 nm and near 280 nm in the interconversion of rhodopsin and metarhodopsin. The absorbance change near 280 nm is ascribed to both protein and chromophore parts. Rhodopsin is photoregenerated from metarhodopsin via an intermediate, P380, on irradiation with yellow light (λ > 520 nm). The ultraviolet absorbance decreases in the change from rhodopsin to metarhodopsin and recovers in two steps; mostly in the process from metarhodopsin to P380 and to a lesser extent in the process from P380 to rhodopsin. P380 has a circular dichroism (CD) band at 380 nm and its magnitude is the same order as that of rhodopsin. Thus it is considered that the molecular structure of P380 is close to that of rhodopsin and that the chromophore is fixed to opsin as in rhodopsin. In the change from metarhodopsin to P380, the chromophore is isomerized from the all-trans to the 11-cis form, and the conformation of opsin changes to fit 11-cis retinal. In the change from P380 to rhodopsin, a small change in the conformation of the protein part and the protonation of the Schiff base, the primary retinal-opsin link, occur.  相似文献   

15.
Visual signal transduction is initiated by the photoisomerization of 11-cis retinal upon rhodopsin ligation. Unlike vertebrate rhodopsin, which interacts with Gt-type G-protein to stimulate the cyclic GMP signaling pathway, invertebrate rhodopsin interacts with Gq-type G-protein to stimulate a signaling pathway that is based on inositol 1,4,5-triphosphate. Since the inositol 1,4,5-triphosphate signaling pathway is utilized by mammalian nonvisual pigments and a large number of G-protein-coupled receptors, it is important to elucidate how the activation mechanism of invertebrate rhodopsin differs from that of vertebrate rhodopsin. Previous crystallographic studies of squid and bovine rhodopsins have shown that there is a profound difference in the structures of the retinal-binding pockets of these photoreceptors. Here, we report the crystal structures of all-trans bathorhodopsin (Batho; the first photoreaction intermediate) and the artificial 9-cis isorhodopsin (Iso) of squid rhodopsin. Upon the formation of Batho, the central moiety of the retinal was observed to move largely towards the cytoplasmic side, while the Schiff base and the ionone ring underwent limited movements (i.e., the all-trans retinal in Batho took on a right-handed screwed configuration). Conversely, the 9-cis retinal in Iso took on a planar configuration. Our results suggest that the light energy absorbed by squid rhodopsin is mostly converted into the distortion energy of the retinal polyene chain and surrounding residues.  相似文献   

16.
Retinitis pigmentosa (RP) refers to a heterogeneous group of inherited diseases that result in progressive retinal degeneration, characterized by visual field constriction and night blindness. A total of 103 mutations in rhodopsin are linked to RP to date, and the phenotypes range from severe to asymptomatic. To study the relation between phenotype and rhodopsin stability in disease mutants, we used a structure-based approach. For 12 of the mutants located at the protein-lipid interphase, we used the von Heijne water-membrane transfer scale, and we find that 9 of the mutations could affect membrane insertion. For 91 mutants, we used the protein design algorithm FoldX. The 3 asymptomatic mutations had no significant reduced stability, 2 were unsuitable for FoldX analysis since the structure was incorrect in this region, 63 mutations had a significant change in protein stability (> 1.6 kcal/mol), and 23 mutations had energy change values under the prediction error threshold (< 1.6 kcal/mol). Out of these 23, the disease-causing effect could be explained by the involvement in other functions (e.g., glycosylation motifs, the interface with arrestin and transducin, and the cilia-binding motif) for 19 mutants. The remaining 4 mutants were probably incorrectly associated with RP or have functionalities not discovered yet. For destabilizing mutations where clinical data were available, we found a highly significant correlation between FoldX energy changes and the average age of night blindness and between FoldX energy changes and daytime vision loss onset. Our detailed structural, functional, and energetic analysis provides a complete picture of the rhodopsin mutations and can guide mutation-specific therapies.  相似文献   

17.
The clinically common mutant opsin P23H, associated with autosomal dominant retinitis pigmentosa, yields low levels of rhodopsin when retinal is added following induction of the protein in stably transfected HEK-293 cells. We previously showed that P23H rhodopsin levels could be increased by providing a 7-membered ring, locked analog of 11-cis-retinal during expression of P23H opsin in vivo. Here we demonstrate that the mutant opsin is effectively rescued by 9- or 11-cis-retinal, the native chromophore. When retinal was added during expression, P23H rhodopsin levels were 5-fold (9-cis) and 6-fold (11-cis) higher than when retinal was added after opsin was expressed and cells were harvested. Levels of P23H opsin were increased approximately 3.5-fold with both compounds, but wild-type protein levels were only slightly increased. Addition of retinal during induction promoted the Golgi-specific glycosylation of P23H opsin and transport of the protein to the cell surface. P23H rhodopsins containing 9- or 11-cis-retinal had blue-shifted absorption maxima and altered photo-bleaching properties compared with the corresponding wild-type proteins. Significantly, P23H rhodopsins were more thermally unstable than the wild-type proteins and more rapidly bleached by hydroxylamine in the dark. We suggest that P23H opsin is similarly unstable and that retinal binds and stabilizes the protein early in its biogenesis to promote its cellular folding and trafficking. The implications of this study for treating retinitis pigmentosa and other protein conformational disorders are discussed.  相似文献   

18.
The crystal structures of opsin in the ligand-free and the G-protein-interacting states showed two inter-helical openings between transmembrane (TM) helices TM1 and TM7 and between TM5 and TM6 near the extracellular side that were thought to serve as the retinal uptake and release gates. However, it is unclear which opening is for 11-cis-retinal uptake or all-trans-retinal release although speculations have been proposed based on the structural features of opsin and retinal. In this work, we simulated the exit process of all-trans-retinal from the ligand-free opsin structure by the classical molecular dynamics (MD) and random acceleration molecular dynamics (RAMD). In the 64 ns classical MD simulation, retinal remained in the receptor but moved significantly toward the TM5-TM6 opening and almost inserted into the opening after 50 ns. Complete exit was observed in 114 out of 160 RAMD trajectories with the TM5-TM6 opening being the predominant egress gate while egress from the TM1-TM7 opening was observed in only a few trajectories when relatively large acceleration was applied and large structural alteration of the protein resulted. These results suggest that photolyzed all-trans-retinal is likely released through the TM5-TM6 opening. Based on the unidirectional mechanism of retinal exchange suggested by experiment, we speculate that the TM1-TM7 opening serves as the 11-cis-retinal uptake gate. The spatial occupancy maps of retinal computed from the 160 RAMD trajectories further indicated that retinal experienced significant interactions with the receptor during the exit process. The implications of these findings for disease mechanisms of rhodopsin mutants are discussed.  相似文献   

19.
Guanosine 3′,5′-cyclic monophosphate phosphodiesterase (EC 3.1.4.1) in frog rod outer segment prepared by a sucrose stepwise density gradient method was activated by light in the presence of GTP. Rhodopsin in rod outer segment was solubilized with sucrose laurylmonoester and then purified by concavanalin A-Sepharose column. Addition of photo-bleached preparation of the purified rhodopsin to the rod outer segment, which had been prepared by 43% (w/w) sucrose floatation, caused the activation of phosphodiesterase in the dark, while each component of the photo-product eluted from the column (all-trans retinal and opsin) did not. Regenerated rhodopsin prepared from 11-cis retinal and purified opsin activated phosphosdiesterase when it was bleached. From these facts it is suggested that an intermediate or a process of photolysis of rhodopsin causes activation of phosphodiesterase.  相似文献   

20.
Point mutations found in rhodopsin associated with the retinal degenerative disease retinitis pigmentosa have been expressed in mammalian COS-1 cells, purified, and characterised. The mutations characterised-most of them for the first time-have been Met44Thr, Gly114Asp, Arg135Leu, Val137Met, and Pro171Leu in the transmembrane domain; Leu328Pro and Ala346Pro in the C-terminal tail of the cytoplasmic domain; and Gly106Trp in the intradiscal domain. Several of these mutations cause misfolding which results in impaired 11-cis-retinal binding. Two of them, Met44Thr and Val137Met, show spectral and structural features similar to those of wild type rhodopsin (Type I mutants) but significantly increased transducin initial activation rates. We propose that, in the case of these mutants, abnormal functioning resulting in faster activation kinetics could also play a role in retinitis pigmentosa by altering the stoichiometric balance of the different proteins involved in the phototransduction biochemical reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号