首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang YA  Zhou WX  Li JX  Liu YQ  Yue YJ  Zheng JQ  Liu KL  Ruan JX 《Life sciences》2005,78(2):210-223
Previous studies have paid little attention to the anticonvulsant effect of anticholinergic drugs that act on both muscarinic (M) and nicotinic (N) receptors during soman-induced seizures. Therefore, with the establishment of a soman-induced seizures model in rats, this study evaluated the efficacy in preventing soman-induced convulsions of two antagonists of both the M and N receptors, phencynonate hydrochloride (PCH) and penehyclidine hydrochloride (8018), which were synthesized by our institute, and of other anticholinergic drugs, and investigated the mechanisms of their antiseizures responses. Male rats, previously prepared with electrodes to record electroencephalographic (EEG) activity, were pretreated with the oxime HI-6 (125 mg kg-1, i.p.) 30 min before they were administered soman (180 microg kg-1, s.c.). All animals developed seizures subsequent to this treatment. Different drugs were given at different times (5, 20 and 40 min after seizures onset) and their anticonvulsant effects were monitored and compared using the two variables, i.e. the dose that could totally control the ongoing seizures, as well as the speed of seizures control. The anticonvulsant effects of atropine, scopolamine and 8018 decreased with the progression of the seizures, and they eventually lost their anticonvulsant activity when the seizures had progressed for 40 min. In contrast, PCH showed good anticonvulsant effectiveness at 5 and 20 min, and especially at 40 min after seizures onset. Of the anticholinergic drugs tested, atropine, scopolamine, and 8018 showed no obvious protection against pentylenetetrazol (PTZ)-induced convulsions or N-methyl-D-aspartate (NMDA)-induced lethality in mice. However, PCH antagonized the PTZ-induced convulsions in a dose-dependant manner with an ED50 of 10.8 mg kg-1, i.p. (range of 7.1-15.2 mg kg-1) and partly blocked the lethal effects of NMDA in mice. PCH also dose-dependently inhibited NMDA-induced injury in rat primary hippocampal neuronal cultures, suggesting a possible neuroprotective action in vivo. In conclusion, our study suggests that the mechanisms of PCH action against soman-induced seizures might differ from those of the M receptor antagonists atropine and scopolamine, and that of the antagonist of both the M and N receptors, 8018. The pharmacological profile of PCH might include anticholinergic and anti-NMDA properties. Compared with the currently recommended anticonvulsant drug diazepam, with known NMDA receptor antagonists such as MK-801 and with conventional anticholinergics such as scopolamine and atropine, the potent anticonvulsant effects of PCH during the entire initial 40 min period of soman poisoning, and its fewer adverse effects, all suggest that PCH might serve as a new type of anticonvulsant for the treatment of seizures induced by soman.  相似文献   

2.
The treatment of organophosphorus (OP) poisoning consists of the administration of a parasympatholytic agent (e.g., atropine), an anticonvulsant (e.g., diazepam) and an acetylcholinesterase (AChE) reactivator (e.g., obidoxime). The AChE reactivator is the causal treatment of OP exposure, because it cleaves the OP moiety covalently bound to the AChE active site. In this paper, fourteen novel AChE reactivators are described. Their design originated from a former promising compound K027. These compounds were synthesized, evaluated in vitro on human AChE (hAChE) inhibited by tabun, paraoxon, methylparaoxon and DFP and then compared to commercial hAChE reactivators (pralidoxime, HI-6, trimedoxime, obidoxime, methoxime) or previously prepared compounds (K027, K203). Three of these novel compounds showed a promising ability to reactivate hAChE comparable or better than the used standards. Consequently, a molecular docking study was performed for three of these promising novel compounds. The docking results confirmed the apparent influence of π-π or cation-π interactions and hydrogen bonding for reactivator binding within the hAChE active site cleft. The SAR features concerning the non-oxime part of the reactivator molecule are also discussed.  相似文献   

3.
Baicalin, a flavonoid compound purified from plant Scutellaria baicalensis Georgi, has been reported to possess a wide variety of pharmacological properties including anti-oxidative, anti-apoptotic and neuroprotective properties. Oxidative stress can dramatically alter neuronal function and has been linked to status epilepticus (SE). However, the neuroprotective effect of baicalin on epilepsy is unclear. In this study we investigated whether Baicalin could exert anticonvulsant and neuroprotective effects in the pilocarpine-induced epileptic model in rats. To this end, we recorded the latency to first limbic seizure and SE and observed the incidence of SE and mortality. The changes of oxidative stress were measured 24 h after pilocarpine-induced SE. Nissl staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and Fluoro-Jade B staining were performed to detect the neuronal loss, apoptosis and degeneration in hippocampus 72 h after pilocarpine-induced seizure. Pretreatment with baicalin significantly delayed the onset of the first limbic seizures and SE, reduced the mortality rate, and attenuated the changes in the levels of lipid peroxidation, nitrite content and reduced glutathione in the hippocampus of pilocarpine-treated rats. Furthermore, we also found that baicalin attenuated the neuronal cell loss, apoptosis, and degeneration caused by pilocarpine-induced seizures in rat hippocampus. Collectively, these results indicated remarkable anticonvulsant and neuroprotective effects of baicalin and should encourage further studies to investigate baicalin as an adjuvant in epilepsy both to prevent seizures and to protect against seizure induced brain injury.  相似文献   

4.
Anticonvulsants for soman-induced seizure activity   总被引:10,自引:0,他引:10  
This report describes studies of anticonvulsants for the organophosphorus (OP) nerve agent soman: a basic research effort to understand how different pharmacological classes of compounds influence the expression of seizure produced by soman in rats, and a drug screening effort to determine whether clinically useful antiepileptics can modulate soman-induced seizures in rats. Electroencephalographic (EEG) recordings were used in these studies. Basic studies were conducted in rats pretreated with HI-6 and challenged with 1.6×LD50 soman. Antimuscarinic compounds were extremely effective in blocking (pretreatment) or terminating soman seizures when given 5 min after seizure onset. However, significantly higher doses were required when treatment was delayed for more than 10 min, and some antimuscarinic compounds lost anticonvulsant efficacy when treatment was delayed for more than 40 min. Diazepam blocked seizure onset, yet seizures could recur after an initial period of anticonvulsant effect at doses 2.5 mg/kg. Diazepam could terminate ongoing seizures when given 5 min after seizure onset, but doses up to 20 mg/kg were ineffective when treatment was delayed for 40 min. The GABA uptake inhibitor, tiagabine, was ineffective in blocking or terminating soman motor convulsions or seizures. The glutamate receptor antagonists, NBQX, GYKI 52466, and memantine, had weak or minimal antiseizure activity, even at doses that virtually eliminated signs of motor convulsions. The antinicotinic, mecamylamine, was ineffective in blocking or stopping seizure activity. Pretreatment with a narrow range of doses of 2-adrenergic agonist, clonidine, produced variable protection (40–60%) against seizure onset; treatment after seizure onset with clonidine was not effective. Screening studies in rats, using HI-6 pretreatment, showed that benzodiazepines (diazepam, midazolam and lorazepam) were quite effective when given 5 min after seizure onset, but lost their efficacy when given 40 min after onset. The barbiturate, pentobarbital, was modestly effective in terminating seizures when given 5 or 40 min after seizure onset, while other clinically effective antiepileptic drugs, trimethadione and valproic acid, were only slightly effective when given 5 min after onset. In contrast, phenytoin, carbamazepine, ethosuximide, magnesium sulfate, lamotrigine, primidone, felbamate, acetazolamide, and ketamine were ineffective.The animals used in studies performed in, or sponsored by, this Institute were handled in accordance with the principles stated in the Guide for the Care and Use of Laboratory Animals, proposed by the Committee to Revise the Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council, and published by National Academy Press, 1996, and the Animal Welfare Act of 1966, as amended. The opinions or assertions contained herein are the private views of the authors, and are not to be construed as reflecting the views of the Department of the Army or the Department of Defense.  相似文献   

5.
A three component pretreatment regimen composed of a carbamate, atropine and mecamylamine offered complete protection against a multiple lethal doses of Soman in rats. In animals, given chemical pretreatment containing physostigmine in the drug regimen, Soman-induced cerebral acetylcholine (ACh) levels were initially elevated but were back down to normal by 30 min post Soman, but in rats given neostigmine in the pretreatment regimen, ACh concentrations were found to be the highest at 30 min after Soman exposure. The data suggest that peripheral acetylcholinesterase (AChE) and nicotinic and muscarinic ACh receptors are critical sites in organophosphorus (OP) anticholinesterase exposure in rats and should be protected to maximize efficacy against OP intoxication. The data also suggest that carbamates which penetrate the blood-brain barrier may be superior to quaternary carbamates in antagonizing OP exposure in that they could be expected to dampen and rapidly abolish OP-induced rises in total brain ACh which in turn should restore normal neural activity in the brain.  相似文献   

6.
Brain-derived neurotrophic factor (BDNF) is involved in many aspects of neuronal biology and hippocampal physiology. Status epilepticus (SE) is a condition in which prolonged seizures lead to neuronal degeneration. SE-induced in rodents serves as a model of Temporal Lobe Epilepsy with hippocampal sclerosis, the most frequent epilepsy in humans. We have recently described a strong correlation between TrkB decrease and p75ntr increase with neuronal degeneration ( Neuroscience 154:978, 2008). In this report, we report that local, acute intra-hippocampal infusion of function-blocking antibodies against BDNF prevented both early TrkB down-regulation and neuronal degeneration after SE. Conversely, the infusion of recombinant human BDNF protein after SE greatly increased neuronal degeneration. The inhibition of BDNF mRNA translation by the infusion of antisense oligonucleotides induced a rapid decrease of BDNF protein levels, and a delayed increase. If seizures were induced at the time endogenous BDNF was decreased, SE-induced neuronal damage was prevented. On the other hand, if seizures were induced at the time endogenous BDNF was increased, SE-induced neuronal damage was exacerbated. These results indicate that under a pathological condition BDNF exacerbates neuronal injury.  相似文献   

7.
Antiepileptic drugs provide neuroprotection in several animal models of brain damage, including those induced by status epilepticus (SE). The mechanisms involved in this action are unknown, but neurotrophic factors such as brain-derived neurotrophic factor (BDNF) may play a role. In this study we investigated the changes in BDNF levels in rats in which SE had been induced by pilocarpine injection (400 mg/kg i.p.) and continued for several hours (unprotected group). In other animals (protected groups), SE was suppressed after 30 min by intraperitoneal injection of either diazepam (10 mg/kg) + pentobarbital (30 mg/kg) or paraldehyde (0.3 mg/kg). In diazepam + pentobarbital-treated rats the hippocampal damage caused by SE was significantly lower (p < 0.05) than in unprotected animals. In addition, 2 and 24 h after pilocarpine injection, the levels of BDNF mRNA were moderately increased in the unprotected group, but 'superinduced' in protected animals, especially in the neocortex and hippocampus. A time-dependent increase in BDNF immunoreactivity was also found by western blot analysis in rats treated with diazepam + pentobarbital. In contrast, a decrease of BDNF immunoreactivity occurred in the unprotected group. In conclusion, these results show that neuroprotection induced by anti-epileptic drugs in pilocarpine-treated rats is accompanied by strong potentiation of BDNF synthesis in brain regions involved in SE.  相似文献   

8.
The effects of various doses of diazepam and the new central benzodiazepine antagonist Ro-15-1788 were investigated in fully amygdaloid kindled rats. Diazepam had a pronounced dose-dependent anticonvulsant effect in this model. Ro-15-1788 dose-dependently reduced the behavioral ranks of the elicited kindled seizures to a maximum of 60% of control without consistently modifying the afterdischarge duration. No prestimulation convulsant effects were seen with Ro-15-1788. When 2 mg/kg i.p. of Ro-15-1788 was given after various doses of diazepam, the prestimulation sedation and ataxia anticonvulsant effects of diazepam (0.5-2.0 mg/kg) were attenuated by treatment with 2 mg/kg dose of Ro-15-1788. At the low dose of diazepam (0.25 mg/kg), increased reduction of behavioral rank and after discharge duration was seen after the 2 mg/kg dose of Ro-15-1788. Thus, Ro-15-1788 appears not to have proconvulsant properties in the kindled amygdaloid seizure model. Further, Ro-15-1788 appears to have some anticonvulsant properties of its own. Mixed agonist and antagonist effects were seen with Ro-15-1788 when given after various doses of diazepam in this model.  相似文献   

9.
An episode of status epilepticus (SE), if left untreated, can lead to death, or brain damage with long-term neurological consequences, including the development of epilepsy. The most common first-line treatment of SE is administration of benzodiazepines (BZs). However, the efficacy of BZs in terminating seizures is reduced with time after the onset of SE; this is accompanied by a reduced efficacy in protecting the hippocampus against neuronal damage, and is associated with impaired function and internalization of hippocampal GABAA receptors. In the present study, using Fluoro-Jade C staining, we found that administration of diazepam to rats at 3 h after the onset of kainic acid-induced SE, at a dose sufficient to terminate SE, had no protective effect on the hippocampus, but produced a significant reduction in neuronal degeneration in the amygdala, piriform cortex, and endopiriform nucleus, examined on days 7–9 after SE. Thus, in contrast to the hippocampus, the amygdala and other limbic structures are responsive to neuroprotection by BZs after prolonged SE, suggesting that GABAA receptors are not significantly altered in these structures during SE.  相似文献   

10.
Exposure to the organophosphorus nerve agents such as sarin, soman, cyclosarin, and VX causes acute intoxication by inhibiting acetylcholinesterase (AChE), where the serine residue of the active site can attack the phosphorous atom of the organophosphorus agents to form a strong P–O bond. The purpose of the present study was to evaluate new oxime antidotes to reactivate the inhibited AChE. We have designed and synthesized several new oximes, and have evaluated the substances that differ from the currently used oximes in linker between the two pyridinium rings. The potency of newly synthesized oximes was compared with two currently used AChE reactivators (2-PAM, HI-6). The reactivation potencies of the bis-pyridinium oximes connected with a (CH2)n linker between the two quaternary nitrogen atoms were evaluated with housefly (HF) AChE inhibited by diisopropyl fluorophosphates (DFP) and by paraoxon. The bis-pyridinium oximes showed stronger activity compared with mono-pyridinium oxime, and the magnitude of reactivation potency depended on the length of the methylene linker. The potency order was (CH2) < (CH2)2 < (CH2)3 > (CH2)4 > (CH2)7. A (CH2)3 linker was optimal in HF AChE inhibited by either DFP or paraoxon. Thus, bis-pyridinium oxime 5 which has (CH2)3 linker showed the highest activity in this series of compounds. Interestingly, 5 was not as active as 2-PAM, showing that the position of the oxime group on the pyridinium ring is also very important for the reactivation potency.  相似文献   

11.
Pilocarpine-induced seizures in rats provide a widely animal model of temporal lobe epilepsy. Some evidences reported in the literature suggest that at least 1 h of status epilepticus (SE) is required to produce subsequent chronic phase, due to the SE-related acute neuronal damage. However, recent data seems to indicate that neuro-inflammation plays a crucial role in epileptogenesis, modulating secondarily a neuronal insult. For this reason, we decided to test the following hypotheses: a) whether pilocarpine-injected rats that did not develop SE can exhibit long-term chronic spontaneous recurrent seizures (SRS) and b) whether acute neurodegeneration is mandatory to obtain chronic epilepsy. Therefore, we compared animals injected with the same dose of pilocarpine that developed or did not SE, and saline treated rats. We used telemetric acquisition of EEG as long-term monitoring system to evaluate the occurrence of seizures in non-SE pilocarpineinjected animals. Furthermore, histology and MRI analysis were applied in order to detect neuronal injury and neuropathological signs. Our observations indicate that non-SE rats exhibit SRS almost 8 (+/22) months after pilocarpine-injection, independently to the absence of initial acute neuronal injury. This is the first time reported that pilocarpine injected rats without developing SE, can experience SRS after a long latency period resembling human pathology. Thus, we strongly emphasize the important meaning of including these animals to model human epileptogenesis in pilocarpine induced epilepsy.  相似文献   

12.
The lithium-pilocarpine model of epilepsy reproduces in rodents several features of human temporal lobe epilepsy, by inducing an acute status epilepticus (SE) followed by a latency period. It has been proposed that the neuronal network reorganization that occurs during latency determines the subsequent appearance of spontaneous recurrent seizures. The aim of this study was to evaluate neuronal and glial responses during the latency period that follows SE. Given the potential role of astrocytes in the post-SE network reorganization, through the secretion of synaptogenic molecules such as thrombospondins, we also studied the effect of treatment with the α2δ1 thrombospondin receptor antagonist gabapentin. Adult male Wistar rats received 3 mEq/kg LiCl, and 20 h later 30 mg/kg pilocarpine. Once SE was achieved, seizures were stopped with 20 mg/kg diazepam. Animals then received 400 mg/kg/day gabapentin or saline for either 4 or 14 days. In vitro experiments were performed in dissociated mixed hippocampal cell culture exposed to glutamate, and subsequently treated with gabapentin or vehicle. During the latency period, the hippocampus and pyriform cortex of SE-animals presented a profuse reactive astrogliosis, with increased GFAP and nestin expression. Gliosis intensity was dependent on the Racine stage attained by the animals and peaked 15 days after SE. Microglia was also reactive after SE, and followed the same pattern. Neuronal degeneration was present in SE-animals, and also depended on the Racine stage and the SE duration. Polysialic-acid NCAM (PSA-NCAM) expression was increased in hippocampal CA-1 and dentate gyrus of SE-animals. Gabapentin treatment was able to reduce reactive gliosis, decrease neuronal loss and normalize PSA-NCAM staining in hippocampal CA-1. In vitro, gabapentin treatment partially prevented the dendritic loss and reactive gliosis caused by glutamate excitotoxicity. Our results show that gabapentin treatment during the latency period after SE protects neurons and normalizes PSA-NCAM probably by direct interaction with neurons and glia.  相似文献   

13.
J. A. R. Tibbles  D. A. McGreal 《CMAJ》1963,88(17):881-886
It has been shown experimentally that the drug amino-oxyacetic acid (AOA) can raise the level of gamma aminobutyric acid (GABA) in the brain. Since GABA is a powerful neuronal inhibitor it seemed worth while to assess the value of AOA as an anticonvulsant.This drug was given to 23 infants and children, all but one of whom were resistant to usual anticonvulsant medication. The types of seizure patterns were classed as major (including focal) and minor (akinetic, myoclonic and hypsarrhythmic) and the patients were followed for up to one year. Of eight children with major seizures, five were improved; of eight with minor seizures, three were improved; and of six with hypsarrhythmia, none were improved. One patient with phenylketonuria and minor seizures was improved.It is concluded that this approach to anticonvulsant therapy is worth pursuing and that the drug may also find some use in the treatment of phenylketonuria and of seizures due to vitamin B6 dependency.  相似文献   

14.
This study aims to establish pilocarpine-induced rat model of status epilepticus (SE), observe the activity of calpain I in the rat hippocampus and the subsequent neuronal death, and explore the relationship between calpain I activity and neuronal death in the hippocampus. Fifty-eight adult male Wistar rats were assigned randomly into either control group (n = 8) or epilepsy group (n = 50). SE was induced in the epilepsy group using pilocarpine. Before the injection, the rats were given atropine sulfate to reduce the side effect of pilocarpine. All rats in the seizure group were grouped into either SE or non-SE, depending on whether they developed convulsive seizures. The rats in SE group were treated with chloral hydrate to stop seizures after 60 min. Control animals were treated with the same dose of 0.9 % saline. All rats were monitored for seizures. At 24 h after SE, the rats’ left brain tissues were stained by HE and TUNEL. Neuronal necrosis and apoptosis in the hippocampal CA3 area were observed. Calpain I activity in the right hippocampus was also observed using western blotting. Eighty percent of the rats in the seizure group developed SE, of which 35 % died. No rat died in both the control and non-SE groups. At 24 h after SE, the number of HE-stained neurons decreased (SE group: 55.19 ± 8.23; control group: 102.13 ± 3.73; non-SE group: 101.2 ± 2.86) and the number of TUNEL-positive neurons increased (SE group: 4.91 ± 1.35; non-SE and control group: 0). No obvious changes were observed in the neurons of the control and non-SE group animals. The 76 kDa cleavage of calpain I (the average optical density ratio is 0.096 ± 0.015) emerged in the SE group. Neuronal death has a direct relationship with calpain I activity. There is high success rate and lower death rate for pilocarpine to induce SE. At 24 h after SE, activity of calpain I, neuronal necrosis and apoptosis increased in the hippocampus. Neuronal death has a direct relationship with calpain I activity, which suggests that calpain I plays an important role in neuronal damage during SE.  相似文献   

15.
Lysophosphatidic acid is a bioactive lipid mediator with neuronal activities. We previously reported a crucial role for lysophosphatidic acid 1 receptor-mediated signaling in neuropathic pain mechanisms. Intrathecal administration of lysophosphatidic acid (1 nmol) induced abnormal pain behaviors, such as thermal hyperalgesia, mechanical allodynia, A-fiber hypersensitization, and C-fiber hyposensitization, all of which were also observed in partial sciatic nerve injury-induced neuropathic pain. Ki-16425 (30 mg/kg, i.p.), a lysophosphatidic acid 1 receptor antagonist, completely blocked lysophosphatidic acid-induced neuropathic pain-like behaviors, when administered 30 min but not 90 min before lysophosphatidic acid injection, suggesting that Ki-16425 is a short-lived inhibitor. The blockade of nerve injury-induced neuropathic pain by Ki-16425 was maximum as late as 3 h after the injury but not after this critical period. The administration of Ki-16425 at 3 h but not at 6 h after injury also blocked neurochemical changes, including up-regulation of voltage-gated calcium channel α2δ-1 subunit expression in dorsal root ganglion and reduction of substance P expression in the spinal dorsal horn. All of these results using Ki-16425 suggest that lysophosphatidic acid 1 receptor-mediated signaling which underlies the development of neuropathic pain works at an early stage of the critical period after nerve injury.  相似文献   

16.
The present study examined the effects of a free radical scavenger, N-tert-butyl-alfa-phenylnitrone (PBN) on lithium-pilocarpine-induced status epilepticus (SE) and its short-term consequences in rats 12 (P12) or 25 (P25) days old. PBN (2 x 100 mg/kg i.p.) was injected according to the following schedules: 1) PBN-pretreated animals received the first dose 30 min prior to pilocarpine, the second dose was given 1 min after SE onset, and 2) PBN-treated animals received the first dose of PBN 1 min after SE onset and the second one 60 min later. Paraldehyde was administered to decrease mortality. Effects of PBN were highly age-dependent. In P25 group, PBN-pretreatment increased latency to SE onset and significantly suppressed the severity of motor manifestation of SE. Both PBN pretreatment and treatment improved recovery after SE. In contrast, administration of PBN in P12 animals did not affect SE pattern or recovery after SE. Administration of PBN had no effects on the motor performance of animals 3 and 6 days after SE. Neuronal damage was examined 24 h and 7 days after SE using Fluoro-Jade B staining. Mild neuroprotective effects of PBN in hippocampal fields CA1 and CA3 occurred in P25 rats in both experimental schedules. In contrast, administration of PBN aggravated neuronal injury in the hippocampus in P12 rats. Administration of PBN to intact rats did not induce neurodegeneration in either age group.  相似文献   

17.
Intramuscular injection of diazepam to rats at doses of 0.01 and 2 mg/kg 25-30 min after penicillin application to the rat brain cortex leads to alteration of periodic appearance of epileptic seizures (ES), to changes in the seizure pattern, and to emergence of periodic acceleration of epileptiform discharges (ED). Injection of diazepam at a dose of 2 mg/kg 20 min before penicillin application results in the reduction of ED latency in the epileptogenic focus and in a decrease in their frequency before seizures as compared to the control animals without diazepam injection. ES appear irregularly, their quantity is markedly reduced while duration is increased. Diazepam injection leads to disappearance of the rat moving reaction during ER and ES. In vivo experiments diazepam (2 mg/kg) does not influence brain cortex Na, K-ATPase of crude synaptosomes. However, diazepam leads to an increase in Na, K-ATPase activity both in the primary and dependent secondary epileptogenic foci. It is suggested that the anticonvulsant action of diazepam may be underlain by its activating effect on Na, K-ATPase of neuronal membranes in the epileptogenic focus.  相似文献   

18.
Administration of diisopropylfluorophosphate (DFP), an organophosphorus (OP) compound, irreversibly inhibits acetylcholinesterase (AChE) and results in cholinergic hyperactivity. This study investigated muscarinic and gamma-aminobutyric acid (GABA) receptor changes in visual cortex of cats following an acute exposure to DFP. A single acute administration of DFP (4 mg/kg) decreased the number of muscarinic receptors at 2, 10, and 20 hours after treatment. GABA receptors were elevated at 2 and 10 hours but returned to within control levels at 20 hours. No significant alteration in muscarinic or GABA receptor affinity was noted. In all cases cortical AChE activity was inhibited 60-90%. These findings show a down regulation of muscarinic receptors after DFP associated with low AChE activity. GABA receptors also are altered, and may be part of a compensatory mechanism to counteract excess cholinergic stimulation.  相似文献   

19.
Pilocarpine-induced status epilepticus (SE) mimics many features of temporal lobe epilepsy and is a useful model to study neural changes that result from prolonged seizure activity. In this study, distribution of the anti-adhesive extracellular matrix protein SC1 was examined in the rat hippocampus following SE. Western blotting showed decreased levels of SC1 protein in the week following SE. Immunohistochemistry demonstrated that the decrease in overall SC1 protein levels was reflected by a reduction of SC1 signal in granule cells of the dentate gyrus. Interestingly, levels of SC1 protein in neurons of the seizure-resistant CA2 sector of the hippocampus did not change throughout the seizure time course. However, at 1 day post-SE, a subset of neurons of the hippocampal CA1, CA3, and hilar regions, which are noted for extensive neuronal degeneration after SE, exhibited a transient increase in SC1 signal. Neurons exhibiting enhanced SC1 signal were not detected at 7 days post-SE. The cellular stress response was also examined. A prominent induction of heat-shock protein (Hsp70) and Hsp27 was detected following SE, while levels of constitutively expressed Hsp40, Hsp90, Hsp110, and Hsc70 showed little change at the time points examined. The subset of neurons that demonstrated a transient increase in SC1 colocalized with the cellular stress marker Hsp70, the degeneration marker Fluoro-Jade B, and the neuron activity marker activity-regulated cytoskeleton-associated protein (Arc). Taken together, these findings suggest that SC1 may be a component of the 'matrix response' involved in remodeling events associated with neuronal degeneration following neural injury.  相似文献   

20.
Senescence marker protein-30 (SMP-30) is a candidate enzyme that can function as a catalytic bioscavenger of organophosphorus (OP) nerve agents. We purified SMP-30 from mouse (Mo) liver and compared its hydrolytic activity towards various esters, lactones, and G-type nerve agents with that of human paraoxonase1 (Hu PON1) and squid diisopropylfluorophosphatase (DFPase). All three enzymes contain one or two metal ions in their active sites and fold into six-bladed β-propeller structures. While Hu PON1 hydrolyzed a variety of lactones, the only lactone that was a substrate for Mo SMP-30 was d-(+)-gluconic acid δ-lactone. Squid DFPase was much more efficient at hydrolyzing DFP and G-type nerve agents as compared to Mo SMP-30 or Hu PON1. The K(m) values for DFP were in the following order: Mo SMP-30>Hu PON1>squid DFPase, suggesting that the efficiency of DFP hydrolysis may be related to its binding in the active sites of these enzymes. Thus, homology modeling and docking were used to simulate the binding of DFP and selected δ-lactones in the active sites of Hu SMP-30, Hu PON1, and squid DFPase. Results from molecular modeling studies suggest that differences in metal-ligand coordinations, the hydrophobicity of the binding pockets, and limited space in the binding pocket due to the presence of a loop, are responsible for substrate specificities of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号